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Benard-Marangoni convection with
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1 Introduction

We consider a model of Bénard-Marangoni convection using the Boussinesq equations

for the velocity, pressure and temperature :
Lt V) +Vp = Au—p(T)Vz, Veu =0, T,+u-VT = AT
P

in the strip { —o00 < z < 00, 0 < 2z < 1+ 7(t,z) }, where p(T) = G — R,T is assumed for
the density of the fluid, P, is the Prandtl number and R, is the Rayleigh number.
We consider the boundary condition « = 0 and 7' = 1 on the bottom . The top surface

1+ n(t,z) is deformable and satisfies the kinematic boundary condition
My = Uz — Up* Vp7) Iz=1+17(t,a:) y
and the stress balance equation is satisfied on it :
((p — Pair)d — (Vu +tVu)) n = oHn—(1-V)or.

Here n and 7 are the normal and tangential unit vector of the surface respectively and H

is the mean curvature of the surface . The surface stress o is assumed to be given by
o= W-M,T+Vi(r:-V)(u-7),

where M, is the Marangoni number and V; is the surface viscosity. We also have the

boundary condition of temperature n- VT + B;T = —1 on the upper surface .
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These equations have a stationary solution

- Ra
1=0, uw=0, T=T@E)=1-2, p=p(s)=—2(s~17 ~Glz~1) +pyy

representing the purely heat conducting state.

We will consider the stability of this stationary state under the assumption that all
perturbations are periodic in z . The perturbation (u,p,6,n) satisfies a nonlinear system,
which is transformed to the following quasilinear system on the fixed domain by Beale’s

transformation provided the positivity of W : ( See [1] and [5]. )

Zu+Vp—Au—R,0Vz = F, Vou=0, 6,-A0—u = F, inQ, (1)

) T — usls, = 0,
pn—(Vu+Vul) - n—(=WA, + G)nn — (M, Vi(0 — 1) — ViNup)T = f,
9.+Bi(6-n) = fo on Sg, (2)
vu=0,0=0 onSp. | (3)

Here the linear terms are gathered in the left-hand side of the equations, and Q = {0 <
z < 1} is the (iomain occupied by the fluid at the heat conducting state and Sp = {2 - 1}
and Sp = {z = 0} are its boundaries. |

We use Sobolev spaces H"(Q2) and H"(SF) and denote their norm by || - ||, and || - ||»sp

respectively, and we use the function spaces.

= H°0,00; H(Q)) N H/%(0, 00; H(Q))

)

) = {f:e"feK(Qx (0,00))},

) = H%0,00; H™*7(SF)) N H'/*(0, 00; HZ(SF))
) = {f:e"f e K"i(Spx (0,00))} .

2 Existence for nonlinear problems

We have the following for the Laplace transform of the solution of the linearized system .



Proposition 1 Assume r > 2. For small constants R, and M,, there is a positive
constant v such that for non-zero A in {Re A > —v} and data F, Fy € H T2
f, fo € H™™2+5(SF), there is a unique solution u,0 € H",Vp € H"%,n € H™3%(Sp) and

this solution satisfy

T =2 | T+
[, 8]l + [z u, 8] + Vol + (M= VRl + [Inlls 1,5, + A= [nlse

T—2 =2

< C(IF, Follo—z + NI, Fol) + C (I£, foll—3.50 + MF NS, folly i)

Here C does not depend on A . When V; is positive, up|g, € H™3%(Sy) and also

r—2

[unllrss,sp + 1A= lurllzty,se can be estimated by the right hand side above.

The nonlinear system has F, Fy, f, fo in (1)(2) which are quadratic or higher order
terms of the unknowns and their derivatives. We have the following for small R, and

M,.

Theorem 1 (See [5].) Assume 3 <r < 3.

(1) When V; > 0, for small initial conditions iy, 8, € H™™1(Q), 7o, Uplg, € H™3(SF)
which satisfy conditions V-4y = 0, ﬁ0,50|58 = 0 and [ nodz = 0, there exists a global in
time solution u,0 € K™ ,p € K'-2,n, up|g, € Kﬂ;%(SF).

(2) When V; = 0, for small initial conditions 1,0y € H™1(Q), no € HT_%(SF) which
satisfy conditions V -4y = 0, ﬂo,églsB = 0 and [nodz = 0, there exists a global in time

i
solution u,0 € K™ ,p € K'-?,n € K_:z(SF).

Remark The solution constructed in the theorem decays exponentially. Thus, the results

say that the purely heat conducting state is stable for small R, and M,.

3 Eigenvalue problems

Here we want to increase Rayleigh number or Marangoni number in the system (1)-

(3) to investigate the instability of the purely heat conducting state. Rewrite the system
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using the stream function ¥ for the linearized perturbed flow.

V=0, ¥, =0, 6§=0 on 2z =20 (4)
AV, + P,R,0, = P,A2U, 0, + U, = A9 in 0<z<1. (5
n+ ¥, =0, (6)

U = Voo + Mo (0 — 1) + Vi¥ype = 0,

1
__\Ilzt+3‘Ilzmz+‘I,zzz+W77a:axm_Gn:z: =0 ’
=0

P, .
02 + Bi (6 - 77)

on 2z =1.

We can consider ¥, § and 7 of the following form because of the periodicity condition

in z
¥ = p(z)exp(inz + At),
6 = 6(z)exp(inz + At), n = nexp(inz + At).

Thus the instability problem (4)-(6) is reduced to the eigenvalue problem of the ODE for

¢,0 andn :
p0) =0, $O) =0, 00)=0 o z=0. (1
P, (¢" —2n%¢" + n*p) = P,R,ind + A(¢" —n?p) , - (8)
6" —n?0 = inp + A6 in 0<z<l1.
An + inp(l) = 0, (9)

©"(1) = Vin® ¢'(1) + n%p(1) + M,in(8(1) —n) = 0 ,
(p"'(l)—Pir/\ (1) = 3n2g(1) — (Wn? + G)inn = 0 |
6'(1) + B;(6(1)—7n) = 0 on z=1.

By this formulation, the original problem of stability is reduced to investigate the behavior
of the real part of the eigenvalue A when the parameters R,, M, and n vary. The key
problem is to find the critical Rayleigh number

Re = R. atwhich X = ziw (weR) (10)



for certain periodicity in z , namely n fixed , and further to show

ORe
OR. |5

> 0. (11)

a=Rc

By this motion of eigenvalue and by the fact that the original evolution problem for the
linearized system forms a sectorial operator, we see that a sufficient condition given in
the papers [2], [3], [6] and [8] for the occurence of the stationary bifurcation or the Hopf
bifurcation for the infinite dimensional system holds . Hence, we see that

the heat conducting state becomes unstable for R, > R. and the stationary bifurca-

tion or the Hopf bifurcation occurs at R, = R, according asw = 0 or w # 0 respectively.

Criterion for existence of critical eigenvalue

In order to justify the above érgument about the instability and the bifurcation we use
the method given in [9] to prove the existence of the purely imaginary eigenvalue and
the critical Rayleigh number in a small neighbourhood of the computed purely imaginary
eigenvalue and critical Rayleigh number based on the Newton method.

To obtain the eigenvalue and the eigenfunction for (7) — (9), we use the shooting method,
i.e., we consider the fundamental solutions of the initial value problem for (8) in z > 0

and express the eigenfunction by the solutions as

¢ = ap1(z) + bpa(z) + cpa(z), 0 = abi(2) + bOa(2) +ch3(2), 2z > 0, (12)

where p;(z), 0;(2), 7 = 1,2, 3 satisfy (8) in z > 0 and the initial conditions at z =0

¢j(0) = 0, ¢;(0) =0, 6;(0) =0, j = 1,23,

¢1(0) = 1, ¢f'(0) = 0, 6(0) = 0, (13)
p3(0) = 0, ¢5'(0) =1, 650) =0, |

@3(0) = 0, #5'(0) = 0, 650) = 1,

a , b and c are constants to be determined. In order that the function (12) is the eigen-

function, it must satisfy the condition (9) . This condition is written as follows
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a1z aiz G13 a4
21 Q22 Q23 Qa24
az1 Qaz2 033 0a34
Qa1 Q42 G43 Gy4

=0, (14)

o o8 3

where the coefficients a;; are explicitly given by ¢r(1), ¢i(1), ©¥(1), (1), 0x(1), 65(1)

k =1,2,3. In order that (12) is nontrivial, it is necessary that
det A = det(aij) =0 y (15)

and this is sufficient for (12) to be the eigenfunction. Thus, we now come to search the
values of R, = R;, A = iw, satisfying (15) , for the fixed parameters M,,P,, G and n .
We define

det A = F(Ra,A; Ma,P,,G,n).
Noting that (15) can be rewritten as

OF oOF
.’F('Ra,)\) = f(Ro,Ao) + —6—72—‘1(73@—720) + '8—}‘—(/\—)\0) =0,

we can state our criterion for existence of the critical eigenvalue based on the simplified

Newton method as follows :

Theorem Suppose, for a small € > 0, there exist Ry and )y such that

[7(Ro, M) < €. - (16)
Put
0F 0F
L(] = (a_k—;(RO’AO) , EX(RO’)\O)) ’ . : (17)

where the bar means an appropriate approzimation of the quantity. Suppose further that,

for a small §, there is a p; such that the estimate
| DF(Ra, A) = Lo| < & (18)
holds for any (R, , A) such that

(Ra = Ro)® + |A = > < p2.



Fore, p1, 6 and Ly as above, if it holds that
’ €
11 (S + ) < 1, (19
P1 _
then there exist some R, and A, in the pi-neighborhood of Ry and A¢ satisfying

F(Re, A) = 0. (20)

To utilize this criterion to our problem, we need to justify the following steps:
(¢) To find appropriate values Rg and Aq, we use the shooting method , i.e., an approximate
eigenvalue, eigenfunction and critical Rayleigh number of the problem (7)-(9) are obtained
by numerical computation using the fourth order Taylor finite difference scheme for the
fundamental solutions and the Newton method.
(i) To estimate ¢ we need the interval analysis by a computer software for the bound of
round-off errors in the computation of the fundamental solutions and the theory of pseudo
trajectory to estimate the difference between the genuine fundamental solutions and the
numerically computed ones.
(#5) At this pair of Ry , Ao, find an approximate derivative Lo and estimate the norm
| Lo I
(iv) Estimate § for which the estimate (18) holds in the p;-neighborhood of Ry and Ag;
(v) For these values in (4, @, i, 1), prove that the criterion (19) holds.

Following these steps we see that there exist the exact eigenvalue A\ = iw, and the
critical Rayleigh number R, = R, for (7) - (9) in the p; -neighborhood of numerically
computed values (Rg , Ag) in (2).

In order to verify the condition (11) we have to use such arguments as in [9] which

uses the adojoint system of the equations to (7) - (9), which is given by the following :
P(0) = 0, ¢'(0) =0, ¢(0) =0 on z =0.(21)

P (" — 20" +n*p) = Prin¢ + X(¢" —n%y) , (22)

" —=n*¢ = Reiny + X¢ in 0<z<1.

36
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1 . ' —
T gMein¥'(1) + B} =0, (23)

L POHViR O () = 0
¥(1) = V(1) = 3/(1) + (W + G)ing = 0,
¢(1) + Bi¢(1)+ M,iny/(1) = 0 on 2z =1.

A — iny(l) +

For notational convénience we write the eigenvalue )\, and the eigenfunction ® = (7, ¢, )
with the critical Rayleigh number R, for the system of equations (8) and the boundary
conditions (7), (9) as

L® =0 and B® = 0. (24)

Let us denote the eigenvalue )\, and the eigenfunction ¥ = (&, ¢, ) which satisfy the the
adjoint problem (21) - (23)

L'y =0 and B'Y = 0.
Taking the derivative of (24) with respect to the Rayleigh number and the L?(0, 1)-inner

product with ¥, we obtain

2y
OR

R=R. (

Example 1. Wetake G =400, W=0,P,=1,V;=0,B;=0 and M, =0.

B
n }\ RQ R R=Rq

1.0 0.0 | 1108.1082 |.0.00601 956
2.0 0.0 | 670.28924 | 0.01176 430
2.08558 | 0.0 | 668.99825 | 0.01227 492
3.0 0.0 | 782.78265 | 0.01623 625
4.0 0.0 | 1131.0427 | 0.01723 006

In Figure 1 the four curves correspond to the neutral curves for n = 2, 3,1, 4.
Figure 2 shows the neutral curve for the smallest Rayleigh number by the proper choice

of n € R. For this gravity G we see that the stationary bifurcation occurs when R, or

M, increases across this curve.
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Example 2. We take G =100, W=0,P,=1,V;=0,B;=0 and M, =0.

n )\0 Ro g% R=Rq

0.5 ix2.91543 59 | 447.81500 | 0.00323 041 — i x 0.00182 891
0.93201 ix4.41412 390.84911 | 0.00739 433 — 1 x 0.00639 798

1.0 ix 4.55206 09 | 391.30728 | 0.00739 433 — i x 0.00639 798

2.0 ix5.15597 17 | 424.67690 | 0.01092 757 — i x 0.01304 263

3.0 ix 5.83570 00 | 514.01005 | 0.01003 548 — i x 0.01216 266

4.0 ix 6.52511 06 | 749.27424 | 0.00818 050 — i x 0.00902 531

39

Figure 3 and 4 show the neutral curves for n = 1 and for n = 2 respectively. The

white circle corresponds to the purely imaginary eigenvalue A = iw, and the black ones

do to A = 0. Figure 5 shows the neutral curves for the smallest Rayleigh number by the

proper choice of n € R. For this gravity G we see that the Hopf bifurcation occurs for

M, > —35 and that the stationary bifurcation does for M, < —45 when R, increases

across the corresponding curve.
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Example 3. We give another interesting example taking G =100, W =0,
P,=1,V;=0,B;=0 and M, = —-43.73, and n=+£1.

AO RO MO % R=Rq

+i x 0.29905 335 | 712.52096 | —43.735 | —0.00047 645 F i x 0.20119 028
0.0 713.26319 | —43.735 162. 83867
0.0 713.27868 —43.73 —352.57294

Thus it suggests an existence of the double zero eigenvalue of the determinant at

Re = 713, M, = —43.73 .

Example 4. We give another example taking G=100,W=0,P,=1,V;=0,
Bi=0 and M,~8, and n=1 or 2.

X
n Ao’ RO M() R R=Ro

1.0 | 1x4.43652 66 | 374.05568 | 8.0 | 0.00814 675 — ix 0.00575 477
1.0 | 1x4.43483 51 | 373.85774 | 8.1 | 0.00815 640 — i x 0.00574 645
2.0 | ix5.7587135 | 374.21235 | 8.0 | 0.01251 047 — i x 0.00987 391
20 | 1x5.76349 04 | 373.67749 | 8.1 | 0.01252 959 — i x 0.00984 381

It suggests the neutral curves A = iw; forn=1 and A = iw, forn =2

intersect at R, ~ 374 and M, =~ 8.0.
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