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Let $\Omega$ be a domain with smooth boundary in $\mathrm{C}^{n}$ . The Bergman space
$B(\Omega)$ is the subspace consisting of holomorphic $L^{2}$-functions on $\Omega$ . The
Bergman projection is the orthogonal projection $\mathrm{B}$ : $L^{2}(\Omega)arrow B(\Omega)$ . We
can write $\mathrm{B}$ as an integral operator

$\mathrm{B}f(z)=\int_{\Omega}K(z, w)f(w)dV(w)$ for $f\in L^{2}(\Omega)$ ,

where $K$ : $\Omega\cross\Omegaarrow \mathrm{C}$ is the Bergman kernel of the domain $\Omega$ and $dV$ is the
Lebesgue measure on $\Omega$ . In this paper we restrict the Bergman kernel on the
diagonal of the domain and study the boundary behavior of $K(z)=K(z, z)$ .

Although there are many explicit computations for the Bergman kernels
of the specific domains $([2],[8],[26],[9],[19],[5], [11],[15],[16],[27])$ , it seems
difficult to express the Bergman kernel in closed form in general. Therefore
appropriate formulas are necessary to know the boundary behavior of the
Bergman kernel.

First we consider the case where $\Omega$ is a bounded strictly pseudoconvex

domain. L. H\"ormander [25] shows that the limit of $K(z)d(z-Z^{0})n+1$ at
$z^{0}\in\partial\Omega$ equals the determinant of the Levi form at $z^{0}$ times $n!/4\pi^{n}$ , where
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$d$ is the Euclidean distance. Moreover C. Fefferman [14] and L. Boutet de

Monvel and J. Sj\"ostrand [6] give the following asymptotic expansion of the

Bergman kernal of $\Omega$ :

$K(z)= \frac{\varphi(z)}{r(z)^{n+1}}+\psi(_{Z})\log r(z)$ , (1)

where $r\in C^{\infty}(\overline{\Omega})$ is a defining function of $\Omega$ (i.e. $\Omega=\{r>0\}$ and $|dr|>0$

on the boundary) and $\varphi,$
$\psi$ are extended smoothly to the boundary. The

functions $\varphi,$
$\psi$ can be expanded asymptotically with respect to $r$ .

Next we consider the weakly pseudoconvex case. Many sharp estimates

of the size of the Bergman kernel are obtained $([22],[42],[13],[7],[23],[12]$ ,

$[24],[37],[43],$ $[18])$ . In particular D. Catlin [7] gives a complete estimate

from above and below for domains of finite type in $\mathrm{C}^{2}$ . Recently H. P.

Boas, E. J. Straube and J. Yu [3] have computed a boundary limit in the

sense of H\"orma-nder for a large class of domains of finite type on a non-

tangential cone. But asymptotic formulas are yet to be well understood.

In this article we give an asymptotic expansion of the Bergman kernel for

certain class of weakly pseudoconvex tube domains of finite type in $\mathrm{C}^{2}$ . N.

W. Gebelt [17] and F. Haslinger [21] have recently computed for the special

cases, but our style of the expansion is different from theirs.

Our main idea on the analysis of the Bergman kernel is to introduce certain

blowing-up transformation. Since the set of strictly pseudoconvex points are

dense on the boundary of the domain of finite type, it is a serious problem to

resolove the confusion arised by strictly pseudoconvex points near $z^{0}$ . This

confusion can be refused by restricting the argument on a non-tangential

cone in the domain. We overcome this difficulty in the case of certain class of
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tube domains in $\mathrm{C}^{2}$ in the following. Our transformation blows up a weakly
pseudoconvex point $z^{0}$ and the singularity can be expressed in the form of
the direct product of two variables. By the way, asymptotic expansion of
functions of several variables is studied by Y. Sibuya [44] and H. Majima
[36]. We introduce Sibuya’s style in our case. The expansion with respect
to one variable has the form of Fefferman’s expansion (1), so this expansion
is induced by the strict pseudoconvexity. The characteristic influence of the
weak pseudoconvexity appears in the expansion with respect to the other
variable. Though the form of this expansion is similar to (1), we must use
$m\mathrm{t}\mathrm{h}$ root of the defining function, i.e. $r^{\frac{1}{m}}$ , as the expansion variable when
$z^{0}$ is of type $2m$ . We remark that a similar phenomenon is observed in the
case of another class of domains in [17].

Our method of the computation is based on the studies $[14],[6],[4],[41]$ .

Our starting point is certain integral representation in $[32],[38]$ . After intro-
ducing the blowing-up transformation into this representation, we compute
the asymptotic expansion by using the stationary phase method. It is nec-
essary for the above computation to localize the Bergman kernel near a
weakly pseudoconvex point. This lacalization can be obtained in a similar
fashion to the case of some class of Reinhardt domains ([41]).
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Now we state our result.

Given a function $f\in C^{\infty}(\mathrm{R})$ satisfying that

$\{$

$f”\geq 0$ on $\mathrm{R}$ and $f$ has the form in some neighborhood of $0$ :

$f(x)=X^{2m}g(X)$ where $m=|2,3,$
$\ldots,$ $g(0)>0$ and $xg’(x)\leq 0$ .

(2)

Let $\omega_{f}\subset \mathrm{R}^{2}$ be a domain defined by $\omega_{f}=\{(x, y);y>f(x)\}$ . Let $\Omega_{f}\subset \mathrm{C}^{2}$

be the tube domain over $\omega_{f}$ , i.e.,

$\Omega_{f}=\mathrm{R}^{2}+\dot{i}\omega_{f}$ .

Let $\pi$ : $\mathrm{C}^{2}arrow \mathrm{R}^{2}$ be the projection defined by $\pi(z_{1}, z_{2})=({\rm Im} z_{1}, {\rm Im} Z_{2})$ . It is

easy to check that $\Omega_{f}$ is a pseudoconvex domain, moreover $z^{0}\in\partial\Omega_{f}$ , with

$\pi(z^{0})=O$ , is a weakly pseudoconvex point of type $2m$ (or $2m-1$) in the

sense of Kohn or D’Angelo and $\partial\Omega_{f}\backslash \pi^{-1}(O)$ is strictly pseudoconvex near
$z^{0}$ .

Now we introduce the map a, which plays a key role on our analysis. Set

$\triangle=\{(\tau, \rho);0<\tau\leq 1, \rho>0\}$ . The map $\sigma$ : $\omega_{f}arrow\triangle$ is defined by

$\sigma$ : $\{$

$\tau=\chi(1-\frac{f(x)}{y})$ ,

$\rho=y$ ,
(3)

where the function $\chi\in C^{\infty}([0,1))$ satisfies the conditions: $\chi’(u)\geq\frac{1}{2}$ on $[0,1]$

and $\chi(u)=u$ for $0 \leq u\leq\frac{1}{3}$ or $\chi(u)=1-(1-u)^{\frac{1}{2m}}$ for $1- \frac{1}{3^{2m}}\leq u\leq 1$ .

Then a $0\pi$ is the map from $\Omega$ to $\triangle$ .

The map a induces an isomorphism of $\omega_{f}\cap\{x\geq 0\}$ (or $\omega_{f}\cap\{x\leq 0\}$ ) to $\triangle$ .

The boundary of $\omega_{f}$ is transfered by $\sigma$ in the following: $\sigma((\partial\omega_{f})\backslash \{O\})=$

$\{(0, \rho);\rho>0\}$ and $\sigma^{-1}(\{(\tau, \mathrm{o});0\leq\tau\leq 1\})=\{O\}$ . This indicates that

$\sigma$ is a real blowing-up of $\partial\omega_{f}$ at $O$ , so we may say that $\sigma 0\pi$ blows up a
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weakly pseudoconvex point $z^{0}$ . Moreover the pair of the variables $(\tau, \rho)$ can
be considered as the polar coordinates around $O$ . We call $\tau$ the angular
variable and $\rho$ the radial variable, respectively. Note that if $z$ approaches

some strictly (resp. weakly) pseudoconvex points, $\tau(\pi(z))$ (resp. $\rho(\pi(Z))$ )
tends to $0$ on the coordinates $(\tau, \rho)$ .

The next theorem asserts that the singularity of the Bergman kernel of
$\Omega_{f}$ at $z^{0}$ , with $\pi(z^{0})=O$ , can be essentially expressed in terms of the polar

coordinates $(\tau, \rho)$ .

Theorem 1 The Bergman kernel of $\Omega_{f}$ has the form in some neighborhood

of $z^{0}$ :

$K(z)= \frac{\Phi(\tau,\rho^{\frac{1}{m})}}{\rho^{2+\frac{1}{m}}}+\tilde{\Phi}(\mathcal{T}, \rho^{\frac{1}{m}})\log\rho^{\frac{1}{m}}$ , (4)

where $\Phi\in C^{\infty}((0,1]\cross[0, \in))$ and $\tilde{\Phi}\in C^{\infty}([\mathrm{o}, 1]\cross[0, \in))$ , with $some\in>0$ .

Moreover $\Phi$ is written in the form on the set $\{\tau>\alpha\rho^{\frac{1}{2m}}\}$ with some $\alpha>0$ :

for every nonnegative integer $\mu_{0}$

$\Phi(\tau, \rho\frac{1}{m})=\sum c\mu=0\mu 0\mu(\mathcal{T})\rho^{\frac{\mu}{m}}+R_{\mu}(0\tau, \rho\frac{1}{m})\rho^{\frac{\mu_{0}}{m}+}\frac{1}{2m}$ , (5)

where
$c_{\mu}( \tau)=\frac{\varphi_{\mu}(\tau)}{\tau^{3+2\mu}}+\psi\mu(_{\mathcal{T}})\log\tau$ , (6)

for $\varphi_{\mu},$
$\psi_{\mu}\in C^{\infty}([\mathrm{o}, 1]),$

$\varphi_{0}$ is positive on $[0,1]$ and $R_{\mu_{0}}$ satisfies $|R_{\mu 0}(\tau, \rho^{\frac{1}{m}})|\leq$

$C_{\mu_{0}}[\tau-\alpha\rho^{\frac{1}{2m}}]^{-}4-2\mu 0$ for some positive constant $C_{\mu_{0}}$ .

Considering the meaning of the variables $\tau,$ $\rho$ , we may say that each asymp-
totic expansion of $K$ with respect to $\tau$ or $\rho^{\frac{1}{m}}$ is induced by the strict or weak
pseudoconvexity, respectively. By (5),(6), in order to see the characteristic
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influence on the singularity of $K$ by the weak pseudoconvexity, it is sufficient

to restrict the argument on the region

$\mathcal{U}_{\alpha}=\{_{Z\in}\mathrm{C}^{2};\tau\circ\pi(Z)>\frac{1}{\alpha}\}$ $(\alpha>1)$ .

This is because $\mathcal{U}_{\alpha}$ is the widest region where the coefficients $c_{\mu}(\mathcal{T})’ \mathrm{s}$ are

bounded. We call $\mathcal{U}_{\alpha}$ an admissible approach region of the Bergman kernel

of $\Omega_{f}$ at $z^{0}$ . The region $\mathcal{U}_{\alpha}$ seems deeply connected with the admissible

approach regions studied in $[33],[34],[1],[35]$ , etc. We remark that on the

region $\mathcal{U}_{\alpha}$ , the exchange of the expansion variable $\rho^{\frac{1}{m}}$ for $r^{\frac{1}{m}}$ , where $r$ is a

defining function of $\Omega_{f}$ (e.g. $r(x,$ $y)=y-f(x)$ )
$J$

, gives no influence on the

form of the expansion.

Now let us compare the asymptotic expansion (4) on $\mathcal{U}_{\alpha}$ and that of Feffer-

man (1). Then the essential difference of them only appears in the expansion

variable (i.e. $r^{\frac{1}{m}}$ or $r$ ). A similar phenomenon can be obserbed in subelliptic

estimates for the $\overline{\partial}$-Neumann problem. It is well known that the finite-type

condition is necessary and sufficient to satisfy a subelliptic estimate :

$|||\phi|||_{\epsilon}2c(\leq||\overline{\partial}\emptyset||^{2}+||\overline{\partial}*\emptyset||^{2}+||\phi||^{2})$ $(\epsilon>0)$ ,

(refer to [31] for the details). The difference of the above estimate in the

strictly and weakly pseudoconvex case appears in the value of $\epsilon$ . In two di-

mensional case, the estimate holds for $\epsilon=\frac{1}{2}$ (resp. $\epsilon=\frac{1}{2m}$ ) but for no larger

value in the strictly pseudoconvex case (resp. in the weakly pseudoconvex

and of type $2m$ case). In this viewpoint, our expansion on $\mathcal{U}_{\alpha}$ seems to be

a natural generalization of the strictly pseudoconvex case.

Remarks 1. The idea of the transformation a is originally introduced in
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the study ([27]) of the Bergman kernel of the domain $\mathcal{E}_{m}=\{z\in \mathrm{C}^{n_{7}}\cdot\Sigma_{j=1}n|z_{j}|^{2m}j<$

$1\}(m_{j}\in \mathrm{N}, m_{n}\neq 1)$ . Since $\mathcal{E}_{m}$ has high homogeneity, the asymptotic ex-
pansion of the radial variable does not appear.

2. If we consider the Bergman kernel on the region $\mathcal{U}_{\alpha}$ , then we can
remove the condition $xg’(X)\leq 0$ in (2). Namely even if the condition
$xg’(x)\leq 0$ does not satisfy, we can obtain (4) $)(5)$ in the theorem where
$c_{\mu}’ \mathrm{s}$ are bounded on $\mathcal{U}_{\alpha}$ . But the condition $xg’(x)\leq 0$ is necessary to see
the asymptotic expansion with respect to $\tau$ .

3. $i^{\mathrm{F}\mathrm{r}}\mathrm{o}\mathrm{m}$ the definition of asymptotic expansion of functions of several
variables in $[44],[36]$ , the expansion in the theorem is not complete. In
order to get a complete asymptotic expansion, we must blow up the point
$(\tau, \rho)=(0,0)$ again. The transformation $(\tau, \rho)-\Rightarrow(\tau, \rho_{\mathcal{T}^{-2m}})$ is sufficient for
this purpose.

4. The limit of $\rho^{2+\frac{1}{m}}K(Z)$ at $z^{0}$ is $c_{0}(\tau)$ . Note that the boundary limit
depends on the angular variable $\tau$ . But this limit is determined uniquely
$(c_{0}(0))$ on a non-tangential cone in $\Omega_{f}$ (see [3]).
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