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Abstract
We present a multiplicity result for homoclinics of a nonconvex Hamil-

tonian system, obtained variationally thanks to a “topological shadowing
lemma”. As a consequence we exhibit a chaotic behavior of the Hamil-
tonian system, under assumptions that are weaker than the standard
transversality condition. The main tool in our proof is the theory of
pseudo-holomorphic curves of Gromov-Floer.

1. Results.

Let $M$ be a compact smooth manifold of dimension $n$ and $T^{*}Marrow^{\Gamma}M$

its cotangent bundle. $T^{*}M$ carries a canonical 1-form $\theta$ which writes in
geodesic normal coordinates $(q_{i},p_{i})$ as

$\theta=\sum p_{i}dq_{i}$

$\omega:=d\theta$ is then a symplectic form on $T^{*}M$ .

To a smooth Hamiltonian $H\in C^{\infty}(S^{1}\cross T^{*}M, 1\mathrm{R}),$ $1$ -periodic in time,
we associate the Hamiltonian system

(1) $\dot{x}=X_{H}(t, X)$ ,

where the Hamiltonian vector field $X_{H}$ is defined by

(2) $dH_{t}(x)=\omega(X_{H}(t, X),$ $\cdot)$ .

We make the following assumptions on $H$ :
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(H1) (saddle point)

There exists a point $x_{0}=(q0,0)\in T^{*}M$ such that

$H(t, q_{0},p)\geq 0$ for all $t,p$

$H(t, q, 0)<0$ for all $q\neq q_{0}$ .
Consequently,

$H(t, x\mathrm{o})=0$ , $H’(t, x\mathrm{o})=0$ for all $t$ .
(H2) (growth conditions)

(i) $|dH(t, X)|\leq ad(x, x\mathrm{o})$

(ii) $H(t, q,p)\geq b_{1}|p|^{2}-b_{2}$

(iii) There exists a vector field $\eta$ on $TM$ satisfying

$d(\dot{i}_{\eta}\omega)=\omega$

$|\eta(_{X)|}\leq c_{1}d(x, X_{0})$

$<H’(t, x),$ $\eta(X)>-H(t, x)\geq c_{2}(d(x, x_{0}))^{2}$

As a consequence, the energy levels {$x\in T^{*}M;H(t, x)\{=h\}$ are of
contact type, for all $t\in S^{1}$ , $h>0$ .

To formulate $(H2)$ , we have chosen a Riemannian metric on $M$ and
denoted by $|\cdot|$ and $d(\cdot, \cdot)$ the induced metric and distance on $T^{*}M$ .
Note, however, that $(H2)$ does not depend on the choice of metric.

Example (classical Hamiltonians).

The hypotheses $(H1-2)$ are satisfied by classical Hamiltonians

$H(t, q,p)= \frac{|p-A(t,q)|2}{2}+V(t, q)$ ,

with the following properties :

(j) $V$ has a unique nondegenerate absolute maximum $q_{0}$ , i.e.

$V(t, q_{0})=0,$ $V_{q}’(t, q\mathrm{o})=0,$ $V_{qq}’’(t, q\mathrm{o})<0,$ .

$(\mathrm{j}\mathrm{j})A(t, q_{0})=0,$ $A’(t, q0)=0$ ,

$|A$
” $(qqt, q\mathrm{o})\cdot\xi|2+V$” $(qqt, q\mathrm{o})\cdot\xi\cdot\xi<0,$ $\forall\xi\in T_{q_{0}}M$ ,
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and $|A(t, q)|^{2}+V(t, q)<0$ for any $q\neq q_{0}$ .
In this case $\eta$ is the vector field defined by $\omega(\xi, \cdot)=\theta$ .

Remark 1.

The hypotheses $(H1-2)$ are symplectically invariant in the follow-
ing sense:

Let $\psi$ : $T^{*}Marrow T^{*}M$ be a symplectomorphism mapping the zero
section onto itself and the fibre $T_{x_{0}}^{*}M$ onto the fibre $T_{\psi(x\mathrm{o})}^{*}M$ , and
satisfying

$\frac{1}{a_{1}}d(x, x\mathrm{o})\leq d(\psi(X), \psi(x0))\leq a_{1}d(x, x\mathrm{o})$

$\frac{1}{a_{1}}|v|\leq|D\psi(X)\cdot v|\leq a_{1}|v|$ for all $(x, v)\in T(\tau^{*}M)$ .

Then a Hamiltonian $H(t, x)$ satisfies $(H1-2)$ with fixed point $x_{0}$

iff $H(t, \psi-1(x))$ satisfies $(H1-2)$ with fixed point $\psi(X_{0})$ .

Remark 2.

The hypothesis $(H2)$ implies that $x_{0}$ is a hyperbolic fixed point of
the time-one map of (1), i.e.

$D\varphi_{1}(x\mathrm{o})$ : $T_{x_{0}}T^{*}Marrow T_{x_{\mathrm{O}}}T^{*}M$

has no eigenvalue of modulus 1.

.Let

$C=\{x\in C^{\infty}(\mathrm{I}\mathrm{R}, TM)|$ $\dot{x}=X_{H}(t, X)$ , $\lim_{tarrow\pm\infty}X(t)=x_{0}\}$

be the set of all solutions of (1) which are doubly asymptotic to $x_{0}$ . The
elements of $C\backslash \{x_{0}\}$ are called orbits homoclinic to $x_{0}$ .

Homoclinics for the kind of system described in Remark 1 were first
studied variationally by Bolotin [Bo], and later by many authors (see e.g.
[B-Gi], [R1], [Gi], [Gi-R] $)$ . However, our assumptions are more general:
we don’t assume convexity of $H$ in the fibres. The first result we know
for nonconvex Hamiltonians on manifolds is due to Felmer [Fe], in the
case of the cotangent bundle of the Torus.
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Since $H$ is one-periodic in time, the integers act on $C$ via

$*:\mathrm{Z}\mathrm{x}Carrow C$

$(n, x)arrow n*x(t)=x(t-n)$

In [Ci-S-l] the following result is proved:
Theorem 1. Assume that $(H1-2)$ are satisfied. Then there are in-
finitely many orbits $ho\mathrm{m}$oclin$ic$ to $x_{0}$ , which are in different classes of
$C/\mathrm{Z}$ .

The method is based on ideas due to Gromov [Gr] and Floer [F1].
The structure of our proof is inspired of [H-W] and [Ci].

We point out that the hypotheses on $H$ in [Ci-S-l] are slightly
stronger than $(H1-2)$ . But it is not very difficult to weaken these
assumptions, this is explained in [Ci-S-2], Section 5.

Now near a homoclinic orbit one expects, under certain assump-
tions, to find chaotic behavior. This goes back to Poincar\’e who observed
in 1899 that in the neighborhood of a homoclinic orbit there may ex-
ist an infinite number of further homoclinic orbits giving rise to a very
complicated orbit structure: “On sera frapp\’e de la complexit\’e de cette
figure, que je ne cherche m\^eme pas \‘a tracer” ([Po], p. 387). Later this
was made precise by Birkhoff, Smale, Silnikov and others in terms of
symbolic dynamics. Recall the definition of a Bernoulli shift. Let

$\Sigma=\{0,1\}^{\mathrm{Z}}$

be the set of all doubly infinite sequences endowed with the metric

$d(a, b)= \sum_{n\in \mathrm{Z}}\frac{|b_{n}-a_{n}|}{2^{|n\{}}$ .

The Bernoulli shift is given by the homeomorphism

$\sigma:\Sigmaarrow\Sigma$

$(a_{n})_{n\in \mathrm{N}}arrow(a_{n+1})_{n}\in \mathrm{N}$

We say that a homeomorphism $\phi$ on an invariant subset $A$ is semi-
conjugate to a Bernoulli shift if there exists a continuous surjection $\tau$ :
$Aarrow\Sigma$ such that the following diagram commutes:

$\tau\downarrow A\Sigma$

$\phi\sigma$

$\downarrow_{\Sigma}\mathcal{T}A$
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It is conjugate to a Bernoulli shift if $\tau$ is a homeomorphism.

It is a classical result that if $x_{0}$ is a hyperbolic fixed point (or peri-
odic point) of a diffeomorphism $\phi$ , and the stable and unstable manifolds
of $x_{0}$ have a transverse intersection outside $x_{0}$ , then there exists a set
$A$ on which the iterate $\phi^{N}$ is conjugate to a $\mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}‘ \mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}$ shift, for $N\in \mathrm{N}$

sufficiently large (see for instance [Mo]).

However, it is quite unnatural to presuppose tranversality of orbits
which are to be found by variational methods. Instead we use a weaker
global hypothesis in [Ci-S-2]:

(C): Any connected component of $C$ for the $H^{1,2}(\mathrm{I}\mathrm{R}, \tau*M)$ topology,
is compact for this topology.

Here we use an embedding $T^{*}M\subset \mathrm{R}^{2a}$ identifying $x_{0}$ with $0$ , to
define the Hilbert manifold $H^{1,2}(\mathrm{R}, T^{*}M)$ .

Note that independently of [Ci-S-2], an assumption similar to (C)
is introduced by Rabinowitz [R2], in the context of singular Lagrangian
systems. (C) is a weakening of an assumption introduced in [CZ-E-S],
and used in several works, under several forms (see e.g [S1-2], [CZ-R],
[Li], [Gi-R] $)$ . The variants of this assumption give additional compact-
ness properties to functionals invariant by a discrete group of transla-
tions.

Theorem 2 [Ci-S-2].
If $H$ satisfies (Hl-2) and $(C)$ , then for each sufficiently large $T\in \mathrm{N}$

there exis$ts$ a compact subset $A_{T}\subset T^{*}M$ , invariant under the time-T
map $\phi_{T}$ of (1), such that $\phi_{T}$ is semi-conjugate to a Bernoulli shift on
$A_{T}$ .

Such a result has been obtained in [S2] for convex Hamiltonians on
$\mathrm{R}^{2n}$ , under the hypothesis

$(\mathcal{H}):C$ is at most countable.

Obviously, $(\mathcal{H})$ implies (C).

The rate at which a system is chaotic can be measured by the
topological entropy as defined by Bowen (see [O], p. 182-183):

$h_{top}( \phi)=\mathrm{s}\mathrm{u}\mathrm{p}R>0\lim_{\epsilonarrow 0}(\lim_{narrow}\sup_{\infty}\frac{\ln s(n,\epsilon,R)}{n})$ ,
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where $s(n, \epsilon, R)=\max\{\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(E)|E\subset B(\mathrm{O}, R),$ $(\forall x\neq y\in E)(\exists k\in$

$[0, n])$ : $|\phi^{k}(x)-\phi k(y)|\geq\epsilon\}$ .

Theorem 2, and the fact that the entropy of a Bernoulli shift is
$\ln(2)$ , immediately imply

Corollary 3 [Ci-S-2].
If (Hl-2), $(C)$ are $tr\mathrm{u}e$, then the time-one $m\mathrm{a}p\phi_{1}$ has a positive

topological entropy.

Remark. If (C) is not satisfied, then either $W_{loc}^{S}\cap Wu$ or $W_{l\circ c}^{u}\mathrm{n}W^{s}$

contains a compact connected set A with $x_{0}\in$ A and $\Lambda\neq\{x_{0}\}$ . This
set will be constructed in the proof of Lemma 3.2.

Example $(n=1)$ . In the case of one-dimensional systems, Mon-
techiarri and Nolasco [M-N] have recently proved the following alterna-
tive: either $W^{u}=W^{s}$ or the system is semi-conjugate to a Bernoulli
shift. In some perturbative cases, it is possible to check that $W^{u}\neq W^{s}$ ,
see the earlier work of Bessi [B1]. Theorem 1.1 can be considered as
a generalization of [B1] and [M-N]. Indeed, let $M=S^{1}$ and $H$ sat-
isfy $(H1-2)$ . If $(C)$ is not satisfied, then the connected set A of
the remark above must be an interval containing $x_{0}$ . Suppose for in-
stance that A $\subset W_{loc}^{u}\cap W^{s}$ . Then A $is$ a local unstable space, and
$W^{u}= \bigcup_{N\geq 0}\varphi_{N}(\Lambda)\subset W^{s}$ , hence $W^{u}=W^{s}$ .

$\iota’..$ .
The presence of a Bernoulli shift. near a trans.v$\mathrm{e}\mathrm{r}\mathrm{s}$.al homoclinic orbit

is derived from the so-called “Shadowing Lemma”, which states that
near an approximate solution one finds a real one.

Theorem 2 also follows from a kind of shadowing lemma. However,
since the usual proof of the Shadowing Lemma relies heavily on the
transversality assumption (which allows to use the contraction mapping
principle), we cannot expect the Shadowing Lemma to hold in its classi-
cal form. Rather, we obtain a “Topological Shadowing Lemma”, as we
explain now.

Using an isometric embedding $M\subset \mathrm{I}\mathrm{R}^{a}$ we will talk of norms $|x|$

and differences $x-y$ for $x,$ $y$ in $T^{*}M\subset \mathrm{R}^{2a}$ .
For $x$ : $\mathrm{R}arrow T^{*}M$ and $n\in \mathrm{Z}$ define $n*x$ : $\mathrm{R}arrow T^{*}M$ by

$n*x(t)=x(t-n)$ .

Let $x_{i}$ : $\mathrm{R}arrow T^{*}M$ be given for $1\leq\dot{i}\leq p$ , and let $R_{i}>0$ be such that
$|x_{i}(t)|$ is smaller than the injectivity radius $r_{0}$ of $M$ outside the interval
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$[-R_{i}, R_{i}]$ . If $n_{i}\in \mathrm{Z}$ are such that $n_{i+1}-n_{i}\geq R_{i}+R_{i+1}+1$ , then using
cut-off functions one can define the ”multibump” function $\sum n_{i}*x_{i}$ (see
[Ci-S-l] $)$ . This function coincides with $n_{i}*x_{i}$ on $[n_{i}-R_{i}, n_{i}+R_{i}]$ , and
it is smaller than $r_{0}$ outside these intervals.

The main theorem in [Ci-S-2] is the following:

Theorem 4. (Topological Shadowing)
Let $M,$ $H$ be as above and (Hl-2), $(C)$ be sa$ti\mathrm{s}Fied$ . Then we find a

compact set $C_{0}\subset C\backslash \{0\},$ an.d for every $\epsilon>0$ , an integer $N(\epsilon)>0$ with
the following property.$\cdot$

If $(n_{i})_{i\in I}$ is a family of integers, the index set $I$ $b$eing either $\mathrm{Z},$
$\mathrm{N}$ ,

$-\mathrm{N}$ or $\{1, \ldots, l\}$ , and $n_{i+1}-n_{i}\geq 2N(\epsilon)$ , then there exist $y_{i}\in C_{0}$ and a
solution $y$ of $\dot{y}=x_{H(t,y)}$ such that

$(\dot{i})$ $|y_{i}(t)-x_{0}|\leq\epsilon$ for $|t|\geq N(\epsilon)$

(ii) $|y(t)- \sum_{\in iI}ni*y_{i}(t)|\leq\epsilon$
, for all $t\in \mathrm{I}\mathrm{R}$ .

Moreover,
if $I=\pm \mathrm{N}$ then $y(t)arrow x_{0}$ as $tarrow\mp\infty$ .
If $I=\{1, \ldots, l\}$ then $y$ is a homoclinic orbit “with $l$ bumps”.
If $I=\mathrm{Z}$ and $(n_{i})$ is periodic, i.e. $n_{i+\mathrm{p}}=n_{i}+q$ for some $p,$ $q\in \mathrm{N}$

and all $i\in \mathrm{Z}$ , then $y$ may be chosen periodic.

In contrast to the classical versions of the shadowing lemma, we
cannot prescribe precisely which $y_{i}$ are to occur. This is due to the
fact that in the proof we ’

$\mathrm{g}.\mathrm{l}\mathrm{u}\mathrm{e}$ together’ sets of orbits $\sup.$porting certain
cohomology classes, rather than individual orbits. But the structure we
find is rich $\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{g}\dot{\mathrm{h}}$ to give Theorem 1.1.

Proof of Theorem 2 as a consequence of Theorem 4.

Since $C_{0}$ is compact and does not contain $x_{0}$ , there is $\epsilon>0$ such
that $|y(0)-x_{0}|\geq 4\epsilon$ for all $y\in C_{0}$ . Let $T=2N(\epsilon)$ . For each $n\in \mathrm{Z}$ the
map which, to each $x\in TM$ , associates $\phi_{nT}(x)\in TM$ , is continuous.
Hence

$A_{T}=\{x\in TM : |\phi_{n\tau}(X)-x_{0}|\in[0,2\epsilon]\cup[3\epsilon, R], \forall n\in \mathrm{Z}\}$

is compact, where $R> \sup\{|y(0)-x_{0}| : y\in C(\alpha)\}+\epsilon$ .
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Clearly $A_{T}$ is $\phi_{T}$-invariant. Moreover, the map $\tau$ : $A_{T}arrow\Sigma$ defined
by

$[\tau(x)]n=1$ if $|\phi_{n\tau}(x)-x_{0}|\geq 3\epsilon$

$[\tau(x)]n=0$ if $|\phi_{nT}(.x)-x_{0}|\leq 2\epsilon$

is continuous, and one readily checks that $\tau\circ\phi T=\sigma\circ\tau$ .

For the surjectivity of $\tau$ , let $(a_{n})\in\Sigma$ be given. Write the set
$\{n\in \mathrm{Z} : a_{n}=1\}$ in increasing order as $(k_{i})_{i\in I}$ , where $I$ is chosen as
in Theorem 1.3 according to whether $\{n\in \mathrm{Z} : a_{n}=1\}$ is unbounded,
bounded from below $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ from above (the choice of $(k_{i})$ is not unique
in the case of a doubly infinite sequence).

By the choice of $T$ , the sequence $(k_{i}T)_{i\in}I$ sati.sfies the hypothesis of
Theorem 4, with $\epsilon$ as above. Hence there exists a solution $y$ and $y_{i}\in C_{0}$

such that

$|y(t)- \sum_{i\in I}(k_{i}\tau)*y_{i}|\leq\epsilon$
, $\forall t\in \mathrm{R}$ .

Let $x=y(\mathrm{O})$ .

If $n\in \mathrm{Z}$ with $a_{n}=1$ , we have

$\phi_{nT}(x)=|y(nT)-x_{0}|$

$\geq|\sum_{Ii\in}(k_{i}T)*yi(n\tau)-X0|-\epsilon$

$=|y_{j}(\mathrm{o})-X0|-\epsilon$

$\geq 3\epsilon$ ,

where $k_{j}=n$ . Hence $[\tau(x)]n=1=a_{n}$ .
$\mathrm{S}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{l}\coprod \mathrm{y}[\tau(x)]n=0$

if $a_{n}=0$ .
This proves the equality $\tau(x)=(a_{n})_{n\in \mathrm{Z}}$ .

There has been a lot of works in the recent years on variational
gluing of homoclinic orbits (see e.g. [S1-2], [CZ-R], [Be], [Gi-R], [B-S]).
In these works, the Hamiltonian presents some convexity, so that a first
homoclinic can be found by mountain-pass or category theory. Then a
gluing method introduced in [S1] is used, to get an analogue of Theorem
1.3. The paper [Ci-S-2] is the first one where a nonconvex Hamiltonian
is considered.

2. Sketch of the proof of Theorem 4.

From now on, we fix a Riemannian metric on $M$ . It induces an
isomorphism $TM\simeq T^{*}M$ which allows us to transfer all structures such
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as $\omega,$ $H,$ $\theta$ to $TM$ . Without changing notation we shall henceforth work
with $TM$ instead of $T^{*}M$ . We call $M_{0}$ the zero section of $TM$ .

Theorem 4 is proved by a refinement of the method used in [Ci-S-l].
It is based on the variational principle for the action functional

$I$ : $H^{1,2}(\mathrm{I}\mathrm{R}, TM)arrow \mathrm{I}\mathrm{R}$

$I(x):= \int_{\mathrm{R}}x^{*}(i\omega)\eta-\int_{1\mathrm{R}}H(t, X(t))dt$ .

Here we have used an isometric embedding $TMarrow \mathrm{R}^{2a}$ mapping $x_{0}$

to $0$ to define $\mathrm{S}\mathrm{o}\mathrm{b}_{0}1\mathrm{e}\mathrm{v}$

. classes $H^{m,p}$ for mappings into $TM$ . So $x\in$

$H^{1,2}(\mathrm{R}, TM)$ implies in particular that $x(t)arrow x_{0}$ as $tarrow\pm\infty$ .

The critical points of $I$ are exactly the elements of $C$ . Let $I’(x)$ be
the $L^{2}$ -gradient of $I$ defined by

$dI(X)\xi=\langle I’(X), \xi\rangle_{L^{2}}$ for all $\xi\in H^{1,2}(\mathrm{R}, X^{*}TM)$ .

With the help of the almost complex structure $J$ on $TM$ defined by

$\omega(J\cdot, \cdot)=$

.
$<\cdot,$ $\cdot>$ ,

we can write $I’(x)$ explicitly as

$I’(x)=-J(x)\dot{x}-H’(t, x)$ .

Hence the equation of gradient lines $u$ : $\mathrm{I}\mathrm{R}^{2}arrow TM,$ $u_{s}=I’(u(S))$ ,
becomes the inhomogeneous nonlinear Cauchy-Riemann equation

$\overline{\partial}u+H’(t, u)\equiv u_{s}(S, t)+J(u(S, t))ut(s, t)+H’(t, u(S, t))=0$ .

Now fix a $T>1$ and define

$\Omega_{T}^{\infty}:=$ { $\overline{q}\in C\infty(\mathrm{R},$ $M)|\overline{q}(t)\equiv q0$ for $|t|\geq T$},

equipped with the $C^{\infty}$ -topology. For $n=(n_{1}, \ldots, n_{p})\in \mathrm{Z}^{p},$ $n_{i1}+-n_{i}\geq$

$2T$ , let

$n* \Omega_{T}^{\infty}:=\{\sum_{i=1}^{p}n_{iq_{i}}*|q_{i}\in\Omega_{T}\}$ .
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For $R>1$ and $\overline{q}\in n*\Omega_{T}^{\infty}$ we study the boundary value problem

$X_{\overline{q},R}:=\{u\in H^{2,2}([-R, R]\cross \mathrm{R}, TM)|u(-R, t)\in M_{0}$ ,

$u(R, t)\in T_{\overline{q}(t)}M$ and $\overline{\partial}u+H’(t, u)=0\}$ .

The elements of $X_{\overline{q},R}$ should be viewed as finite gradient lines connecting
the space of curves in the zero section $M_{0}$ to the space of curves over
$\overline{q}$. Note that the zero section and the fibres are transversal Lagrangian
submanifolds of $(TM, \omega)$ .

In [Ci-S-l] it has been shown that $X_{\overline{q},R}$ is nonempty for every $\overline{q}$ and
$R$ . The crucial point now is to find elements $u\in X_{\overline{q},R}$ which have the
same ’multibump shape’ as $\overline{q}$ in the sense that

$|u(S, \frac{n_{i}+n_{i}+1}{2})-x_{0}|\leq\epsilon_{0}$ for all $s\in[-R, R]$ and $1\leq\dot{i}<p$ .

To have this estimate independent of $R$ , we use assumption (C)
Then we can let $Rarrow\infty$ to obtain a space $X_{\infty}$ of infinite gradient lines
of ’multibump shape’. Their asymptotics for $sarrow\infty$ are multibump
homoclinic orbits of $x_{0}$ . Finally, $\mathrm{h}\mathrm{o}\mathrm{m}$ the fact that $X_{\infty}$ carries a non-
trivial product cohomology, we conclude that there must be at least one
homoclinic orbit with all bumps nontrivial.
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