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Abstract

The $n$-dimensional autonomous systems are discussed under some set of
geometric conditions. It is shown that there exists a solution whose orbit
stays on the boundary of a certain set for the above systems. This is a weaker
version of a Poincar\’e-Bendixson type theorem. The method can also be applied
to nonlinear difference equation systems.
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1 Introduction
A well known theorem on the existence of periodic solutions due to Poincar\’e [?] and
Bendixson [?] was established for the spaces of dimension two. Various applications
for the systems on the plane thus include a set of conditions which are proved to be
sufficient to satisfy the prerequisites for Poincar\’e-Bendixson theorem. The same has
been true for the nonlinear second order differential equations.

Rauch [?] considered a third order autonomous equation which can be decom-
posed into a linear and a nonlinear part of special type. This result was extended
by Williamson [?] into n-th order equations using the ‘torus principle’ (Pliss [?]).
Cronin [?] took up an $n$-dimensional nonautonomous system whose nonautonomous
part is a function of a fixed period, and showed the existence of a solution of the same
fixed period under a set of assumptions. As she noted, these assumptions remind us
of a popular variant of Poincar\’e-Bendixson theorem: if a given autonomous system
on the plane has an unstable critical point, and if there is a simple closed curve $C$

containing this unstable critical point but no other critical point in its interior or on
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$C$ , and if every trajectory which intersects $C$ crosses $C$ inwardly, then the system has
a periodic solution.

In this note, we consider $n$-dimensional autonomous systems which share the
above geometric characteristic, and show that there exists a solution whose orbit
stays on the boundary of a certain set. Some comments are made concerning the
case of dimension less than four.

2 Assumptions and The Main Theorem
Let us consider the autonomous system

$\dot{x}=f(x)$ (1)

where $x$ is an $n$-vector in the $n$-dimensional Euclidean space $R^{n}$ . We make the
following assumptions.

Assumption 1. The system (1) has a unique solution when the initial vector $x(\mathrm{O})$

is given in a domain $D$ which is homeomorphic to an open ball.

Assumption 2. Each solution starting in $D$ is continuous (most probably differen-
tiable in many applications) with respect to $x$ and the initial point, and each orbit
starting from a point on $\partial D$ remains on the boundary or leaves the boundary in-
wardly, and is defined for all $t\geq 0$ , while the negative semi-orbit starting from a
point on $\partial D$ never enters into the interior of $D$ .

Assumption 3. There exists an open set $S$ in $D$ which is also homeomorphic to
an open ball and each orbit starting from a point on $\partial S$(the boundary of $S$ ) either
remains on the boundary or leaves the boundary outwardly.

Denote by $x(t, x_{0})$ the solution with the initial vector $x_{0}$ in $D$ , and fix a positive
scalar $T$ . And define a mapping $F_{T}$ on $D$ from $x_{0}$ to $x(T, x_{0})$ . This mapping $F_{T}$ is a
homeomorphism from $D$ to $F_{T}(D)$ , and satisfies

$D\supset F_{T}(D)\supset F_{T}(S)\supset S$ .

We define $F_{T}^{2}(D)\equiv F_{T}(F_{T}(D))$ , and similarly the symbol $F_{T}^{1}(D)$ for the i-th iterate
of the transformation $F_{T}$ . And we put $F_{T}^{0}(D)\equiv D$ .

Now we have

Main Theorem. Given the above assumptions 1-3, there exists a solution which
remains on the boundary of a certain open set in $D$ .

proof. Let $\overline{X}$ denote the closure of a set $X$ , and consider a sequence of closed sets
$\overline{D}\supset\overline{F_{T}(D)}\supset\overline{F_{T}^{2}(D)}\supset\cdots\supset\overline{F_{T}^{i}(D)}\supset\cdots$ , each of which contains the open set $S$ .
Put $L \equiv\bigcap_{i=1}\overline{F_{T}^{i}(D)}$. The set $L$ is closed and contains $S$ . Let $L^{\mathrm{o}}$ be the interior of $L$ .
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We now prove that each orbit starting from a point $\partial L^{\mathrm{o}}$ remains there. First, we
pick up an arbitrary point $x$ on $\partial L^{\mathrm{o}}$ , and show that $F_{T}(x)\in\partial L^{\mathrm{o}}$ . If $F_{T}(x)\in L^{\mathrm{o}}$ ,
then there is a neighbourhood of $x$ which is mapped into $L^{\mathrm{o}}$ by $F_{T}$ and contains an
exterior point of $F_{T}^{1}(D)$ for some $i$ ( $i$ may be $0$ ) because of Assumption 2. (Fig.1).
This contradicts the definition of $L$ . On the other hand, if $F_{T}(x)\not\in\overline{L^{\mathrm{o}}}$ , some points of
$L^{\mathrm{o}}$ are mapped into the outside $\mathrm{o}\mathrm{f}\overline{L^{\mathrm{o}}}$ , contradicting the monotonicity of the sequence
$\{F_{T}^{1}(D)\}:=1,2,\cdots$ .

Next we prove that even if we change the designated scalar $T$ to another $T’$ , we
end up with the same set $L$ . Suppose that these sets are distinct, and without loss of
generality suppose also that $T’<T$ and a point $x$ on $\partial L^{\mathrm{o}}$ is in the interior of $L$ ‘, $L^{\prime \mathrm{O}}$ ,
where $L’$ is the ‘limit’ set corresponding to $T’$ . (Note that the word ‘limit’ set here is
used in the set-theoretical meaning.) Then, within $L^{\prime 0}$ there exists a neighbourhood
of $x$ which contains a point $P$ on an orbit which starts from a boundary point $Q$ of
$D$ such that $F_{T}^{1}(Q)=P$ for some $i$ . Now by Assumption2, we can find a point $Q’$

on this orbit which is either an exterior point of $D$ or on the boundary of $D$ such
that $F_{T}^{j},(Q’)=P$ for some $j$ . This implies $L^{\prime \mathrm{O}}$ cannot be a ‘limit’ set of monotone
shrinking sequence. A contradiction.

Thus we have shown that each orbit starting from a point on $\partial L^{\mathrm{o}}$ remains there.
This completes the proof. $\blacksquare$

Fig. 1

3 Dimensions 2 and 3

Let us now turn to the case of dimension two, and consider
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Assumption 4. There exists no critical point on the set $D-S$.

The following is a variant of Poincar\’e-Bendixson theorem.

Theorem. When the dimension is two, given Assumptions 1-4, the system (1) has
a periodic solution.

We wished to prove the above theorem in a simple and elementary way without
using the closed curve theorem due to Jordan. So far we are unable to do so.

If one can show in the three dimensional case that the interior of the limit set $L^{\mathrm{o}}$

is homeomorphic to an open ball, thus $\partial L^{\mathrm{o}}$ is homeomorphic to the sphere $S^{2}$ , then
we can apply Poincar\’e-Bendixson theorem (or our own result) to the trajectories on
the two-dimensional sphere.

4 Remarks
(1) The trouble with our result is that the boundary set $\partial L^{\mathrm{o}}$ need not be homeomor-
phic to a hypersphere when the dimension $n$ is greater than two. Is the interior of the
limit set connected? Assumption 4 should have played some role. (Cf. Yoneyama’s
example in Lefschetz [5].)

(2) The fact that a solution starting from a point of the boundary $\partial L^{\mathrm{o}}$ remains there
has nothing to do with periodicity. (In economics, however, this property, rather
than the exact periodicity, can be used in business cycle theory.)

(3) When we impose more conditions on domains $D$ and $f(\mathrm{e}.\mathrm{g}.$ , convexity or star-
convexity etc. and the preservation of these properties by $f$ ), the sequence $\{F_{T}^{i}(D)\}_{i=1,2},\cdots$

may converge to $L^{\mathrm{o}}$ which is homeomorphic to an open ball. (Cf. Tarski [11].)

(4) In a dual way, with suitable modifications in Assumptions 2 and 3, we can conceive
of the ‘limit’ set of expanding sequence $\{F_{T}^{i}(D)\}:=1,2,\cdots$ . If two ‘limit’ sets coincide,
the boundary $\partial L^{\mathrm{o}}$ is ‘stable’.

(5) We avoid the use of limit points of a semi-orbit, and the notion of limit sets in the
traditional sense. (For the conventional proof, see Coddington and Levinson [2] or
Lefschetz [6].) More importantly, our method, if sound enough, is equally useful to
prove a proposition similar to our Main Theorem for the system of nonlinear $\underline{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}}$

equations, possibly even in Banach spaces. The first motivation of the authors was
to prove the existence of a quasi-periodic solution for discrete versions of Goodwin
growth cycle model. (See $\mathrm{G}\overline{\mathrm{o}\mathrm{o}\mathrm{d}\mathrm{w}}\mathrm{i}\mathrm{n}[4]$ and Semmler(ed.) [10].)

(6) In the conference, Professor Matano gave us useful comments, particularly on the
inconsistency of Assumption 4 in the case of spaces of odd dimensions.

4



References
[1] I. Bendixson. Sur les courbes d\’efinies par des \’equations diff\’erentielles. Acta

Math.,Vol. 24 (1901) 1-88

[2] E. Coddinton&N. Levinson. Theory of Ordinary Differential Equations. McGraw-
Hill, 1955.

[3] Jane Cromin. Fixed Points and Topological Degree in Nonlinear Analysis.
Mathematical Surveys No. 11, Amer. Math. Soc., 1964.

[4] R.M. Goodwin. A growth cycle. in C.H.Feinstein(ed.), Socialism, Capitalism, and
Economic Growth, Cambridge Univ. Press, 1967.

[5] S. Lefschetz. Introduction to Topology. Princeton Univ. Press, 1949.

[6] –Differential Equations: Geometrical Theory, 2nd ed. Interscience, 1963.

[7] V.A. Pliss. Nonlinear Problems of the Theory of Oscillations. Academmic Press, 1966.

[8] H. Poincar\’e. Sur les courbes d\’efinies par une \’equation diff\’erentiele. (Eubres, Vol. 1,
Gauthier-Villars, 1892.

[9] L.L. Rauch. Oscillations of a third order nonlinear autonomous system. Contributions
to the Theory of Nonlinear Oscillations, Ann. of Math. Studies. No. 20, Princeton
Univ. Press, 1950, 35-88.

[10] W. Semmler(ed.) Competition, Instability, and Nonlinear Cycles. Lecture Notes in
Econommics and Mathematical Systems 275, Springer, 1986.

[11] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math.,
Vol. 5 (1955) 285-309.

[12] D. Williamson. Periodic motion in a class of $\mathrm{n}\mathrm{t}\mathrm{h}$-order autonomous differential equa-
tions. J. Math. Appl., Vol. 53 (1976) 669-679.

5


