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1 Introduction
Let $f$ : $I_{1}\cross\cdots\cross I_{k}arrow \mathrm{R}$ be a real function of $k$ variables defined on the product of $k$

intervals, and let $x=(x_{1}, \ldots, x_{k})$ be a tuple of selfadjoint matrices of order $n_{1},$ $\ldots,$
$n_{k}$ such

that the eigenvalues of $x_{i}$ are contained in $I_{i}$ for each $\dot{i}=1,$
$\ldots,$

$k$ . We say that such a tuple
is in the domain of $f$ and define $f(x)=f(x_{1}, \ldots, x_{k})$ to be the matrix of order $n_{1}\cdots n_{k}$

constructed in the following way. For each $\dot{i}=1,$
$\ldots,$

$k$ we consider the possibly degenerate
spectral resolution

$x_{i}= \sum_{m?1=}^{n}\lambda_{m_{i}}(_{i}i)e_{m_{i}m_{i}}^{i}$

where $\{e_{s_{i}u_{t}}\}_{s}n.iu_{i}=1$ is the corresponding system of matrix units and let the formula

$f(x_{1}, \ldots, xn)=\sum n_{1}$ .. . $\sum n_{k}f(\lambda_{m_{1}}(1), \ldots, \lambda_{m_{k}}(k))e_{m11}\otimes\cdots\otimes e1mm_{k}mkk$

$m_{1}=1$ $m_{k}=1$

define the functional calculus. If $f$ can be written as a product of $k$ functions $f=f_{1}\cdots f_{k}$

where $f_{i}$ is a function only of the $\dot{i}’ \mathrm{t}\mathrm{h}$ coordinate, then $f(x_{1}, \ldots, x_{k})=f_{1}(X_{1})\otimes\cdots\otimes f_{k}(X_{k})$ .
The given definition is readily extended to bounded normal operators on a Hilbert space,
cf. [7].

The above function $f$ of $k$ real variables is said to be matrix convex of order $(n_{1}, \ldots, n_{k})$ , if

$(*)$ $f(\lambda x_{1}+(1-\lambda)y_{1}, \ldots, \lambda Xk+(1-\lambda)y_{k})\leq\lambda f(X_{1}, \ldots, X_{k})+(1-\lambda)f(y1, \ldots, y_{k})$

for every $\lambda\in[0,1]$ and all tuples of selfadjoint matrices $(x_{1}, \ldots, x_{k})$ and $(y_{1}, \ldots, y_{k})$ such
that the orders of.$x_{i}$ and $y_{i}$ are $n_{i}$ and their eigenvalues are contained in $I_{i}$ for $i=1,$ $\ldots,$

$k$ .
The definition is meaningful since also the spectrum of $\lambda x_{i}+(1-\lambda)y_{?}$. is contained in the
interval $I_{i}$ for each $i=1,$ $\ldots,$

$k$ . It is clear that the pointwise limit of a sequence of matrix
convex functions of order $(n_{1}, \ldots, n_{k})$ is again matrix convex of order $(n_{1}, \ldots, n_{k})$ . If $f$ is
matrix convex of order $(n_{1}, \ldots, n_{k})$ , then it is also matrix convex of any order $(n_{1}’, \ldots , n_{k}’)$

such that $n_{i}’\leq n_{i}$ for $\dot{i}=1,$
$\ldots,$

$k$ . If $f$ is matrix convex of all orders, then we say that
$f$ is operator convex. If $I_{1},$

$\ldots,$
$I_{k}$ are open intervals, then it is enough to assume that $f$

is mid-point matrix convex of arbitrary order. This follows because such a function is real
analytic and hence continuous, cf. the discussion in the introduction of [4].

数理解析研究所講究録
979巻 1997年 22-28 22



2 JENSEN’S OPERATOR INEQUALITY

2 Jensen’s operator inequality

The following theorem for functions of one variable were proved in [6].

Theorem 2.1 If $f$ is a continuous, real function on the half-open interval [$0,$ $\alpha$ [ (with $\alpha\leq$

$\infty)$ , the folllowing $cond?\text{ノ}ti_{onS}$, are equiavalent:

(1) $f$ is operator convex and $f(\mathrm{O})\leq 0$ .

(2)
$f(a^{*}[0,\alpha[x.a)\leq a^{*}f(x)a$

for alll $a$ with $||a||\leq 1$ and every $sel,f$-adjoint $x$ with spectrum, $in$

(3) $f$ (p.xp) $\leq pf(x)p$ for every projection $p$ and every selfadjoint $x$ with spectrum in $[0,$ $\alpha[$ .

Aujla [1] extended the previous result in 1993 and essentially proved the following theorem:

Theorem 2.2 If $f$ is a real continuous function of two variables defined on the domaine
[$0,$ $\alpha[\cross[0,$ $\beta$ [ (with $\alpha,$ $\beta\leq\infty$ ), the following conditions are equivallent: .. .

(1) $f$ is separately operator convex, and $f(t, 0)\leq 0$ and $f(0, s)\leq 0$ for all $(t, s)\in$

$[0,$ $\alpha[\cross[\mathrm{o},$ $\beta[$ .

(2) $f(a^{*}Xa, a*ya)\leq(a^{*}\otimes a)f(x, y)(a\otimes a)$ for all $a$ with $||a||\leq 1$ and all selfadjoint $x,$ $y$

$w?,th$ spectra contained in [$0,$ $\alpha$ [ and [$0,$ $\beta$ [ respectively.

(3) $f(pxp,pyp)\leq(p\otimes p)f(x, y)(p\otimes p)$ for every projection $p$ and all selfadjoint $x,$ $y$ with
spectra contained in [$0,$ $\alpha$ [ and [$0,$ $\beta$ [ respectively.

The above operator inequality is equivalent to

$f(a^{*}Xa, b*yb)\leq(a^{*}\otimes b^{*})f(x, y)(a\otimes b)$

for arbitrary contractions $a$ and $b$ , but this generalization is not essential. The class of
separately operator convex functions is evidently not of much importance, but Aujla’s result
paved the road for further progress. The next result [4] followed in 1996.

Theorem 2.3 If $f$ is a real continuous function of two variables defined on the domaine
[$0,$ $\alpha[\cross[0,$ $\beta[(w?,th\alpha, \beta\leq\infty)$ , the folllowing $condit?,ons$ are equivalent:

(1) $f$ is operator convex, and $f(t, 0)\leq 0$ and $f(\mathrm{O}, s)\leq 0$ for all $(t, s)\in[0,$ $\alpha[\cross[0,$ $\beta[$ .

(2) The operator $?,nequality$$\leq$is valid for all selfadjoint operators $x$ and $yw?,th$ spectra in [$0,$ $\alpha$ [ and [$0,$ $\beta$ [ respectively,
and all pairs of operators $(a, b)$ such that $aa^{*}+bb^{*}=1$ and $b$ is normal.
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3 GENERALIZED HESSIAN MATRICES

(3) The operator inequality

$\leq$

is valid for all selfadjoint operators $x$ and $y$ with spectra in [$0,$ $\alpha$ [ and $[0,$ $\beta[respectivel,y_{f}$

and every ortogonal projection $p$ .

The characterization of operator convexity by a suitable generalization of Jensen’s operator
inequality has recently been extended to functions of several variables by H. Araki and the
author.

3 Generalized Hessian matrices
The notion of partial divided differences plays an important role in differential analysis of
matrix and operator convexity. The first divided difference of a differentible function of one
variable goes back to Newton. It is defined as

$[\lambda\mu]=\{$

$\frac{f(\lambda)-f(\mu)}{\lambda-\mu}$ for $\lambda$ $\neq\mu$

$f’(\lambda)$ for $\lambda$

$=\mu$

and it is a symmetric function of the two arguments. If $f$ is twice differentiable, then the
second divided difference $[\lambda\mu\zeta]$ is defined as

$[\lambda\mu\zeta]=\{$

$\frac{[\lambda\mu]-[\mu\zeta]}{\lambda-\zeta}$ for $\lambda$ $\neq\zeta$

$\frac{\partial}{\partial\lambda}[\lambda\mu]$ for $\lambda$ $=\zeta$

and it is a symmetric function of the three arguments, cf. [2] for a more systematic intro-
duction to divided differences for functions of one variable.
If $f$ is a real function defined on the product $I_{1}\cross I_{2}$ of two open intervals with continuous
partial derivatives up to the second order, then we can consider the divided differences $[\lambda\mu|\xi]$

and $[\lambda\mu\zeta|\xi]$ which are just the previously defined divided differences for the function of one
variable obtained by fixing the second variable to $\xi$ . We define the divided differences $[\xi|\lambda\mu]$

and $[\xi|\lambda\mu\zeta]$ similarly. There are, however, also mixed second derivatives defined as

$[\lambda\mu|\zeta\xi]=\{$

$\frac{[\lambda|\zeta\xi]-[\mu|\zeta\xi]}{\lambda-\mu}$ for $\lambda$ $\neq\mu$

$\frac{\partial}{\partial\lambda}[\lambda|\zeta\xi]$ for $\lambda$

$=\mu$ .
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3 GENERALIZED HESSIAN MATRICES

We could have defined the mixed derivatives by dividing to the right instead of dividing to
the left, but this gives the same result. Finally, if $f$ is a real function defined on the product
$I_{1}\cross\cdots\cross I_{k}$ of $k$ open intervals with continuous partial derivatives up to the second order,
then we consider the $\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{o}\dot{\mathrm{n}}\mathrm{d}$ divided differences that appear by $\mathrm{f}\mathrm{i}\mathrm{x}\mathrm{i}\dot{\mathrm{n}}\mathrm{g}$ all but one or two of
the $k$ coordinates of $f$ . They are labeled as

$[\lambda_{1}|-\cdot\cdot|\mu 1\mu_{2}\mu 3|\cdots|\lambda_{k}]^{i}$

where the superscript $i$ indicates that the partial divided difference of the second order is
taken at the $\dot{i}’ \mathrm{t}\mathrm{h}$ coordinate and all other coordinates are fixed at the values $\lambda_{1},$

$\ldots,$
$\lambda_{i-1}$ and

$\lambda_{i+1}\ldots$ , $\lambda_{k}$ or as
$[\lambda_{1}|\cdots|\mu 1\mu_{2}|\cdots|\xi_{1}\xi 2|\cdots|\lambda_{k}]^{ij}$

where the superscripts $ij$ indicate that the mixed partial divided difference of the second
order is taken at the distinctly different coordinates $\dot{i}$ and $j$ and all other coordinates are
fixed at the values $\lambda_{1},$

$\ldots,$
$\lambda_{i-1},$ $\lambda_{i+}1,$

$\ldots,$
$\lambda j-1$ and $\lambda_{j+1},$

$\ldots,$
$\lambda_{k}$ . The notation does not imply

any particular order of the coordinates which can be chosen from the full range 1, . . . , $k$ . The
following definition were introduced in [5]: .. $\cdot$

Definition 3.1 Let $f$ : $I_{1}\cross\cdots\cross I_{k}arrow \mathrm{R}$ be a real function of $k$ variables defined on the
product of $k$ open $\dot{i}nterval,Sw?,th$, continuous partial derivatives up to the second order. $We$

define a data set A of order $(n_{1}, \ldots, n_{k})$ for $f$ to be an element $\Lambda\in I_{1}^{n_{1}}\mathrm{x}\cdots\cross I_{k}^{n_{k}}.’$

. $a..n.\cdot dw..e$

$usuall\prime y$ write it in thノ e form
$k_{\nu_{}}$

$(*)$ $\Lambda=\{\lambda m_{i}(\dot{i})\}mi=1,\ldots,n_{i}$ $\dot{i}=1,$
$\ldots,$

$k$ .

To a given data set A we $assoC?,ate$ so-callled generalized $Hess?,an$ matrices. First we define
to each $tup^{1_{\text{ノ}}}e$ of natural numbers $(m_{1}, \ldots, m_{k})\leq(n_{1}, \ldots, n_{k})$ and to any $s,$ $u=1,$ $\ldots,$

$k$ a
matrix denoted $H_{su}(m_{1}, \ldots, m_{k})$ of order $n_{u}\cross n_{s}$ in the $f_{oll_{\mathit{0}}w}?,ng$ way:

1. If $s\neq u$ , then we set
$H_{su}(m_{1}, \ldots, m_{k})=$

$([\lambda_{m_{1}}(1)|\cdots|\lambda_{m_{s}}(s)\lambda j(s)|\cdots|\lambda_{p}(u)\lambda m_{u}(u)|\cdots|\lambda mk(k)]Su)_{p}=1,\ldots,nu;j=1,\ldots,n_{S}$

2. If $s=u$ , then we set

$H_{SS}(m_{1,\ldots,k}m)=2([\lambda m_{1}(1)|\cdots|\lambda(S)\lambda_{p}(_{S})\lambda_{j(S})m_{s}|\cdots|\lambda_{m}(kk)]^{S)_{p,j=1,\ldots,n_{S}}}$

We then define th, $e$ generallized Hessian matrix as the block matrix

$H(m_{1}, \ldots, m_{k})=(H_{su}(m1, , . . , m_{k}))_{u,s=1,\ldots,k}$

which is quadrati$c$ and symmetric and of order $n_{1}+\cdots+n_{k}$ .

If $n_{i}=1$ for $i=1,$ $\ldots,$
$k$ then the data set $(*)$ reduces to $k$ numbers $\lambda(1),$

$\ldots,$
$\lambda(k)$ and there

is only one (generalized) Hessian matrix $H$. The submatrix $H_{su}$ is a 1 $\cross 1$ matrix with the
partial derivative $f_{S}’’u(\lambda(1), \ldots, \lambda(k))$ as matrix element for $s,$ $u=1,$ $\ldots,$

$k$ . Therefore $H$ can
be identified with the usual Hessian matrix associated with a function of $k$ variables.
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4 DIFFERENTIAL CHARACTERIZATION OF MATRIX CONVEXITY

4 Differential characterization of matrix convexity
The functional calculus $(x_{1}, \ldots, x_{k})arrow f(x_{1}, \ldots, x_{k})$ for functions of several variables defines
a mapping from (a subset of) the direct sum $B(H_{1})\oplus\cdots\oplus B(H_{k})$ to the tensor product
$B(H_{1})\otimes\cdots\otimes B(H_{k})$ . The mapping is twice Fr\’echet differentiable, if $f$ has continuous partial
derivatives of order $p>2+k/2$ , cf. [5, Corollary 2.12]. For $k\leq 2$ there are sharper results
by $\mathrm{A}.\mathrm{L}$ . Brown and $\mathrm{H}.\mathrm{L}$ . Vasudeva, and it may well be that $p=2$ is a both necessary and
sufficient condition for general $k$ . The following result is of a classical nature and can be
derived from [3].

Theorem 4.1 Let the Hilbert spaces $H_{1},$ . $,$ .
$,$

$H_{k}$ have $fi_{\text{ノ}}n\dot{i}ted\dot{i}m,enS?\prime onsn_{1},$ . , , , $n_{k}$ . If the
functional calculus $m,app?,ng$ is twice Fr\’ech,et differentiable, then $f$ is $matr?,X$ convex of order
$(n_{1}.’...\cdot. , n_{k})$ if and only if

$d^{2}f(x_{1}, \ldots, X_{k})(h, h)\geq 0$

for any tuple $h=(h^{1}, \ldots, h^{k})$ of $selfadjo?,ntm,atriceS$ on $H_{1},$
$\ldots,$

$H_{k}$ .

The above result is of great import in conjunction with the following structure theorem for
the second Fr\’echet differential, cf. [5].

Theorem 4.2 Let $f\in C^{p}(I_{1}\cross\cdots\cross I_{k})$ with $p>2+k/2$ where $I_{1}$ , , .., $I_{k}$ are open intervals
and let $x=$ $(x_{1},$ . .. , $x_{k})$ be selfadjoint matrices of orders $(n_{1}, \ldots, n_{k})$ in the domain of $f$ .
The $expeCtat?,on$ value of the second Fr\’echet $di_{\text{ノ}}fferent’,al$ in a vector $\varphi\in H_{1}\otimes\cdots\otimes H_{k}$ is
given by

$(d^{2}f(x)(h, h) \varphi|\varphi)=\sum_{m_{1^{=}}1m_{k}}^{n_{1}}\cdots\sum(H(m_{1},$ $\ldots,$$m_{k}nk=1\mathrm{I}\Phi^{h}(m_{1}, \ldots , m_{k})|\Phi^{h}(m1, \ldots, mk)\mathrm{I}$

where $H(m_{1}, \ldots, m_{k})$ are the generallized Hessian matrices $assoc\dot{?,}ated$ with, $f$ and the eigen-
values of $(x_{1}, \ldots, x_{k}),$ $wh?,l,e$ the vectors

$\Phi^{h}(m_{1}, \ldots, m_{k})=$ $m_{i}=1,$
$\ldots,$

$n_{i}$ for $i=1,$ $\ldots,$
$k$

are $g?,ven$ by

$\Phi_{s}^{h}(m_{1}, \ldots, m_{k})_{j_{s}}=h_{m_{s}jS}^{S}\varphi(m_{1}, \ldots, m-1,j_{s}S’ 1, \ldots,k)m_{S+}m$

for $j_{s}=1,$
$\ldots,$

$n_{s}$ and $s=1,$ $\ldots,$
$k$ .

We immediately realize that even without calculating the vectors $\Phi^{h}(m_{1}, \ldots, m_{k})$ , one can
conclude that $f$ is matrix convex of order $(n_{1}, \ldots, n_{k})$ , provided all of the generalized Hessian
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matrices associated with $f$ and any data set $\Lambda\in I_{1}^{n_{1}}\mathrm{x}\cdots\cross I_{k}^{n_{k}}$ are positive semi-definite.
This can for example be done for the functions

$f(t_{1}, \ldots, t_{k})=\prod_{i=1}^{k}\frac{1}{1-\mu_{i}t_{i}}$ $t_{1},$
$\ldots,$

$t_{k}\in]-1,1[$

where $\mu_{1},$ $\ldots,$
$\mu_{k}\in[-1,1]$ . It is calculated in [5] that the generalized Hessian matrices for

these functions are of the form

$H(m_{1}, \ldots, m_{k})=f(\lambda m_{1}(1), \ldots, \lambda m_{k}(k))$

$a(2)^{t}\cdot a(1)$ $2a(2)^{t}\cdot a(2)$
.

$/\backslash 2a(1)^{t}.\cdot.\cdot a(1)$

$a(1)^{t}..\cdot\cdot a(2)$

$..$ .
$2a(k)t.a(k)a(2)^{t}.\cdot.a(k)a(1)t.\cdot a(k))$

$a(k)^{t}\cdot a(1)$ $a(k)^{t}\cdot a(2)$

where the vectors
$a(i)=\mu_{i}(fi(\lambda_{1}(i)),$

$\ldots,$
$fi(\lambda n_{i}(i)))\in \mathrm{R}^{n_{2}}$

for $i=1,$ $\ldots k$
} . The generalized Hessian matrices are bounded from below by

$f(\lambda_{m_{1}}(1), \ldots, \lambda_{m_{k}}(k))$

$=$
$f(\lambda_{m_{1}}(1), \ldots, \lambda_{m_{k}}(k))(a(1)$ $a(k))^{t}(a(1)$ $a(k))$

which are positive semi-definite matrices.

Corollary 4.3 Let $\nu$ be a non-negative Borel measure on the cube $[$ -1, $1]^{k}$ for $k\in \mathrm{N}$ and
let $a_{0},$ $a_{1,\ldots,k}a$ be real, numbers. The function

$f(t_{1}, \ldots, t_{k})=a_{01}+at_{1}+\cdots+a_{kk}t+\int^{1}-1\ldots\int_{-1}1\prod_{=i1}^{k}\frac{1}{1-\mu_{i}t_{i}}d\nu(\mu_{1}, \ldots, \mu_{k})$

is operator convex on the open $cube$ ] $-1,1[^{k}$ .
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