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Introduction

During the last decade quantum stochastic calculus on Fock space has developed into a
new field of mathematics with various applications to quantum physics by many authors,
see the excellent textbooks Meyer [9], Parthasarathy [16] and references cited therein. In
short, their discussion is in principle based on a quantum version of It\^o theory and a crucial
role has been played by three basic quantum stochastic processes $\{A_{t}\},$ $\{A_{t}^{*}\}$ and $\{\Lambda_{t}\}$ ,
which are called respectively the annihilation process, the creation process and the number
(gauge) process. In fact, quantum stochastic integrals of It\^o type are introduced by means
of Riemann-Lebesgue integrals against the infinitesimal increments $dA_{t},$ $dA_{t}^{*}$ and $d\Lambda t$ just as
in the classical case where a stochastic integral of It\^o type is defined using the infinitesimal
increment of Brownian motion $dB_{t}$ .

On the other hand, the (classical) It\^o theory has developed considerably together with
distribution theory on an infinite dimensional space. Among others Hida’s white noise cal-
culus [2] allows to formulate the white noise as a smooth flow (with respect to the time
parameter) not as a generalized stochastic process in the sense of Gelfand and It\^o. To be
precise, let

$(E)\subset L^{2}(E*, \mu)\subset(E)^{*}$

be the standard white noise triplet or $\mathrm{H}\mathrm{i}\mathrm{d}\mathrm{a}-\mathrm{K}\mathrm{u}\mathrm{b}\mathrm{o}$-Takenaka space [6], where $(E^{*}, \mu)$ is the
Gaussian space associated with the Gelfand triple

$E=S(\mathbb{R})\subset H=L2(\mathbb{R}, dt)\subset E^{*}=S’(\mathbb{R})$ . (0.1)

Then the Brownian motion $\{B_{t}\}$ , originally a continuous flow in $L^{2}(E^{*}, \mu)$ , becomes a smooth
one in $(E)^{*}$ with the derivative

$W_{t}= \frac{d}{dt}B_{t}$ or equivalently $dB_{t}=W_{t}dt$ .

Then the smooth flow $t\vdash\Rightarrow W_{t}\in(E)^{*}$ is called the white noise process. It is the clue of
the white noise approach to (classical) stochastic analysis (see e.g., [2], [3], [6], [7]) that the
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infinitesimal increment of Brownian motion is replaced with the smooth flow of white noise
times the time increment $dt$ . $\delta$

Through the celebrated Wiener-It\^o-Segal isomorphism between $L^{2}(E^{*}, \mu)\mathrm{a}\mathrm{n}\dot{\mathrm{d}}$ the Boson
Fock space over $H_{\mathbb{C}}$ we can discuss a quantum analogue of white noise calculus, that is, white
noise approach to quantum stochastic calculus. In fact, the basic processes $\{A_{t}\},$ $\{A_{t}^{*}\}$ and
$\{\Lambda_{t}\}$ are smooth flows of operators on white noise functions and we have

$dA_{t}=a_{t}dt$ , $dA_{t}^{*}=a_{t}^{*}dt$ , $d\Lambda_{t}=a_{t}^{*}a_{t}dt$ ,

where $a_{t}$ and $a_{t}^{*}$ are the pointwisely defined annihilation and creation operators, respectively.
Accordingly, quantum stochastic integrals of It\^o type $\dot{\mathrm{i}}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{e}\mathrm{d}$ by Hudson-Parthasarathy
[5] can be discussed in terms of white noise distribution theory on the analogy of the classical
case. This new approach was launched out by Huang [4] and Obata [11], [12], [13], [14], [15]
with technical background [10].

The present short note is intended as a supplement to the above mentioned papers. We
examine the canonical expression of a quantum stochastic process $\mathrm{m}o$re in detail and discuss
the quantum It\^o formula. It is our hope that Hida’s idea of white noise works well also for
quantum stochastic calculus.

General Notation Let $x,$ $\mathfrak{Y},$ $3$ be locally convex spaces.
$X_{\mathbb{C}}$ : the complexification of $X$ when it is a real space.
$\mathcal{L}(x, \mathfrak{Y})$ : the space of continuous linear operators from $X$ into $\mathfrak{Y}$ ; equipped with the

topology of bounded convergence.
$X^{*}:$ the space of continuous linear functionals on $X;\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}_{\mathrm{P}\mathrm{p}\mathrm{e}\dot{\mathrm{d}}}$ with the strong dual

topology. This is a particular case of $\mathcal{L}(X, \mathfrak{Y})$ .
$X\otimes \mathfrak{Y}$ : the Hilbert space tensor product when both $x,$ $\mathfrak{Y}$ are Hilbert spaces.
$X\otimes_{\pi}\mathfrak{Y}$ : the completed $\pi$-tensor product. When there is no danger of confusion, $\otimes_{\pi}$ is

denoted $\mathrm{b}\mathrm{y}\otimes \mathrm{f}\mathrm{o}\mathrm{r}$ simplicity.

1 Standard Triplet of White Noise Functions

We adopt the standard notation following [10]. The Gelfand triple (0.1) is constructed from
the differential operator

$A=1+t^{2}- \frac{d^{2}}{dt^{2}}$

in the standard manner. Namely, $E$ is the $C^{\infty}$ -domain of $A$ equipped with the topology
defined by the norms $|\xi|_{p}=|A^{p}\xi|_{H},$ $p\in \mathbb{R}$. The constant numbers

’

$\delta$ $=$ Hilbert-Schmidt norm of $A^{-1}<\infty$ ,

$\rho$ $=$ operator norm of $A^{-1}=( \inf \mathrm{S}_{\mathrm{P}^{\mathrm{e}}}\mathrm{c}(A))^{-1}=\frac{1}{2’}$

and the obvious inequalities

$0<\rho<1$ ; $|\xi|_{p}\leq\rho^{q}|\xi|_{pq}+$ ’
$\xi\in E$ , $p\in \mathbb{R}$ , $q\geq 0$ , (1.1)
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are used throughout with no special notice. The probability space $(E^{*}, \mu)$ , where $\mu$ is the
standard Gaussian measure, is called the Gaussian space. For $\xi\in E_{\mathbb{C}}$ we define an exponen-
tial vector by

$\phi_{\xi}(X)=\exp(\langle x, \xi\rangle-\frac{1}{2}\langle\xi, \xi\rangle)$ , $x\in E^{*}$ .

In particular, $\phi_{0}$ is called the vacuum.
Let $\Gamma(H_{\mathbb{C}})$ be the Boson Fock space over $H_{\mathbb{C}}$ , the space of $\mathbb{C}$-valued $L^{2}$-functions on $\mathbb{R}$ .

An element in $\Gamma(H_{\mathbb{C}})$ is a sequence $(f_{n})_{n=0}^{\infty}$ such that $f_{n}\in H_{\mathbb{C}}^{\otimes n}\wedge$ and $\sum_{n=0}^{\infty}n!|f_{n}|_{0}^{2}<\infty$ .
There is a unitary isomorphism between $L^{2}(E^{*}, \mu)$ and $\Gamma(H_{\mathbb{C}})$ uniquely determined by the
correspondence $\phi_{\zeta}rightarrow(\xi^{\otimes n}/n!)$ . This is the celebrated Wiener-It\^o-Segal isomorphism. For a
general $\phi\in L^{2}(E^{*}, \mu)$ we write the correspondence as $\phi\sim(f_{n})$ . In fact, we can reconstruct a
function on $E^{*}$ from $(f_{n})$ by means of Hermite polynomials, or more precisely, renormalized
tensor products : $x^{\otimes n}:$ , for full details see [3] or [10].

The second quantized operator of $A$ is denoted by $\Gamma(A)$ . For $\phi\sim(f_{n})$ its action is given
by $\Gamma(A)\phi\sim(A^{\otimes n}f_{n})$ . It is known that $\Gamma(A)$ is a positive selfadjoint operator on $L^{2}(E^{*}, \mu)$

$.\mathrm{w}$ith Hilbert-Schmidt inverse. We thereby obtain a complex Gelfand triple:

$(E)\subset L^{2}(E*, \mu)\cong\Gamma(H_{\mathbb{C}})\subset(E)^{*}$ ,

which is called the standard white noise triplet or the $Hida-Kubo$-Takenaka space [6]. Ele-
ments in $(E)$ and $(E)^{*}$ are called a test (white noise) function and a generalized (white noise)
function, respectively. We denote by $\langle\langle\cdot, \cdot\rangle\rangle$ the canonical bilinear form on $(E)^{*}\cross(E)$ . For
the defining norms $||\cdot||_{p}$ of $(E)$ we have

$|| \phi||_{p}^{2}=||\Gamma(A)^{p}\phi||_{0}^{2}=\sum_{=n0}^{\infty}n!|(A^{\otimes n})^{p}f_{n}|_{0}^{2}=\sum_{=n0}^{\infty}n!|f_{n}|_{p}^{2}$ , $p\in \mathbb{R}$ , (1.2)

where $\phi\sim(f_{n})$ . Obviously, $\phi\in(E)$ if and only if $f_{n}\in E_{\mathbb{C}}^{\otimes n}\wedge$ for all $n$ and $\sum_{n=0}^{\infty}n!|f_{n}|_{p}^{2}<\infty$

for all $p\geq 0$ . If $F_{n}\in(E_{\mathrm{c}}^{\otimes n})^{*}\mathrm{s}\mathrm{y}\mathrm{m}$ and $\sum_{n=0}^{\infty}n!|F_{n}|_{-p}^{2}<\infty$ for some $p\geq 0$ , then there exists a
unique $\Phi\in(E)^{*}$ such that

$\langle\langle\Phi, \phi\rangle\rangle=\sum_{n=0}^{\infty}n!\langle F_{n}, f_{n}\rangle$ , $\phi\sim(f_{n})\in(E)$ .

Conversely, every $\Phi\in(E)^{*}$ is of this type. In that case we write $\Phi\sim(F_{n})$ and call it the
Wiener-It\^o expansion of $\Phi$ .

For each $y\in E_{\mathbb{C}}^{*}$ there exists a unique operator $D_{y}\in \mathcal{L}((E), (E))$ such that

$D_{y}\phi_{\xi}=\langle y, \xi\rangle\phi_{\xi}$ , $\xi\in E_{\mathbb{C}}$ .

This is called the annihilation operator. In particular,

$a_{t}=D_{\delta_{t}}$ , $t\in \mathbb{R}$ ,

is called the annihilation operator at a point $t$ or Hida $\mathrm{Z}s$ differential operator. (In some
literature $\partial_{t}$ is used for $a_{t}.$ ) The adjoint $a_{t}^{*}\mathrm{b}\mathrm{e}1_{0}\mathrm{n}\mathrm{g}\mathrm{s}$ to $\mathcal{L}((E)^{*}, (E)^{*})$ and is called the creation
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operator at a point $t$ . These operators are not operator-valued distributions but continuous
operators for themselves. Moreover, both $t-\rangle$ $a_{t}\in \mathcal{L}((E), (E))$ and $t$ }$arrow a_{t}^{*}\in \mathcal{L}((E)^{*}, (E)^{*})$

are smooth flows.
For each $\kappa\in(E_{\mathbb{C}}^{\otimes(+}\iota m))^{*}$ there exists a unique $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\Gamma--l,m-(\kappa)\in \mathcal{L}((E), (E)^{*})$ such that

$\langle\langle_{-l,m}^{-}-(\kappa)\phi, \psi\rangle\rangle=\langle\kappa, \eta\phi,\psi\rangle$ , $\phi,$ $\psi\in(E)$ ,

where
$\eta_{\emptyset,\psi}(s_{1}, \cdots, Sl, t1, \cdots, t)m=\langle\langle a_{S_{1}}^{*}\cdots aa_{t_{1}t}\ldots a\phi m’\psi\rangle s\iota\rangle*$ .

We use a formal (but descriptive) integral expression:

$.-_{l,m}-( \kappa)=\int_{\mathbb{R}^{l+m}}\kappa(s1, \cdots , s_{l}, t_{1,m}\ldots, t)a\cdots a_{sl}a_{t_{1}}\cdots at_{m}d_{S_{1}\cdot d}S_{1}**.,s_{l1}dt\cdots dt_{m}$ . (1.3)

We call $.-_{l,m}-(\kappa)$ an integral kernel operator with kernel distribution $\kappa$ , see [10]. It is known
that $\kappa$ is uniquely determined whenever it is taken from the subspace

$(E_{\mathrm{c}}^{\otimes(})l+m)*\mathrm{s}\mathrm{y}\mathrm{m}(l,m)=\{\kappa\in(E_{\mathbb{C}}^{\otimes(m)*})+;l$ $s_{l,m}(\kappa)=\kappa\}$ ,

where $s_{l,m}$ is the symmetrizing operator with respect to the first $l$ and the last $m$ variables
independently. It is known [10, Chapter 4] that every operator in $\mathcal{L}((E), (E)^{*})$ , hence every
bounded operator on the Boson Fock space $\Gamma(H_{\mathbb{C}})\cong L^{2}(E^{*}, \mu)$ as well admits a strongly
convergent infinite series expansion in terms of integral kernel operators (Fock expansion).

2 Brownian Motion and White Noise Process

Consider two white noise functions:

$B_{t}\sim(0.’ 1_{[0},t],$
$\mathrm{o},$ $\cdots)$ , $t\geq 0$ ; $W_{t}\sim..(0, \delta_{t}, 0, \cdots)$ , $t\in \mathbb{R}$ .

It is easy to see that $\{B_{t}\}\subset L^{2}(E^{*}, \mu)$ forms a Gaussian family satisfying

$B_{0}=0$ , $\mathrm{E}(B_{t})=0$ , $\mathrm{E}(B_{s}B_{t})=\min\{s, t\}$ , $\mathit{8},$ $t\geq 0$ ,

namely, $\{B_{t}\}_{t\geq 0}$ is a Brownian motion. If necessary we put $B_{-t}\sim(\mathrm{o}, -1_{1-t,0}],$ $0,$ $\cdots),$ $t\geq 0$ .
It is easily verified that $t\mapsto B_{t}\in L^{2}(E^{*}, \mu)$ is continuous but not differentiable; however, it
becomes differentiable if regarded as a flow in $(E)^{*}$ . This is due to the fact that $t\mapsto 1_{[0,t]}\in E_{\mathbb{C}}^{*}$

is a $C^{\infty}$ -flow with derivative $\delta_{t}$ . To summarize,

Proposition 2.1 The map $trightarrow B_{t}\in(E)^{*}$ is a $C^{\infty}$ -flow and it holds that

$\frac{d}{dt}B_{t}=W_{t}$ , $t\in \mathbb{R}$,

with respect to the strong dual topology of $(E)^{*}$ . Hence $trightarrow W_{t}\in(E)^{*}$ is also a $C^{\infty}$ -flow.
The $C^{\infty}$-flow $\{W_{t}\}\subset(E)^{*}$ is called the white noise process. In other words, the white

noise is formulated as the time derivative of Brownian motion.

Remark There is another justification of white noise in terms of a generalized stochastic
process. In general, let $(\Omega, P)$ be a probabili.ty space. A map $X$ : $\Omega\cross S(\mathbb{R})arrow \mathbb{R}\mathrm{i}.\mathrm{s}$ called a
generalized $\mathit{8}tochaStiC$ process if .
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(i) for a fixed $\xi\in S(\mathbb{R})$ , a map $\omegaarrow X(\omega, \xi)$ is a random variable;
(ii) for a fixed $\omega\in\Omega$ , a map $\xiarrow X(\omega, \xi)$ is a continuous linear functional on $S(\mathbb{R})$ .

This concept was introduced by Gelfand and by It\^o around 1955. Then $W$ : $E^{*}\cross S(\mathbb{R})arrow$

$\mathbb{R}$ defined by $W(x, \xi)=\langle x, \xi\rangle$ satisfies the above properties, and hence is a generalized
stochastic process. This $W$ is also referred to as the white noise. Formal writing

$W(x, \xi)=\langle x, \xi\rangle=I_{\mathbb{R}}^{\xi(}t)X(t)dt=\int_{\mathbb{R}}\xi(t)W_{t}(x)dt$

suggests the situation very well. The white noise $\{W_{t}\}$ has no meaning (as a usual random
variable) at each time point $t$ but is considered as a generalized stochastic process, i.e., a
distribution in $t$ . In $.0$ther words, the white noise receives a rigorous meaning only after
smearing the time parameter and hence it is no longer a flow (time-parametrized stochastic
process). In contrast, once the space $(E)^{*}$ of white noise distributions is introduced, the
white noise $W_{t}(x)$ is a distribution in $x$ and forms a $C^{\infty}$ -flow in $(E)^{*}$ .

3 Quantum Stochastic Processes

Definition ([12]) A family of
$\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}--\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}\{_{-t}^{-}-\}\subset \mathcal{L}((E), (E)^{*})$ is called a quantum stochastic

process (on Fock space) if $t\mapsto\cup t$ is continuous, where $t$ runs over an interval of $\mathbb{R}$ . A
continuous linear map $—$ : $E_{\mathbb{C}}arrow \mathcal{L}((E), (E)^{*})$ is called a generalized quantum $stocha\mathit{8}ti_{C}$

process. A generalized quantum stochastic process $—\mathrm{i}\mathrm{s}$ called regular if it admits a continuous
extenstion from $E_{\mathbb{C}}^{*}$ into $c((E), (E)^{*})$ . The extension will be denoted by the same symbol.

The continuity condition is not very restrictive as is seen below; also recall that the white
noise process is a $C^{\infty}$ -flow within our formulation. If a generalized quantum stochastic
$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}---\mathrm{i}\mathrm{s}$ regular, $\{_{-t}^{-}-=---(\delta_{t})\}t\in \mathbb{R}$ is a quantum stochastic process. However, not every
quantum stochastic process is of this form. From now on a regular generalized quantum
stochastic process is also called a regular quantum stochastic process.

It is known that both $\{a_{t}\}$ and $\{a_{t}^{*}\}$ are regular quantum stochastic processes. In fact,
$t\vdasharrow a_{t}\in \mathcal{L}((E), (E))$ and $t\mapsto a_{t}^{*}\in \mathcal{L}((E)^{*}, (E)^{*})$ , both of whish are $C^{\infty}$ -flows. The integral
kernel operators:

$At=—0,1(11^{0},t])$ , $A_{t}^{*}=---1,\mathrm{o}(1_{[}0,t])$ , (3.1)

form quantum stochastic processes. These are called the annihilation and creation processes,
respectively.

Using the natural inclusion: $(E)^{*}\llcorner_{arrow}\mathcal{L}((E), (E)^{*})$ by multiplication, we regard a con-
tinuous flow $t\mapsto\Phi_{t}\in(E)^{*}$ as a quantum stochastic process. In that sense the white noise
process $\{W_{t}\}$ and the Brownian motion $\{B_{t}\}$ give rise to the quantum white noise and the
quantum Brownian motion, respectively. It is known that

$W_{t}=a_{t}+a_{t}^{*}$ , $t\in \mathbb{R}$ ; $B_{t}=A_{t}+A_{t}^{*}$ , $t\geq 0$ .

Obviously, the quantum white noise is regular.
There are many examples arising from quantum stochastic differential equations, see e.g.,

[5], [9], [16]. A systemtic study of such examples from our viewpoint would be interesting,
see also [13].
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4 Integral Kernel Expansion of a Quantum Stochastic Process

Recall first the canonical isomorphism:

$\mathcal{L}((E), (E)^{*})\cong((E)\otimes(E))^{*}\cong \mathrm{i}\mathrm{n}\mathrm{d}\lim_{arrow p\infty}((E)\otimes(E))_{-P}$ ,

where $((E)\otimes(E))_{-p}$ is the Hilbert space obtained by completing $((E)\otimes(E))$ with respect
to the norm $||\cdot||_{-p}$ . Then, for $p\geq 0$ let $\mathcal{L}_{p}((E), (E)^{*})$ denote the subspace of all $—\in$

$\mathcal{L}((E), (E)^{*})$ which correspond to elements in $((E)\otimes(E))_{-p}$ . In particular, $\mathcal{L}_{0}((E), (E)^{*})$

is identified with the space of all Hilbert-Schmidt operators on $L^{2}(E^{*}, \mu)$ . The topology of
$\mathcal{L}_{p}((E), (E)^{*})$ is naturally induced from the norm of $((E)\otimes(E))_{-P}$ which is denoted also by
$||\cdot||_{-\mathrm{P}}$ . With this notation,

$||_{-}^{-}-\phi||_{-P}\leq||_{-}^{-}-||-p||\phi||p$ ’
$\phi\in(E)$ . (4.1)

It is noted that

$\mathcal{L}((E), (E)^{*})\cong \mathrm{i}\mathrm{n}\mathrm{d}\lim_{arrow p\infty}\mathcal{L}_{p}((E), (E)^{*})(=\cup \mathcal{L}_{P}((p\geq 0E), (E)^{*})$ as vector $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{s})$ .

On the other hand, it is also known that $\mathcal{L}((E), (E)^{*})$ contains all bounded operator on
$L^{2}(E^{*}, \mu)$ .

Lemma 4.1 $Let—=\Sigma_{l,m=}^{\infty}0^{-}--_{\iota},m(\kappa_{l,m})$ be the expansion $of—\in \mathcal{L}_{p}((E), (E)^{*}),$ $p\geq 0$ , in
terms of integral kernel operators. Then

$|\kappa_{t},m|-(p+1)\leq Gl,m;p||_{-}^{-}-||_{-p}$ , (4.2)

where
$G_{l,m;p}=(l^{l}m^{m})-1/2(e^{3}\delta^{2}(1+\rho)2P)^{(m)}\iota+/2$ (4.3)

PROOF. Since by definition

$—\wedge(\xi, \eta)=\langle\langle_{-}^{-}-\phi_{\xi}, \phi_{\eta}\rangle\}=\langle\langle^{-}--, \phi_{\zeta}\otimes\phi_{\eta}\rangle\rangle$ , $\xi,\eta\in E_{\mathbb{C}}$ ,

we have
$|_{-}^{-}- \wedge(\xi, \eta)|\leq||_{-}^{-}-||-\mathrm{P}||\phi\epsilon^{\otimes}\phi\eta||\leq p||_{-}^{-}-||-_{\mathrm{P}}\exp\frac{1}{2}(|\xi|_{p}^{2}+|\eta|_{\mathrm{p}}2)$ .

The assertion then follows by applying the result in [10, Theorem 4.4.6]. qed

We now prepare a general lemma. Let $X$ be a countable Hilbert space over $\mathbb{R}$ or $\mathbb{C}$ . Then
there exists a sequence of Hilbert spaces $\cdots\subset H_{2}\subset H_{1}\subset H_{0}\subset H_{-1}\subset H_{-2}\subset\cdots$ such that

$X \cong \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}\lim Hparrow\infty p$ ’ $\mathfrak{X}^{*}\cong \mathrm{i}\mathrm{n}\mathrm{d}\lim_{\infty parrow}H_{-P}$ .

If $X$ is a nuclear space, we may assume without loss of generality that the natural injection
$H_{p+1}arrow H_{p}$ is of Hilbert-Schmidt type for any $p\geq 0$ . We denote by $|\cdot|_{p}$ the norm of $H_{p}$ .

201



Lemma 4.2 Let $X$ be a countable Hilbert nuclear space and $\{H_{p}\}$ the same as above. Let
$\Omega$ be a locally compact space. Then for a map $f$ : $\Omegaarrow X^{*}$ the following two conditions are
equivalent:

(i) $f$ is continuous;
(ii) for each $\omega_{0}\in\Omega$ there exists $p\geq 0$ such that $f(\omega_{0})\in H_{-P}$ and

$\omegaarrow")\lim_{0}|f(\omega)-f(\omega 0)|_{-p}=0$.

In that case for any compact subset $\Omega_{0}\subset\Omega$ there $exi_{S}t\mathit{8}p\geq 0$ such that $f$ : $\Omega_{0}arrow H_{-p}$ is
continuous.

PROOF. $(\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i})$ Let $V\subset\Omega$ be an open neighborhood of $\omega_{0}$ with compact closure.
Since $f$ is cotinuous, $f(\overline{V})\subset X^{*}$ is compact and hence bounded. Then $f(\overline{V})\subset H_{-p}$ is
bounded for some $p$ . In other words, there exists $M\geq 0$ such that

$|f(\omega)|_{-p}\leq M$, $\omega\in V$.

Let $\{e_{j}\}_{j=1}^{\infty}$ be a complete orthonormal basis of $H_{p+1}$ . Then by definition,

$|f( \omega)-f(\omega_{0})|_{-}^{2}(P+1)=j1\sum_{=}^{\infty}\langle f(\omega)-f(\omega_{0}), e_{j}\rangle^{2}$

We note that

$\langle f(\omega)-f(\omega 0), e_{j}\rangle^{2}\leq|f(\omega)-f(\omega_{0})|^{2}-p|ej|p2\leq 4M2|ej|_{p}^{2}$ , $\omega\in V$.

Given $\epsilon>0$ we choose $N$ such that

$4M^{2} \sum_{Nj>}|e_{j}|_{P}2<\frac{\epsilon}{2}$

which is possible since $H_{\mathrm{P}+1}arrow H_{p}$ is of Hilbert-Schmidt type and hence $\sum_{j=1}^{\infty}|e_{j}|_{p}^{2}<\infty$ .
On the other hand, $\omega\mapsto\langle f(\omega), e_{j}\rangle$ is continuous by assumption. Then for each $j=1,$ $\cdots,$

$N$

one may find an open neighborhood $U_{j}\subset\Omega$ of $\omega_{0}$ such that

$|\langle f(\omega), e_{j}\rangle-\langle f(\omega_{0}), e_{j}\rangle|<\sqrt{\frac{\epsilon}{2N}}$ , $\omega\in U_{j}$ .

Put $U=V\cap U_{1}\cap\cdots\cap U_{N}$ . Then

$|f(\omega)-f(\omega_{0})|^{2}-(p+1)$ $=$ $\sum_{i=1}^{N}\langle f(\omega)-f(\omega_{0}), e_{j}\rangle^{2}+\sum\langle j>Nf(\omega)-f(\omega_{0}), e_{j}\rangle^{2}$

$\leq$ $\sum_{j=1}^{N}\frac{\epsilon}{2N}+4M^{2}\sum_{>jN}|e_{j}|_{p}^{2}$

$<$ $N \cross\frac{\epsilon}{2N}+\frac{\epsilon}{2}=\epsilon$ , $\omega\in U$.

This is the assertion of (ii).
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$(\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i})$ The topology of $X^{*}$ is defined by the seminorms

$||f||_{B}= \sup_{\omega\in B}|\langle f, \omega\rangle|$ , $f\in \mathrm{X}^{*}$ ,

where $B$ runs over the bounded subsets of $X$ . Then for any $B$ we have

$||f(\omega)-f(\omega 0)||_{B}$ $\leq$
$\sup_{\omega\in B}|f(\omega)-f(\omega 0)|_{-}p|\omega|_{p}$

$=$ $|B|_{p}|f(\omega)-f(\omega_{0})|-parrow 0$ , $\omegaarrow\omega_{0}$ ,

by assumption, which shows that $f$ is continuous at $\omega_{0}$ .
The rest of the statement is already clear. qed

Theorem 4.3 Let $\{_{-t}^{-}-\}$ be a quantum $\mathit{8}tochaStiC$ process wit the integral kernel expansion:
$–t-=\Sigma^{\infty}l,m=0^{-}--l,m(\kappa\iota_{m},(t))$ . Then $t\mapsto\kappa_{l,m}(t)\in(E_{\mathbb{C}}^{\otimes(m)}\iota+)_{\mathrm{s}}^{*}\mathrm{y}\mathrm{m}(\iota,m)$ is continuous.

PROOF. We shall prove the continuity at a fixed $t$ . Since $s\vdasharrow--s-\in \mathcal{L}((E), (E)^{*})\cong$

$((E)\otimes(E))^{*}$ is continuous, there exists $p\geq 0$ such that $||_{-t}^{-}-||_{-p}<\infty$ and

$\lim_{sarrow t}||^{-}--_{S}---_{t}-||-p=0$

by Lemma 4.2. On the other hand, by Lemma 4.1 we have

$|\kappa_{l,m}(S)-\kappa_{l,m}(t)|-(p+1)\leq G_{l,m;p}||--_{S}-----|t|-p$ ’

and therefore
$\lim_{Sarrow t}|\kappa_{l,m}(\mathit{8})-\kappa l,m(t)|-(p+1)=0$ .

Again from Lemma 4.2 we see that $t\mapsto\kappa_{l,m}(t)$ in continuous. qed

Thus a question about a quantum stochastic process can be discussed in terms of contin-
uous flows in the space of kernel distributions. A similar result as above was $\mathrm{p}.\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{d}$ in [12]
under a superfluous assumption which is now eliminated.

5 Generalized Integral Kernel Operators and Quantum Stochastic Integrals

In [13] we introduced an operator of which formal expression is giveIi as

$\int_{\mathbb{R}^{l+m}}a_{S_{1}}^{*}\cdots aL(S_{1,l,1,m}\ldots, st\cdots, t)s\iota a*t_{1}\ldots a_{tm}ds_{1}\cdots ds_{f}dt1\ldots dtm$ ’ (5.1)

where $L$ is an $\mathcal{L}((E), (E)^{*})$-valued distribution on $\mathbb{R}^{l+m}$ , more precisely, $L$ is taken from the
space

$\mathcal{L}(E_{\mathrm{c}^{(}}^{\otimes}m+),$$\mathcal{L}(l(E), (E)^{*}))\cong(E_{\mathbb{C}}\otimes(l+m))*c(\otimes(E), (E)*)$ .

Such an operator is called a (generalized) integral kernel operator. In fact, by the charac-
terization theorem of operator symbols [10, Chapter 4.4] an operator $—\in \mathcal{L}((E), (E)^{*})$ is
uniquely determined by

$\langle\langle_{-}^{-}-\phi_{\xi}, \phi_{\eta}\rangle\rangle=\langle\langle L(\eta\otimes\otimes \mathrm{t}\xi\otimes m)\phi\epsilon,$ $\phi\eta\rangle\rangle$ , $\xi,$ $\eta\in E_{\mathbb{C}}$ . (5.2)
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Then (5.1) is a formal integral expression $\mathrm{f}\mathrm{o}\mathrm{r}---$ . An integral kernel $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}--l,m-(\kappa)$ as in
(1.3) is obtained from (5.1) by taking $L$ to be a $\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{a}\mathrm{r}- \mathrm{o}_{\mathrm{P}}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}$-valued distribution.

Let $\{L_{t}\}_{t\in J}$ be a quantum stochastic process, $J$ being
$\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{l}--$

, and fix $a\in J$ as a time
origin. Then for any $t\in J$ there exists a unique $\mathrm{o}_{\mathrm{P}^{\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}}-t}\mathrm{o}\mathrm{r}\in \mathcal{L}((E), (E)^{*})$ such that

$\langle\langle_{-t}^{-}-\phi, \psi\rangle\rangle=\int_{a}^{t}\langle\langle L_{S}\phi, \psi\rangle\rangle dS$ , $\phi,$ $\psi\in(E)$ . (5.3)

We write
$—t= \int_{a}^{t}L_{s}ds$ . (5.4)

It is proved by a stand.ard argument that $\{_{-t}^{-}-\}_{tJ}\in$ is a quantum stochastic process.

Theorem 5.1 If two quantum stochastic processes $\{L_{t}\}$ and $\{_{-t}^{-}-\}$ are related as in (5.4),
then $t-\rangle$

$\cup t$ is differentiable with respect to the topology of $\mathcal{L}((E), (E)^{*})$ and it $hold_{\mathit{8}}$ that

$\frac{d}{dt}---_{t}=L_{t}$ .

Corollary 5.2 For the annihilation process $\{A_{t}\}$ and the creation process $\{A_{t}^{*}\}$ defined in
(3.1) it holds that

$A_{t}= \int_{0}^{t}a_{s}ds$ , $\frac{d}{dt}A_{t}=a_{t}$ , and $A_{t}^{*}= \int_{0}^{t}a_{s}^{*}ds$ , $\frac{d}{dt}A_{t}^{*}=a_{t}^{*}$ .

If $\{L_{t}\}$ is a quantum stochastic process, so are $\{L_{t}a_{t}\}$ and $\{a_{t}^{*}L_{t}\}$ . The proof being
given in [12], we only note that the bilinear map $\mathcal{L}((E), (E)^{*})\chi \mathcal{L}((E), (E))arrow \mathcal{L}((E), (E)^{*})$

defined by composition is separately continuous but is not (jointly) continuous. We are now
in a position to introduce quantum stochastic integrals in terms of white noise distribution
theory.

Definition Let $\{L_{t}\}$ be a quantum stochastic process. Then the quantum stochastic
processes defined as

$\int_{a}^{t}L_{s}a_{s}dS$ , $\int_{a}^{t}a_{s}^{*}Ldss$ (5.5)

are called the quantum stochastic integral of $L_{t}$ against the annihilation and creation pro-
cesses, respectively. The latter is also called a quantum Hitsuda-Skorokhod integral.

Obviously the quantum stochastic integrals in (5.5) are dual to each other. The number
process $\{\Lambda_{t}\}$ is defined as

$\Lambda_{t}=\int_{0}^{t}a_{s}^{*}a_{S}d_{S}$ , $\frac{d}{dt}\Lambda_{t}=a_{t}^{*}a_{t}$ . (5.6)

This is the quantum stochastic integral of $\{a_{t}^{*}\}$ against the annihilation process as well as
the quantum stochastic integral of $\{a_{t}\}$ against the creation process.

There are slightly different definitions of a quantum Hitsuda-Skorokhod integral, see
Lindsay [8] where the gradient operator plays a role; see also [13] where the integral is
defined only for a regular quantum stochastic process $\{L_{t}\}$ .
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6 Stochastic Integral Representation of a Quantum Stochastic Process

$\mathrm{G}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}---\in \mathcal{L}((E), (E)^{*})$ we devide its integral kernel expansion into three partial sums:

$–=- \sum_{\geq\iota\geq 0,m1}--l-,(m\kappa\iota_{m},)\dagger\sum_{\iota\geq 1}---_{\iota,0}(\kappa l,0)+---_{0,0}(\kappa_{0,0})’$
. (6.1)

The third term is a scalar operator: $–0,0-(\kappa 0,0)=\langle\langle_{-}^{-}-\phi 0, \phi_{0}\rangle\rangle I$. Note that each integral kernel

operator in the first term of (6.1) contains at least one annihilation operator, and that each

in the second term consists only creation operators. Then one may expect an expression of

the form:

$\iota\geq 0,\sum_{m\geq 1}--l,m(\kappa-l,m)=\int_{\mathbb{R}}L(t)atdt$
, $\sum_{l\geq 1}--l-,(0\kappa_{l},0)=\int_{\mathbb{R}}a_{s}*M^{*}(s)dS$ . (6.2)

In fact, by iterated integration (guaranteed by the Fubini type theorem, see [13]) and by a

routine examination of convergence by means of norm estimates we obtain the following

Theorem 6.1 $Let—\in \mathcal{L}_{p}((E), (E)^{*})_{J}p\geq 0$ . Then it admits an $expres\mathit{8}i_{on}$ of the form:

$–=- \int_{\mathbb{R}}L(t)atdt+\int_{\mathbb{R}}a_{s}^{*}M^{*}(s)d_{\mathit{8}}+cI$ , (6.3)

where (i) $L\in \mathcal{L}(E_{\mathbb{C}}, \mathcal{L}((E), (E)^{*}))$ satisfies

$||L(\xi)\phi||-\langle p+q+1$ )
$\leq C_{1}||_{-}^{-}-||-p|\xi|_{p}+q+1||\phi||p+q+1$ , $\xi\in E_{\mathbb{C}}$ , $\phi\in(E)$ , (6.4)

for $q>q_{1}=q_{1}(p)\geq 0$ and $C_{1}=C_{1}(p, q)\geq 0_{i}$

(ii) $M\in \mathcal{L}(E_{\mathbb{C}}, \mathcal{L}((E), (E)))$ satisfies $[M(\xi), a_{t}]=0$ for all $\xi\in E_{\mathbb{C}}$ and $t\in \mathbb{R}$ and

$||M(\xi)\phi||p|\leq c_{2}|_{-}^{-}-||-p|\xi|_{p}+q+1||\phi||p+q\dagger 1$ ’
$\xi\in E_{\mathbb{C}}$ , $\phi\in(E)$ , (6.5)

for $q>q_{2}=q_{2}(p)\geq 0$ and $C_{2}=C_{2}(p, q)\geq 0$ ;
(iii) $c\in \mathbb{C}$ is given by $c=\langle\langle_{-}^{-}-\phi_{0}, \phi 0\rangle\rangle$ .

With the help of Theorem 6.1 one can derive stochastic integral representation (in a

broad sense) of a quantum stochastic process.

Theorem 6.2 Let $\{_{-t}^{-}-\}$ be a quantum stochastic process. Then there exist continuous maps
$trightarrow L_{t}\in \mathcal{L}(E\mathrm{c}, \mathcal{L}((E), (E)^{*})),$

$t\mapsto M_{t}\in \mathcal{L}(E_{\mathbb{C}}, \mathcal{L}((E), (E)))$ and $t[]arrow c_{t}\in \mathbb{C}$ such that

$—t= \int_{\mathbb{R}}L_{t}(s)a_{S}dS+\int_{\mathbb{R}}a_{s}^{*}M_{t}^{*}(S)dS+c_{t}I$ .

PROOF. The topology of $\mathcal{L}(E_{\mathbb{C}}, \mathcal{L}(\langle E), (E)^{*}))$ is defined by the seminorms

$||L||_{K,B_{1},B_{2}}= \sup\{|\langle\langle L(\xi)\phi, \psi\rangle\rangle|;\xi\in K, \phi\in B_{1},\psi\in B2\}$ ,

where $K\subset E_{\mathbb{C}},$ $B_{1},$ $B_{2}\subset(E)$ are bounded subsets. Then by (6.4) we obtain

$||L_{s}-L_{t}||_{K,B_{1},B_{2}}\leq C_{1}||_{-s}^{--}----t||_{-p}|K|_{\mathrm{P}+q+1}||B_{1}||_{\mathrm{P}+q+1}||B_{2}||_{p+q+1}$ . (6.6)
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For a fixed $t$ there exists $p\geq 0$ such that $||_{-t}^{-}-||_{-p}<\infty$ and

$\lim_{sarrow t}||^{-}-_{S}----_{t}-||-p=0$ ,

see Lemma 4.2. Then from (6.6) we see that $s\mapsto L_{s}$ is continuous at $t$ . That $\mathrm{t}\mapsto M_{t}$ is
continuous is proved similarly. The continuity of $trightarrow c_{t}=\langle\langle_{-t}^{-}-\phi_{0}, \phi_{0}\rangle\rangle$ is obvious. qed

A similar result was proved in [12] under a superfluous condition which is now eliminated.
There are similar results for a generalized quantum stochastic process and a regular quantum
stochastic process, see [12].

7 Admissible White Noise Distributions and Quantum It\^o Formula

The quantum It\^o formula is related to the rule of composition of two quantum stochastic
integrals. The original discussion due to Hudson-Parthasarathy [5] was restricted to adapted
processes and the recent work of Belavkin [1] discusses without assuming adaptedness. A
white noise approach was discussed by Huang [4] at somehow formal level and needs more
careful study. As the first step we here discuss the simplest but an instructive case of $\{A_{t}\}$

and $\{A_{t}^{*}\}$ . Before going into the discussion we note first the following

Proposition 7.1 Let $\{L_{t}\}$ and $\{M_{t}\}$ be two quantum stochastic processes and put

$—t= \int_{a}^{t}L_{s}ds$ , $\Omega_{t}=\int_{a}^{t}M_{S}ds$ .

If $trightarrow M_{t}\in \mathcal{L}((E), (E))$ is continuous, or if $t\mapsto L_{t}\in \mathcal{L}((E)^{*}, (E)^{*})$ is continuou..s, then
$\{_{-t}^{-}-\Omega t\}\subset \mathcal{L}((E), (E)^{*})$ is a quantum stochastic $proces\mathit{8}$ and it holds that

$d(_{-}^{-}-_{t}\Omega t)=d_{-}^{-}-t$ . $\Omega t+--_{tt}-$. $d\Omega$ ,

or equivalently
$—t \Omega t=\int_{a}^{t}L_{s}\Omega_{s}ds+\int_{a}^{t}---_{s}M_{s}d_{S}$ .

The proof is obvious. Modelled after the discussion in [12, \S 3.3] we can prove that

$\int_{a}^{t}---ss\lim\sum Mds=-\Delta--_{s_{i}}(\Omega Si+1-\Omega_{s_{i}})\equiv\int_{a}^{t}---Sd\Omega s$
’ (7.1)

$\int_{a}^{t}L\Omega d_{S}=\lim\sum SS(_{-+1}^{-}-si-\Delta---_{s:})\Omega\equiv S:\int_{a}^{t}d_{-\Omega}^{-}-_{s}s$ . (7.2)

The It\^o type Riemmanian approximations in (7.1) and (7.2) are not essential just for the
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}--\mathrm{C}\mathrm{e}$

; but play an important role when we consider adapted processes. Namely, if
$[_{-t}^{-}-+h-\cup t, \Omega t]=0$ whenever $h>0$ , then (7.2) becomes

$\int_{a}^{t}L_{S}\Omega_{S}d_{S=}\lim_{\Delta}\sum\Omega_{s}i(----s_{i+1}---_{s}i)\equiv\int_{a}^{t}\Omega_{s}d_{-}-_{S}-$ .
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As a direct consequence of Proposition 7.1 we have

$d(A_{t}A_{t})$ $=$ $dA_{t}\cdot A_{t}+A_{t}\cdot dA_{t}=2A_{t}a_{t}dt$ , (7.3)
$d(A_{t}^{*}A_{t})$ $=$ $dA_{t}^{*}\cdot A_{t}+A_{t}^{*}\cdot dA_{t}=a_{t}^{*}A_{t}dt+A_{t}^{*}a_{t}dt$, (7.4)
$d(A_{t}^{*}A^{*})t$ $=$ $dA_{t}^{*}\cdot A_{t}*+A_{t}^{*}\cdot dA_{t}^{*}=2A_{t}^{*}a_{t}^{*}dt$. (7.5)

On the other hand, $A_{t}A_{t}^{*}$ has no meaning in $\mathcal{L}((E), (E)^{*})$ and, of course, is not differentiable.
To study further we need the idea of admissible white noise distributions introduced in [11],
[14], where conditional expectations and quantum martingales are discussed.

For a $\mathbb{C}$-valued measurable function $f$ on $\mathbb{R}^{n}$ we put

$|||f|||_{r}^{2}= \int_{\mathbb{R}^{n}}|f(t_{1}, \cdots, t_{n})|^{2}(1+t_{1}^{2})^{r}\cdots(1+t_{n})2rdt_{1}\cdots dt_{n}$ , $r\in$.
$\mathbb{R}$ .

For $\phi\sim(f_{n})\in(E)$ we put

$||| \phi|||_{r,\beta}2=\sum_{n=0}^{\infty}n!e^{2}|\beta n||fn|||_{r}^{2}$ , $r,\beta\in \mathbb{R}$ . (7.6)

system of Hilbert spaces. Then we put

$(A)= \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}\lim_{\infty r,,\betaarrow}(A)_{r},\beta=\cap r,\beta(A)r,\beta$
, $(A)^{*}=$

$\mathrm{i}\mathrm{n}\mathrm{d}\lim_{arrow\infty}(A)_{-r},-\beta=\bigcup_{\beta r},(A)_{-r,-\beta}$
.

There holds an inclusion relation:

$(E)\subset(A)\subset(A)_{0,0=}L^{2}(E*\mu)\cong\Gamma(H\mathbb{C})\subset(A)^{*}\subset(E)^{*}$,

where the injections are all continuous. A white noise distribution belonging to $(A)^{*}$ is called
$admi_{\mathit{8}}sible$ .

Proposition 7.2 The annihilation process $\{A_{t}\}i\mathit{8}$ a continuous flow in $\mathcal{L}((A), (A))a\mathit{8}$ well
as in $\mathcal{L}((A)^{*}, (A)^{*})$ . But it is not differentiable in either space.

The proof is straightforward computation of norms and is omitted. Thus both $A_{t}A_{t}^{*}\in$

$\mathcal{L}((A), (A))$ and $A_{t}A_{t}^{*}\in \mathcal{L}((A)^{*}, (A)^{*})$ are well defined and, with the canonical commutation
relation we obtain immediately

$A_{tt}A_{t}^{*}=A_{t}^{*}A+tI$ .

It is noteworthy that the right hand side belongs to $\mathcal{L}((E), (E)^{*})$ and differentiable, see (7.4).
Therefore

$d(A_{t}A_{t}^{*})=dA_{tt}*$. $At+A*$ . $dA_{t}+dt=At$ . $dA_{t}^{*}+At+*$. $dA_{t}dt$ . (7.7)

On the other hand, as an operator on $(A),$ $(7.4)$ becomes

$d(A_{t}^{*}A_{t})=dA_{t}\cdot A_{t}^{*}+A_{t}\cdot dA_{t}^{*}=A_{t}^{*}\cdot dA_{t}+A_{t}^{*}\cdot dA_{t}$ . (7.8)
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The relations (7.3), (7.8), (7.5) and (7.7) form the quantum It\^o formula. They are sometimes
summarized as follows:

$dA_{t}\cdot dA_{t}=dA_{t}^{*}\cdot dA_{t}=dA_{t}^{*}\cdot dA_{t}*=0$, $dA_{t}\cdot dA_{t}^{*}=dt$ .
For the Brownian motion $B_{t}=A_{t}+A_{t}^{*}$ we have

$d(B_{t}^{2})=d((A_{t}+A_{t}^{*})^{2})=dB_{t}\cdot B_{t}+B_{t}\cdot dB_{t}+dt=2B_{t}\cdot dB_{t}+dt$ .
This is an essence of the classical It\^o formula: $(dB_{t})^{2}=dt$ .
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