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1 Introduction
In this note we consider the following functional

(1) $F_{\epsilon,\sigma}(u)$ $:=$ $\int_{\Omega}\{\frac{\epsilon^{2}}{2}|\nabla u|^{2}+W(u)+\frac{\sigma}{2}|(-\triangle_{N})^{-\frac{1}{2}}(u-\overline{u})|^{2}\}dx$ ,

$\overline{u}$ $:=$ $\frac{1}{|\Omega|}\int_{\Omega}udx$ , $u\in H^{1}(\Omega)$ ,

where $\Omega$ is a smooth bounded domain in $\mathrm{R}^{n},$ $W(u)$ is a double-well potential with global
minima $u=\pm 1$ , typically of the form $\frac{1}{4}(u^{2}-1)^{2},$ $\epsilon$ and a are positive constants, $H^{1}(\Omega)$ is
the usual Sobolev space, and $(-\triangle_{N})^{-\frac{1}{2}}$ is a fractional power of the Laplace operator under
the zero flux boundary condition. (The underlying space for the Laplace operator is the
subspace of $L^{2}(\Omega)$ orthogonal to constants. See Henry [6] for details. ) The third term
is of nonlocal, since $(-\triangle_{N})^{-\frac{1}{2}}$ is, roughly speaking, an integral operator in $\Omega$ . Without
this term, (1) becomes a well-known functional from which we can derive the Allen-Cahn
(non-conserved) and the Cahn-Hilliard (conserved) equations.
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The functional (1) was first introduced in a different form by [11] and [1], then formu-
lated like (1) in [10] in order to describe the micro-phase separation of diblock copolymer
where two different homopolymers are connected and this connectivity is responsible for
introducing the long range interaction, i.e., the nonlocal term of (1). The parameter a is
inversely proportional to the square of the total chain length $N$ of the copolymer, and $\epsilon$

represents the interfacial thickness at the bonding point assumed to be sufficiently small,
and the average $\overline{u}(-1<\overline{u}<1)$ stands for the ratio of components of two homopolymers.
In this note we focus on a scaling regime $0<\epsilon\ll 1$ . The above micro constraint (connec-
tivity) prevents copolymer from forming a large domain and hence usual coarsening process
stops at certain stage of mesoscopic level. Namely, (1) has a potential to have a variety
of metastable states (local minimizers) with fine structures, which is not the case for the
usual Cahn-Hilliard dynamics, although it has a long and interesting coarsening process.
When one tries to minimize the functional (1), one easily see that there is a competition
between the first gradient term and the third nonlocal term, assuming that $u$ is close to
1 or-l off the interface. The first term wants to minimize the area of interface, however
the nonlocal term does not become small if $u$ takes 1 or-l in a large domain. In order to
make the third term small, $u$ has to oscillate rapidly around $\overline{u}$ (which increases the area of
interface), in other words if $u-\overline{u}$ converges to zero in weak sense in $L^{2}(\Omega)$ , it goes to zero
because of the compactness of the operator $(-\triangle_{N})^{-\frac{1}{2}}$ . Thus there should be an optimal
domain size compromizing these two opposite tendencies. The main problems in [10] were
the following:

(I) Scaling law: Characterize the domain size in terms of $\epsilon$ and $\sigma$ .

(II) Morphology: Find a governing system of equations for the morphology of final states.

(III) Stability and selection mechanism of morphology.

The aim of this note is to answer the question (I) in one-dimensional space rigorously.
Experimentally and numerically it is well-known in copolymer problems that the final
asymptotic states prefer periodic structures such as lamellar, spherical, double-diamond
geometries and so on (see, for instance [3], [4], [5], and [1]). Once one of the periodic
$\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\dot{\mathrm{r}}\mathrm{e}\mathrm{s}$ is specified, it is not so difficult to determine the size of periodic cell which
minimizes the functional (1) within the specified class (see [11]). Moreover, it is even
possible at least fomally to derive a scaling law without specifying the periodic structure
via dimensional analysis (see [1]). Those arguments may be physically convincing, however,
it is still unclear mathematically why such scale is preferred independent of the precise
structures. Our result in the next section determines completely the principal part of
asymptotic expansion of the period and the free energy for the global minimizers in terms
of $\epsilon$ and a.
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2 Main Results and Discussions
The evolutional equation associated with the functional of (1) can be obtaind by taking a
gradient operator in some function space. However in order to make the resulting equa-
tion a conserved one of local operator form, the usual $L^{2}(\Omega)$ is not an appropriate space.
According to Fife [2], $H^{-1}(\Omega)$ is a nice space for our purpose and the resulting equation
becomes

(2) $u_{t}=\triangle\{-\epsilon^{2}\triangle u-f(u)+\sigma(-\triangle_{N})-1(u-\overline{u0})\}$ in $\Omega$ ,
$=\triangle\{-\epsilon^{2}\triangle u-f(u)\}-\sigma(u-\overline{u0})$ in $\Omega$ ,

$u(x, 0)=u\mathrm{o}(X)$

$\frac{\partial u}{\partial n}=\frac{\partial\triangle u}{\partial n}=0$ on $\partial\Omega$ ,
$\frac{1}{|\Omega|}\int_{\Omega}u0(x)dX=\overline{u_{0}}$ : a given constant,

where we define $f(u)$ by $f(u):=-W’(u)$ and $n$ is the unit outward normal to $\partial\Omega$ . It is
clear that (2) is a conservative equation under the above boundary conditions.

Let $w(x)$ be a stationary solution of (2), i.e., a solution of

(3) $\epsilon^{2}\triangle w+f(w)-\sigma(-\triangle N)^{-1}(w-\overline{u_{0}})=$ const. , in $\Omega$ ,
$\frac{\partial w}{\partial n}=0$ , on $\partial\Omega$ ,

$\frac{1}{|\Omega|}\int_{\Omega}w(X)dX=\overline{u_{0}}$.

We define $q(x)$ as $f’(w(x))$ . Then the linearized eigenvalue problem of (2) about $w(x)$ is

(4) $-\triangle\{-\epsilon^{2}\triangle-q(X)I+\sigma(-\triangle_{N})-1\}\phi=\lambda\phi$ , in $\Omega$ ,
$\frac{\partial\phi}{\partial n}=\frac{\partial\triangle\phi}{\partial n}=0$ , on $\partial\Omega$ ,

$\int_{\Omega}\phi dx=0$ .

We now state our main results about the structure of global minimizers. We assume that
the domain $\Omega$ is the one-dimensional unit interval $(0,1)$ in what follows.

Theorem 2.1 Let $\epsilon$ be small enough and $0<\sigma\leq\sigma_{0}$ for any fixed positive constant $\sigma_{0}$ .
Assume moreover that $\frac{\epsilon}{\sigma}$ is also small enough, and that $W(u)$ is symmetric and that $\overline{u}=0$ .
Then we have

(1) There exist at most four global minimizers (up to folding up) of $F_{\epsilon,\sigma}(u)$ .
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(2) A global minimizer $\underline{u\epsilon,\sigma}$ is spatially periodic and its period $P_{\epsilon,\sigma}$ has the following $form_{\mathfrak{j}}$

$P_{\epsilon,\sigma}=2(6 \sqrt{2}A_{0^{\frac{\epsilon}{\sigma}}}\mathrm{I}^{1}/3+O((\frac{\epsilon}{\sigma})^{2/3})$ ,

(3) The free energy $of\underline{u_{\epsilon,\sigma}}$ satisfies the following equality;

$\frac{2}{\sigma}F_{\Xi,\sigma}(\underline{u_{\epsilon},\sigma})=\frac{1}{4}(6\sqrt{2}A_{0}\frac{\epsilon}{\sigma})2/3+O((\frac{\epsilon}{\sigma}\mathrm{I}^{4/}3)$ ,

where

$A_{0}=2 \int_{-1}^{1}\sqrt{W(\tau)}d\tau$.

The proof of the above theorem is based on the idea of S. M\"uller [12], who treats a
different problem related to solid-solid phase transition. We first construct a periodic
candidate for the minimizer and then show that it is optimal and that any other minimizer
has to be periodic as well. For this purpose we prove that the candidate is approximated
by the adequately rescaled solution of the following ordinary differential equation:

(5) $-2q”+W’(q)=^{\mathrm{o}}$ ,
$q(0)=0$ ,

$q’(0)=\sqrt{W(0)}$ .

Then, we estimate the precise order of its approximation in terms of $\epsilon$ and $\sigma$ .
So far we have concentrated on global minimizers. What about local minimizers of (1)?

For this purpose it is more convenient to rewrite (3) in the following system:

(6) $\epsilon\triangle w+f(w)=y$ , in $\Omega$ ,
$\triangle y+\sigma(w-\overline{u_{0}})=0$ , in $\Omega$ ,

$\frac{\partial}{\partial}n\#_{=\frac{\partial w}{\partial n}=0}$ , on $\partial\Omega$ ,
$\int_{\Omega}wdx=\overline{u_{0}}$ .

This is quite similar to the stationary problem of activator-inhibitor system (see, for in-
stance, [7] $)$ . It can be proved for each fixed $n\in \mathrm{N},$ (6) has a $n$-layered solution for small
$\epsilon$ . The SLEP method developped in [7] and [9] seems to work out to prove the following
conjecture;

$-+$
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Conjecture 2.2 For any natural number $n$ and any $\sigma\in(0, \sigma_{0}]$ , there exists a constant
$\epsilon_{0}=\epsilon 0(n, \sigma_{0})$ such that, if $0<\epsilon<\epsilon_{0}$ , the $n$ -layered solution of (3) is exponentially stable.

The linearized problem (4) at an $n$-layered solution takes the following form:

(7) $\triangle\psi+(\lambda-\sigma)\phi=0$ , in $\Omega$ ,
($\epsilon^{2}\triangle+q(_{X)}I)\phi+\psi=0$ , in $\Omega$ ,

$\frac{\partial\phi}{\partial n}=0$ , on $\partial\Omega$ ,
$\frac{\partial\psi}{\partial n}=0$ , on $\partial\Omega$ ,

$\int_{\Omega}\phi d_{X}=0$ .

This seems to fit the framework of the SLEP method. The conjecture claims that there
are many small valleys (local minimizers) besides the deepest valleys (global minimizers),
hence the profile of the functional looks like a rugged landscape.
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