THE EXISTENCE AND THE CONTINUATION OF HOLOMORPHIC SOLUTIONS FOR CONVOLUTION EQUATIONS IN A HALF-SPACE IN C^n

JUN-ICHI OKADA

Department of Mathematics and Informatics Institute of Science and Technology Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba, 263 Japan E-mail : mokada@math.s.chiba-u.ac.jp

ABSTRACT. — We study holomorphic solutions for convolution equations (E) T * f = g in a half-space in \mathbb{C}^n . Under a natural condition (the condition (S)), we will prove the existence of solutions of (E) and the analytic continuation of homogeneous equation (E') T * f = 0.

1. INTRODUCTION

Let Ω be a convex domain and let K be a compact convex set in \mathbb{C}^n . We denote by $\mathcal{O}(\Omega)$ the space of holomorphic functions on Ω provided with the topology of uniform convergence on compact subsets of Ω , and by $\mathcal{O}(K)$ the space of germs of functions holomorphic on

K, endowed with the usual topology of the inductive limit. Then each nonzero analytic functional $T \in \mathcal{O}'(\mathbb{C}^n)$ carried by K (or equivalently, $T \in \mathcal{O}'(K)$) defines a continuous linear convolution operator

$$T* : \mathcal{O}(\Omega + K) \longrightarrow \mathcal{O}(\Omega)$$

which is given by

$$(T * f)(z) = T_{\zeta}(f(z + \zeta)), \ z \in \Omega$$

If $K = \{0\}$, the convolution operator T_* is a linear partial differential operator of infinite order with constant coefficients on $\mathcal{O}(\Omega)$. The convolution equation has been historically studied by many authors, especially the equation in the category of holomorphic functions defined on a complex domain. For example, using the notion of an entire function of completely regular growth on a fixed ray, Morzhakov [1] established sufficient condition for T_* to be surjective in the general case, and gave a criterion for the solvability for three classes of domains: smooth domains, products of smooth planar domains, and domains whose boundaries consist of smooth points and vertices. On the other hand, under the condition (S) due to Kawai [2], Ishimura - Y. Okada [3] studied the existence and the continuation problem of holomorphic solutions for convolution equations of hyperfunction kernels in the tube domain. In [4], Ishimura and the author proved that the property of completely regular growth is equivalent to the condition (S) for entire functions, in more general case, *i.e.* for sub-harmonic functions.

In this paper, we consider the convolution equation in the case where Ω is a half-space, and under the condition $(S)_{\zeta_0}$, we will prove the existence of solutions of (E) and the analytic continuation of homogeneous equation (E').

Most of results is based on the paper [3], and refer to it for the details of proofs.

2. PRELIMINARIES

Let

$$|z|^2 = z_1\overline{z_1} + \dots + z_n\overline{z_n}, \qquad \langle z, w \rangle = z_1\overline{w_1} + \dots + z_n\overline{w_n}$$

for

$$z = (z_1, \cdots, z_n), w = (w_1, \cdots, w_n) \in \mathbf{C}^n$$

For $\zeta_0 \in \mathbf{C}^n$ and $|\zeta_0| = 1$, we put

$$\Omega = \{ \zeta \in \mathbf{C}^n \mid \operatorname{Re}\langle \zeta_0, \zeta \rangle < 0 \}$$

and take a compact convex set K as $K \subset \Omega$, *i.e.* $\Omega + K = \Omega$. As it is well-known, the properties of convolution operator are reflected in the properties of the Fourier-Borel transform of T, namely

$$\widehat{T}(\zeta) = T_z(\exp\langle z, \zeta\rangle),$$

which is an entire function of exponential type satisfying the following estimate:

Theorem 2.1. (Polyà-Ehrenpreis-Martineau) If $T \in \mathcal{O}'(\mathbb{C}^n)$ and T is carried by a compact set $K \subset \mathbb{C}^n$, then $\widehat{T}(\zeta)$ is an entire function and for every $\varepsilon > 0$, there is a constant $C_{\varepsilon} > 0$ such that

(2.1)
$$|\tilde{T}(\zeta)| \le C_{\varepsilon} \exp(H_K(\zeta) + \varepsilon |\zeta|), \quad \zeta \in \mathbf{C}^n$$

where $H_K(\zeta) = \sup_{z \in K} \operatorname{Re}\langle z, \zeta \rangle$ is the supporting function of K. Conversely, if K is a compact convex set and $f(\zeta)$ an entire function satisfying (2.1) for every $\varepsilon > 0$, there exists an analytic functional $T \in \mathcal{O}'(\mathbb{C}^n)$ carried by K such that $\hat{T}(\zeta) = f(\zeta).$

In this paper, we suppose the following condition for the entire function $\widehat{T}(\zeta)$.

Definition 2.2. We say that $\hat{T}(\zeta)$ satisfies the condition (S) to the direction ζ_0 or simply it satisfies the condition $(\mathrm{S})_{\zeta_0}$ if we have

 $\begin{cases} \text{For every } \varepsilon > 0, \text{ there exists } N > 0 \text{ such that} \\ \text{for any } r \in \mathbf{R} \text{ with } r > N, \\ \text{we can find } \zeta \in \mathbf{C}^n, \text{ which satisfies} \\ |\zeta - \zeta_0| < \varepsilon r, \\ |\widehat{T}(\zeta)| > \exp(-\varepsilon r) \end{cases}$

3. THE EXISTENCE OF HOLOMORPHIC SOLUTIONS

We will prove the surjectivity theorem under the condition $(S)_{\zeta_0}$.

Theorem 3.1. Let $T \in \mathcal{O}'(\mathbb{C}^n)$ carried by K. Assume that $\widehat{T}(\zeta)$ satisfies the condition $(S)_{\zeta_0}$. Then the convolution operator

 $T* : \mathcal{O}(\Omega + K) \longrightarrow \mathcal{O}(\Omega)$

is surjective.

Proof. The transpose of

$$P = T * : \mathcal{O}(\Omega + K) \longrightarrow \mathcal{O}(\Omega)$$

 \mathbf{is}

 ${}^{t}P = \check{T} * : \mathcal{O}'(\Omega) \longrightarrow \mathcal{O}'(\Omega + K)$

with $\check{T}(\zeta) = \widehat{T}(-\zeta)$. By the standard argument, it is enough to prove that ${}^{t}P$ is injective and that the image of ${}^{t}P$ is weakly closed. In fact, the injectivity of ${}^{t}P$ shows that the image of P is dense, and the closedness of the image of ${}^{t}P$ shows the closedness of the image of P. Because T is not 0, the injectivity of ${}^{t}P$ is clear. Then we will show that the image of ${}^{t}P$ is weakly closed. To do this, we use the following division lemma, which we can prove in an analoguous way to the proof of Lemma 2.1 in [3].

Lemma 3.2. Let f, g and h be entire functions satisfying fg = h, and K and L be two compact convex sets in \mathbb{C}^n with $K, L \subset \Omega$. We suppose that for every $\varepsilon > 0$, f and h satisfy the following estimates with constants $A_{\varepsilon} > 0$ and $B_{\varepsilon} > 0$,

$$\begin{cases} \log |f(\zeta)| \le A_{\varepsilon} + H_K(\zeta) + \varepsilon |\zeta|, \\ \\ \log |h(\zeta)| \le B_{\varepsilon} + H_L(\zeta) + \varepsilon |\zeta|, \end{cases}$$

for any $\zeta \in \mathbb{C}^n$. We also assume that f satisfies the condition $(S)_{\zeta_0}$. Then for any $\varepsilon > 0$, there exists a compact convex set $M = M_{\varepsilon} \subset \mathbb{C}^n$ and $C_{\varepsilon} > 0$ such that

$$\begin{cases} M \subset \Omega \\\\ \log |g(\zeta)| \le C_{\varepsilon} + H_M(\zeta). \end{cases}$$

End of the proof of the theorem. — Let $\{T_{\nu}\}$ be a sequence in $\mathcal{O}'(\Omega)$ and assume that $\{{}^{t}PT_{\nu}\}$ converges to $S \in \mathcal{O}'(\Omega + K)$ in $\mathcal{O}'(\Omega + K)$. By taking the Fourier-Borel transform, $\widehat{T}(-\zeta)\widehat{T}_{\nu}(\zeta)$ converges to $\widehat{S}(\zeta)$. Then it is well-known that $G(\zeta) = \frac{\widehat{S}(\zeta)}{\widehat{T}(-\zeta)}$ becomes an entire function. By Lemma 3.2 and Theorem 2.1, there exists a compact convex set M and $\mu \in \mathcal{O}'(\mathbb{C}^n)$ carried by M such that $\widehat{\mu}(\zeta) = G(\zeta)$ and ${}^{t}P\mu = \check{T} * \mu = S$, *i.e.* $S \in \mathrm{Im}^{t}P$. \Box

4. THE CHARACTERISTIC SET AND THE CONTINUATION OF HOMO-GENEOUS SOLUTIONS

Under the condition $(S)_{\zeta_0}$, we shall now solve the problem of continuation for the solutions of the homogeneous equation (E'). For any open set $U \subset \mathbb{C}^n$, we set:

$$\mathcal{N}(U) = \{ f \in \mathcal{O}(U) \mid T * f = 0 \}.$$

For an open set $V \subset \mathbb{C}^n$ with $U \subset V$, the problem is formulated as to get the condition so that the restriction map

$$r : \mathcal{N}(V) \longrightarrow \mathcal{N}(U)$$

is surjective.

In order to describe the theorem of continuation, we will prepare the notion of characteristics which is a natural generalization of the case of usual differential operators of finite order with constant coefficients. We define the sphere at infinity S_{∞}^{2n-1} by $(\mathbf{C}^n \setminus \{0\})/\mathbf{R}_+$ and consider the compactification with directions $\mathbf{D}^{2n} = \mathbf{C}^n \sqcup S_{\infty}^{2n-1}$ of \mathbf{C}^n . For $\zeta \in \mathbf{C}^n \setminus \{0\}$, we denote by $\zeta \infty \in S_{\infty}^{2n-1}$ the equivalence class of ζ , *i.e.*

$$\{\zeta\infty\} = (\text{the closure of } \{ t\zeta \mid t > 0 \} \text{ in } \mathbf{D}^{2n}) \cap S_{\infty}^{2n-1}.$$

For $\varepsilon > 0$, we put:

$$\begin{cases} V_{\widehat{T}}(\varepsilon) = \{ \zeta \in \mathbf{C}^n \mid \exp(\varepsilon |\zeta|) | \widehat{T}(\zeta) | < 1 \}, \\ W_{\widehat{T}}(\varepsilon) = (\text{the closure of } V_{\widehat{T}}(\varepsilon) \text{ in } \mathbf{D}^{2n}) \cap S_{\infty}^{2n-1} \end{cases}$$

Now we define the characteristic set of T_* .

Definition 4.1. With the above notation, we define the characteristics of T * (at infinity)

$$\operatorname{Char}_{\infty}(T^*) = \operatorname{the closure of} \bigcup_{\varepsilon > 0} W_{\widehat{T}}(\varepsilon).$$

Under the above situation, we can state the theorem of the continuation without proof.

Theorem 4.2. Let $T \in \mathcal{O}'(\mathbb{C}^n)$ carried by K and $f \in \mathcal{O}(\Omega + K)$ be a solution of T * f = 0. Assume that $\widehat{T}(\zeta)$ satisfies the condition $(S)_{\zeta_0}$. If $\zeta_0 \notin \operatorname{Char}_{\infty}(T*)$, then the restriction map

$$r : \mathcal{N}(\mathbf{C}^n) \longrightarrow \mathcal{N}(\Omega + K)$$

is surjective, that is, f can be analytically continued to the whole \mathbb{C}^n .

References

[1] V. V. Morzhakov: Convolution equations in convex domains of \mathbb{C}^n , Compl. Anal. and Appl. '87, Sofia, pp.360–364 (1989).

[2] T. Kawai : On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 17, pp.467–517 (1970).

[3] R. Ishimura and Y. Okada : The existence and the continuation of holomorphic solutions for convolution equations in tube domains, <u>Bull. Soc. Math. France</u>, <u>122</u>, pp.413–433 (1994).

[4] R. Ishimura et J. Okada : Sur la condition (S) de kawai et la propriété de croissance régulière d'une fonction sous-harmonique et d'une fonction entière, Kyushu J. Math. <u>48</u>, pp.257–263 (1994).