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$\ln$ the simulation of two-dimensional turbulence, the probability distribution of

spacings between adjacent two points of iso local enstrophy dissipation (LED) is shown to

follow an exponential type distribution. This implies that the number distribution of the

points of the iso LED is given by Poisson distribution. With the results, some discussions

are given, suggesting that the resulting Poisson distribution would lend some supports to

the basic idea of the $\mathrm{p}$-model that is constructed under the assumption that the probability

distribution of the dissipation rate is given by the bimoxlal distribution.

Suppose a large number of points that are distributed randomly on a straight line.

Some of adjacent points may keep their spacings separate. Some may hold their $s$pacing

closely. How can we know such the difference in the distributions ? The most simple idea

would be to measure the spacings between two adjacent points. The spacings that follow

an exponential distribution appear to represent an intermittent structure in turbulent flows.

Can we apply the idea of the spacing distribution to the study of turbulent structure?

Maybae, it can be of an interest to $\mathfrak{m}\mathrm{e}\mathrm{a}\mathrm{S}\mathrm{u}\mathrm{r}\mathrm{e}$, for example, the spacings between adjacent two

points marked with circles as shown in Fig.2.
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If the probability distribution of the spacings is known, the number $\mathrm{d}\mathrm{i}s$tribution of the

$k$ points to be found in a closed range, say, $B=(a,b)$ , is calculated. For example, when

the spacing distribution is exponential type di $s$tribution as1)

$P(s)=\exp(-\lambda s)$ (1)

the number distribution of the $k$ points to be found in the range $B=(a,b)$ is given by

Poisson distribution as

$P(k;B)= \frac{(\lambda B)^{k}}{k!}$ e-M (2)

When $k=0$ , then eq.(l) is recovered from $\mathrm{e}\mathrm{q}.(2)$ . Corresponding to $\mathrm{e}\mathrm{q}.(2)$ , we can

consider more general probability distribution functions, say, $E(k;B)$ . When $k=0$ , the

function $E(k;B)$ gives the probability distribution function of spacing $B$ . In the present

letter, we have an interest in particular of studying the spacing distribution of the local

enstrophy dissipation (LED) in two-dimensional turbulence

$\sigma(x,y,t)=\sqrt{(\nabla\cross 0))^{2}}\equiv\sqrt{(\frac{\partial a)}{\partial x})^{2}+\{\frac{\partial\omega}{\partial y})^{2}}$ (3)

because the turbulence models such as $p$-model and $\beta$-model proposed by Meneveau and

$\mathrm{s}_{\mathrm{f}\mathrm{e}}\mathrm{e}\mathrm{n}\mathrm{i}\mathrm{V}\mathrm{a}s\mathrm{S}\mathrm{a}\mathrm{n}^{2,3)}$ , and by Frisch et $a\theta$), respectively, for the study of the intermittent

structures in turbulence are constructed on the base of the assumed probability distribution

of the dissipation rate. It is expected that the study of the spacing distribution of the LED

may lend some supports to the base of such the models.

In the study of the spacing distributions, we use the numerical data obtained from the

equation for two-dimensional turbulent $\mathrm{v}\mathrm{o}\mathrm{I}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{i}\iota \mathrm{i}\mathrm{e}s,$ $\omega(x,\mathcal{Y},t)$ :
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$\frac{\partial\omega(x,y,t)}{\partial t}+v\cdot\nabla\omega(x,y,t)=v\Delta\omega(x,y,t)$ (4)

Then, the LED, $\sigma(x,y,t)2\mathrm{i}\mathrm{S}$ calculated from $\omega(x,y,t)$ using $\mathrm{e}\mathrm{q}.(3)$ .

Equation (4) is solved numerically with the pseudo-spectrum method with the spectral

resolutions 256 $\mathrm{x}2\mathit{5}\mathit{6}^{5)}$ . The initial spectrum is

$\omega(k,t=0)=\omega 0\frac{k^{2}}{k_{0}^{3}}\mathrm{e}\mathrm{X}\mathrm{f}\{-(\frac{k1}{k_{0^{1}}})^{2}]$ (5)

and viscous coefficient $\mathrm{v}=1.5\mathrm{x}10^{-4},$ $\omega_{\mathit{0}}=\mathit{0}.\mathit{1}$ and $k_{\mathit{0}}=2\mathit{5}$ . Time marching is made

with the second-order Runge-Kutta method. Time step is $\Delta=\mathit{0}.\mathit{0}\mathit{0}\mathit{1}$ to characteri$s$ tic time.

First we check the simulation results, calculating the energy spectrum that is the

average of $\frac{1}{2}\nu^{2}(k, t)$ over the wavenumbers $k$. The resulting energy spectrum shows $- 3$

slope in an inertial range at high wavenumbers, and an inverse cascade toward low

wavenumbers (Figures are not shown.), both of which are known as characteristic

properties of two-dimensional turbulence. Further support to the simulation will be given

by Brachet et al. who have shown that the LED in two-dimensional turbulence are

$s$pacially distributed, concentrating in strip-like regions (Fig. 1).

In Fig. 4, we show the spacing distributions of the LED. They are obtained from 256

$\mathrm{x}2$ one-dimensional cuts or the is0–LED lines that are horizontal slices through Fig. 1: that

is, to calculate the spacing $\mathrm{d}\mathrm{i}s$ tributions, we use the $x$-series and $y$ -series of the cuts

obtained by fixing the $y$ -axis and the $x$-axis, respectively, at 1 to 256. (In Fig.2, we

show an example of spacings to be measured.) We $s$ee that the resulting spacing

distributions are the exponential type $\mathrm{d}\mathrm{i}s$tributions with a peak in the leftist range of small

spacings $s$ . The peak part of the distribution becomes more peaked with increasing $c$,
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appearing like&function, and the slope of the exponential part decreases as $c$ increases.

Note that the distribution tends to take a definite form without depending on initial

$\mathrm{d}\mathrm{i}s$tributions because of the $\mathrm{r}\mathrm{e}s$trictions of the $s$pectral resolutions at low wavenumbers.

Where are then the two parts of the distributions come from ? The origins will be

clarified with Fig.3 which shows the $\mathrm{i}\mathrm{s}\mathrm{o}$-LED lines for the LED intensity $c=10$ and 20.

They appear to be like the islands in the sea with the boundaries or $\mathrm{i}\mathrm{s}\mathrm{o}$-LED lines. This

suggests that the exponential part of the distribution is consisted mostly of the spacings

between two adjacent islands. (More strictly speaking, it is made of the spacings between

two adjacent islands that are distributed along a straight line, say, $x$-axis.) The peak parts,

meanwhile, are thought to result mainly from the spacings between two adjacent iso-LED

lines that make the boundary of the islands.

The dependence of the mean $s$pacing between adjacent two islands, $1/\lambda$ , on the

intensity $c$ is obtained from Fig.5 as

$\underline{1}\approx c^{1.6}$ (6)
$\lambda$

Then, we see that the mean spacing increases with $c$ according to a power law. (We

assume that the exponential part of the distribution is expre$ss$ed with eq.(l) in which

$1/\lambda$ is equal to the mean spacing.) Further, we see that the mean spacing between the

islands is scaled with $x=\lambda s$ , that can be understood from the fact that eq. (1) is

normalized with $\lambda s$. Therefore, with the scaling law and power law, it can be concluded

that the turbulence has a self-similar structure about the mean spacing between the two

adjacent islands for the iso LED lines when the intensity $c$ is larger than 8 (see Fig.5).

Finally, we show an analogy between the $\mathrm{p}\mathfrak{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}$ and our result. As mentioned

before, the $\mathrm{p}$ model is an intermittency $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1^{3,4)}$ constructed under the assumption that the
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probability distribution of the (total) dissipation rate, $E_{\gamma}$ , in a certain piece $\Omega$ is given

by the bimodal distribution function as

$E_{r}/E_{L}=p_{1^{m(m)}}p_{2}n-$ (where $m=0.\mathit{1},$
$\ldots.,$

$n$ ) (7)

where $E_{\gamma}$ is given using the (local) dissipation rate $\epsilon\langle x$) as

$E_{r}= \int_{X}\in\Omega\epsilon(x)\mathrm{d}^{3}X$ . (8)

and the distribution is given in term$s$ of two&function $s$ as

$p(M)=0.5\mathrm{t}\delta(M- 0.4)+\delta$ (M-o.6) $\}$ . (9)

Then, corresponding to $\mathrm{e}\mathrm{q}.(7)$, the probability distribution of the LED in a certain one-

dimensional piece $B$ will be given in terms of Poisson distribution. Remember that the

spacings between the adjacent two islands for the iso LED lines follow$s$ the exponential

type distribution as in eq.(l). In this case, as mentioned before, the number distribution of

the $k$ islands is given by Poisson distribution as in $\mathrm{e}\mathrm{q}.(2)$ . Since the turbulent dissipation

is considered to occur mostly in the islands where the intensity of the LED is strong, then,

in the piece $B$, we can estimate the probability distribution of the LED that is in a certain

definite intensity $c$, though roughly, at the product between the intensity $c$ and the island

numbers as

$E_{c}(B)\approx\overline{C}\underline{(_{\lambda B)^{k}}^{-}}-\lambda B-$

(10)
$k$ !

where the bars over $c$ and $\lambda$ denote the average over the LED inside of the islands.

Further, if we recall that the probability distribution of islands of the LED in the

different intensity $c$ satisfies a scaling law, we can obtain the probability distribution of the

total LED in the range $B$ , that is taken into account all of the intensities $c$ , barely

$\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{C}\mathrm{i}\mathrm{n}\mathrm{g}\overline{c}$ in eq.(lO) with a suitable function, say, $E_{l}(c7$ :
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$E_{T}(B) \approx E_{l}(\overline{C})\frac{(_{\lambda B}^{-})^{k}}{k!}-\lambda-_{B}$ . (11)

Note that in the limit of infinity trial $s$ , the bimodal distribution includes Poi$s$son distribution

as 1)

(12)

Thus, we can see that $\mathrm{e}\mathrm{q}.(7)$ is equivalent to eq.(ll).

The bimodal $\mathrm{d}\mathrm{i}s$tribution can be a natural result from the nonlinear effect of the Navier-

Stokes equation that makes turbulent motions $\mathrm{m}\mathrm{o}s\mathrm{t}$ randomly. It $s$eems that the p-model

takes into account the nonlinear effects of the Navier-Stokes equation well. This can be a

reason why the $\mathrm{p}$-model is a good model for the study of intermittent structures in

turbulence. Maybe, it can be of an interest to study further on this point,. Notice that

further analysis is now under way and will be reported el $s$ewhere together with more

detailed simulation results.
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Fig.1 lso $1\mathrm{o}\mathrm{c}\mathrm{a}1- \mathrm{e}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{h}\mathrm{y}- \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{S}\mathrm{i}_{\mathrm{P}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ (LED) lines, $\sigma(x,y,t)=c$ , where

$\sigma(x,y,t)=\sqrt{(\nabla\cross\omega)2}\equiv\sqrt{(\frac{\partial\omega}{\partial x})^{2}+(\frac{\partial\omega}{\partial y})^{2}}$

$o(x,y,\iota)$

Fig.2 A horizontal slice through Fig.1. The spacings between the adjacent two $1^{\mathrm{X})}\mathrm{i}\mathrm{n}\mathrm{t}S$

marked with circles are measured to calculate spacing distribution$s$ . The above
example in the figure shows the points of the LED for the intensity $c=15$.
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$\mathrm{L}\cup$ $\mathrm{q}\cup$ OU

$\mathrm{U}$ $\angle \mathrm{U}$ 1I $\mathrm{U}$ vu UU 1UU J. $\angle \mathrm{U}$

Fig.3 lso $1_{\mathrm{o}\mathrm{C}\mathrm{a}}1- \mathrm{e}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{P}\mathrm{h}\mathrm{y}- \mathrm{d}\mathrm{i}\mathrm{S}\mathrm{S}$ ipation (LED) lines for the intensities (a) $c=10,$ $(\mathrm{b})$

$c=18$.
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Fig.4 Spacing distributions for the iso $1\propto \mathrm{a}1$-enstrophy-dissipation (LED) lines
in the intensities: (a) $c=5;(\mathrm{b})8;(\mathrm{c})11;(\mathrm{d})14;(\mathrm{e})17;([\gamma_{2}\mathrm{o}$.
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$1/\lambda$ .

Fig.5 The mean spacing between the islands in the iso LED lines, $\mathit{1}/\lambda,$ $\mathrm{v}.s$ . the intensity

of the LED, $c$.
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