## On the Time-Independence of Entropy dimensions associated with a $W^*$ -Dynamical System

## Shigeo AKASHI

Department of Mathematics, Faculty of Science, Niigata University 8050, 2-nomachi, Igarashi, Niigata-shi, 950-21 JAPAN

Throughout this paper,  $\mathbb{N}$ ,  $\mathbb{R}$  and  $\mathbb{C}$  denote the set of all positive integers, the set of all real numbers and the set of all complex numbers, respectively,  $\mathcal{H}$  and  $\mathcal{B}(\mathcal{H})$  denote a separable Hilbert space and the algebra of all bounded operators on  $\mathcal{H}$ , respectively. Let  $\mathcal{N}_{*,+,1}(\mathcal{B}(\mathcal{H}))$  be the set of all normal states on  $\mathcal{B}(\mathcal{H})$ . If  $\mathcal{S}$  is a weak\* compact and convex subset of  $\mathcal{N}_{*,+,1}(\mathcal{B}(\mathcal{H}))$ , then the set of all extremal points belonging to  $\mathcal{S}$ , which is denoted by  $ex\mathcal{S}$ , is non-empty. For any normal state  $\phi \in \mathcal{S}$ , if there exist both a non-negative sequence  $\{\lambda_k; k \in \mathbb{N}\}$  satisfying  $\sum_k \lambda_k = 1$  and a sequence of normal states  $\{\phi_k; k \in \mathbb{N}\} \subset ex\mathcal{S}$ , which enable  $\phi$  to be represented by the following countable convex combination:

$$\phi = \sum_{k=1}^{\infty} \lambda_k \phi_k,$$

then, we define  $D(\phi, S)$  by the set of all non-negative sequences that enable  $\phi$  to be represented by the above way. Now, for any positive number  $\alpha \neq 1$ , Ohya's  $(S, \alpha)$ -entropy of  $\phi$  is defined by

$$S(\phi, \mathcal{S}, \alpha) = \inf \left\{ \frac{\log \sum_{k=1}^{\infty} \lambda_k^{\alpha}}{1 - \alpha}; \left\{ \lambda_k; k \in N \right\} \in D(\phi, \mathcal{S}) \right\}.$$

Here, Ohya's S-entropy dimension of  $\phi$  is defined by

$$d(\phi, S) = inf\{\alpha > 0; S(\phi, S, \alpha) < \infty\}.$$

Throughout this paper, we will treat the case that  $S = \mathcal{N}_{*,+,1}(\mathcal{B}(\mathcal{H}))$  holds and we will abbreviate  $d(\phi, \mathcal{N}_{*,+,1}(\mathcal{B}(\mathcal{H})))$  to  $d(\phi)$  for simplicity.

Let  $(\mathcal{B}(\mathcal{H}), \mathbb{R}, \alpha)$  be a  $W^*$ -dynamical system, and  $\alpha$  be a surjective continuous action defined on  $\mathbb{R}$  with values in the set of all surjective \*-automorphism group on  $\mathcal{B}(\mathcal{H})$ , that is, for any  $s, t \in \mathbb{R}$ ,  $\alpha_s \circ \alpha_t = \alpha_{s+t}$  holds and  $\alpha_t$  is a surjective \*-homomorphism defined on  $\mathcal{B}(\mathcal{H})$  with values in  $\mathcal{B}(\mathcal{H})$  which is continuous in the  $\sigma$ -weak operator topology and satisfies the following condition:

$$lim_{t\to s} < x, \alpha_t(A)y > = < x, \alpha_s(A)y >, \qquad x, y \in \mathcal{H}, \quad A \in \mathcal{B}(\mathcal{H}).$$

Then, it follows from the following theorem that the entropy dimensions of the normal states constructed by the combination with the initial states and the continuous action

assocated with the given  $W^*$ -dynamical system are time-independent.

**Theorem.** Let  $\alpha$  be a surjective continuous action. Then, for any normal state  $\phi$ ,  $d(\phi) = d(\phi \circ \alpha_t)$  holds for any  $t \in \mathbb{R}$ .

**Proof.** For any  $x \in \mathcal{H}$ , the vector state constructed by x, which is denoted by  $\omega_x$  is defined by

$$\omega_x(A) = \langle x|A|x \rangle, \quad A \in \mathcal{B}(\mathcal{H}).$$

Here, we can assume that  $\phi$  is represented by

$$\rho = \sum_{k=1}^{\infty} \lambda_k |f_k| > \langle f_k|,$$

$$\phi(A) = tr(\rho A), \quad A \in \mathcal{B}(\mathcal{H}),$$

where  $\{\lambda_k\}$  is a non-negative sequence satisfying  $\sum_k \lambda_k = 1$ , and  $\{f_k\}$  is an orthonormal system of  $\mathcal{H}$ . Then,  $\phi$  can be represented by

$$\phi = \sum_{k=1}^{\infty} \lambda_k \omega_{e_k}.$$

Since  $\phi \circ \alpha_t = 0$  implies that  $\phi = 0$  holds,  $j \neq k$  implies that  $\omega_{e_j} \circ \alpha_t \neq \omega_{e_k} \circ \alpha_t$  holds. Therefore, it is sufficient to prove that, for any positive integer k,  $\omega_{e_k} \circ \alpha_t$  belongs to  $ex\mathcal{N}_{*,+,1}(\mathcal{B}(\mathcal{H}))$  holds. Let  $\omega$  be an element of  $ex\mathcal{N}_{*,+,1}(\mathcal{B}(\mathcal{H}))$  and  $\psi$  be  $\omega \circ \alpha_t$  and  $\{\mathcal{H}_{\omega}, \pi_{\omega}, x_{\omega}\}$  (resp.  $\{\mathcal{H}_{\psi}, \pi_{\psi}, x_{\psi}\}$ ) be the cyclic representation of  $\mathcal{B}(\mathcal{H})$  (resp.  $\mathcal{B}(\mathcal{H})$ ) constructed by  $\omega$  (resp.  $\psi$ ). Let  $(\alpha_t)_{\omega,\psi}$  be an operator on  $\{\pi_{\psi}(B)x_{\psi}; B \in \mathcal{B}(\mathcal{H})\}$  with values in  $\{\pi_{\omega}(A)x_{\omega}; A \in \mathcal{B}(\mathcal{H})\}$  defined by

$$(\alpha_t)_{\omega,\psi}\pi_{\psi}(B)x_{\psi} = \pi_{\omega}((\alpha_t)(B))x_{\omega}, \quad B \in \mathcal{B}(\mathcal{H}).$$

Then, for any  $B, C \in \mathcal{B}(\mathcal{H})$ , we have

$$<(\alpha_{t})_{\omega,\psi}\pi_{\psi}(B)x_{\psi}|(\alpha_{t})_{\omega,\psi}\pi_{\psi}(C)x_{\psi}> = <\pi_{\omega}((\alpha_{t})(B))x_{\omega}|\pi_{\omega}((\alpha_{t})(C))x_{\omega}> = <\pi_{\omega}|\pi_{\omega}((\alpha_{t})(B)^{*}(\alpha_{t})(C))x_{\omega}> = <\pi_{\omega}|\pi_{\omega}((\alpha_{t})(B^{*}C))x_{\omega}> = \omega((\alpha_{t})(B^{*}C)) = \psi(B^{*}C) = <\pi_{\psi}|\pi_{\psi}(B^{*}C)x_{\psi}> = <\pi_{\psi}(B)x_{\psi}|\pi_{\psi}(C)x_{\psi}>.$$

These equalities imply that  $(\alpha_t)_{\omega,\psi}^*(\alpha_t)_{\omega,\psi}$  is the identity mapping. It is clear that the uniform closure of  $\{\pi_{\omega}((\alpha_t)(B))x_{\omega}; B \in \mathcal{B}(\mathcal{H})\}$  is exactly equal to  $\mathcal{H}_{\omega}$ , because  $\alpha_t$  is surjective. Therefore,  $(\alpha_t)_{\omega,\psi}$  can be uniquely extended to an isometry defined on  $\mathcal{H}_{\psi}$ . Since, for any  $B, C \in \mathcal{B}(\mathcal{H})$ , we have

$$(\alpha_{t})_{\omega,\psi}\pi_{\psi}(B)(\alpha_{t})_{\omega,\psi}^{*}\pi_{\omega}((\alpha_{t})(C))x_{\omega} = (\alpha_{t})_{\omega,\psi}\pi_{\psi}(B)(\alpha_{t})_{\omega,\psi}^{*}(\alpha_{t})_{\omega,\psi}\pi_{\psi}(C)x_{\psi}$$

$$= (\alpha_{t})_{\omega,\psi}\pi_{\psi}(BC)x_{\psi}$$

$$= \pi_{\omega}((\alpha_{t})(BC))x_{\omega}$$

$$= \pi_{\omega}((\alpha_{t})(B))\pi_{\omega}((\alpha_{t})(C))x_{\omega},$$

these equalities imply that  $(\alpha_t)_{\omega,\psi} \pi_{\psi}(B)(\alpha_t)_{\omega,\psi}^* = \pi_{\omega}((\alpha_t)(B))$  holds for any  $B \in \mathcal{B}(\mathcal{H})$ , and

$$\{\pi_{\psi}((\alpha_t)(B))x_{\psi}; B \in \mathcal{B}(\mathcal{H})\}' = (\alpha_t)_{\omega,\psi}^* \{\pi_{\omega}((\alpha_t)(B))x_{\omega}; B \in \mathcal{B}(\mathcal{H})\}'(\alpha_t)_{\omega,\psi} = \mathbb{C}I,$$

where I means the identity mapping on  $\mathcal{H}_{\psi}$ , and  $\mathcal{A}'$  means the commutant of an algebra  $\mathcal{A}$ . These equalities imply that the cyclic representation  $\{\mathcal{H}_{\psi}, \pi_{\psi}, x_{\psi}\}$  is irreducible, therefore, we obtain the conclusion.

## References

- [1] L. Accardi. Nonrelativistic quantum mechanics as a noncommutative Markof process, Advances Math., 20(1976), 329-366.
- [2] L. Accardi and M. Ohya. Compound channels, transition expectations and liftings, to be published in J. Multivariate. Anal.
- [3] H. A. Dye. The Radon-Nikodym theorem for finite rings of operators, Trans. Amer. Math. Soc., 72(1952), 243-280.
- [4] A. N. Kolmogorov. On the representation of continuous functions of several variables by superpositions of continuous functions of one variable and addition, Doklady Akad. Nauk SSSR, 114(1957), 679-681.
- [5] M. Nakamura and M. Takesaki. A remark on the expectations of operator algebras, Kodai Math. Sem. Rep., 12(1960), 82-90.
- [6] M. Ohya. Some aspects of quantum information theory and their applications to irreversible processes, Rep. Math. Phys., 27(1989), 19-47.
- [7] M. Ohya and D. Petz. Quantum entropy and its use, Springer Verlag, Berlin, 1993.
- [8] F. Riesz and B. Sz. Nagy. Leçons d'analyse fonctionnelle, Akadémiai Kiadó, Budapest, 1968.
- [9] S. Sakai.  $C^*$ -algebras and  $W^*$ -algebras, Springer Verlag, Berlin, 1971.