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Abstract. The variational inequality problem (VIP) is to find a point $x\in S$

such that
($F(x),$ $y-x\rangle\geq 0$ for all $y\in S$ ,

where $S$ is a nonempty closed convex subset of $\Re^{n},$ $F$ is a continuous mapping
from $\Re^{n}$ into itself, and ( $\cdot,$

$\cdot\rangle$ denotes the inner product in $\Re^{n}$ . An important
special class of the VIP is the complementarity problem $(\mathrm{C}\mathrm{P})$ , which is to find a
point $x$ such that

$F(x)\geq 0,$ $x\geq 0,$ $\langle F(x),x\rangle=0$ .
The VIP and the CP have been widely used to formulate various equilibrium
problems that arise in engineering, economics and operations research. Recently
much effort has been made to reformulate the VIP and the CP as an equivalent
optimization problem. Such reformulations turn out to be useful not only in
designing a globally convergent algorithm for solving the VIP or the CP but
also in analyzing the rate of convergence of an iterative method for solving those
problems. This paper surveys recent developments in merit functions used to
formulate equivalent optimization problems for the VIP and $\mathrm{C}\mathrm{P}$ .

Key Words: Reformulation, variational inequality problem, complementarity
problem, equivalent optimization problem, merit function.

1. INTRODUCTION
In the last several years, much effort has been made to reformulate the variational

inequality problem (VIP) as an equivalent optimization problem with certain desirable
properties, thereby designing new descent algorithms for solving the VIP and deriving
error bounds which are useful in estimating how far any given point is to the solu-
tion set of the VIP. In this paper, we overview such attempts to the VIP and the
complementarity problem $(\mathrm{C}\mathrm{P})$ which is an important subclass of the VIP.

The variational inequality problem $(VIP)$ is a problem of finding a point $x\in S$ such
that

$\langle F(x), y-x\rangle\geq 0$ for all $y\in S$, (1.1)

1This is an updated version of the author’s survey paper [14]. The work of the author is supported
in part by the Scientific Research $\mathrm{C}_{\mathrm{T}}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{t}$-in-Aid from the Ministry of Education, Science and Culture,
Japan.
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where $S$ is a nonempty closed convex subset of $\Re^{n},$ $F$ is a continuous mapping from
$\Re^{n}$ into $\Re^{n}$ , and $\langle\cdot, \cdot\rangle$ denotes the inner product in $\Re^{n}$ . In the special case where
$S=\{x\in\Re^{n}|x_{i}\geq 0, i=1, \cdots, n\}$ , the VIP (1.1) is equivalent to the following
complementarity problem $(CP)$ :

$F(x)\geq 0,$ $x\geq 0,$ $\langle F(x), x\rangle=0$ . (1.2)

When $F$ is an affine mapping such that $F(x)=Mx+q$ with an $n\cross n$ matrix $M$ and
an $n$-vector $q$ , the CP becomes the linear complementarity problem $(LCP)$ :

$Mx+q\geq 0,$ $x\geq 0,$ $\langle Mx+q, x\rangle=0$ . (1.3)

A comprehensive treatment of the VIP and CP may be found in [3, 18, 37, 42].
We say that the mapping $F:\Re^{n}arrow\Re^{n}$ is monotone if

$\langle F(x)-F(x’), x-x’\rangle\geq 0$ for all $x,$ $x’\in\Re^{n}$ ,

strictly monotone if

$\langle F(x)-F(x’), x-x’\rangle>0$ for all $x,$ $x’\in\Re^{n}(x\neq x’)$ ,

and strongly (or uniformly) monotone with modulus $\mu(>0)$ if

$\langle F(x)-F(x’), x-x’\rangle>\mu||x-x’||^{2}$ for all $x,$ $x’\in\Re^{n}$ .

Clearly any strongly monotone mapping is strictly monotone and any strictly monotone
mapping is monotone. The following relations are well known [39, Theorem 5.4.3]: Let
$F$ be continuously differentiable. Then $F$ is monotone if and only if the Jacobian ma-
trix $\nabla F(x)$ is positive semidefinite for all $x;F$ is strictly monotone if $\nabla F(x)$ is positive
definite for all $x$ ; and $F$ is strongly monotone if and only if $\nabla F(x)$ is uniformly positive
definite, which is equivalent to saying that the minimum eigenvalues of the symmet-
ric matrices $\nabla F(x)+\nabla F(x)^{\mathrm{T}}$ are bounded away from zero on $\Re^{n}$ , where $\mathrm{T}$ denotes
transposition. Throughout the paper, we suppose that $F$ is continuously differentiable
everywhere.

2. REFORMULATIONS OF VIP
A real-valued function $f$ on $\Re^{n}$ is called a merit function for the VIP (1.1) if the set

of global minimizers of $f$ on a given set $X\subset\Re^{n}$ coincides with the set of solutions to
the VIP, where $X$ is usually the set $S$ involved in the VIP itself or the entire space $\Re^{n}$ .
If $f$ is a merit function for the VIP, then the VIP can be reformulated as the following
optimization problem:

minimize $f(x)$
(2.1)

subject to $x\in X$ .

Desirable properties the merit function $f$ is expected t.o have may be listed as follows:

$\mathrm{o}f$ is differentiable.
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$0$ Any stationary point or local minimum of $f$ on $X$ is also a global minimum of $f$

on $X$ .

$\theta f$ provides aglobal (respectively, local) error bound for the VIP, i.e., for any given
point $x$ , the distance from $x$ to the solution set of the VIP can be bounded by
the value of $f(x)$ multiplied by some positive constant on the whole space $\Re^{n}$

(respectively, on some neighborhood of the solution set).

2.1. Classical gap functions
The first merit function for the VIP is the gap function introduced by Auslender [2]

and Hearn [19]. This function is defined by

$g(x)= \sup\{\langle F(x), x-y\rangle|y\in S\}$ . (2.2)

If the set $S$ is bounded, then the function $g$ is finite everywhere. Otherwise, there may
exist a point $x$ such that $g(x)=+\infty$ .

It is not difficult to see that the gap function $g$ has the following properties:

$\mathrm{o}g(x)\geq 0$ for all $x\in S$ .

$\mathrm{o}g(x)=0$ and $x\in S$ if and only if $x$ is a solution to the VIP.

These two properties imply that the VIP (1.1) is equivalent to the optimization problem

minimize $g(x)$
(2.3)subject to $x\in S$.

Hence $g$ is a merit function for the VIP. Note that this equivalence does not require
any monotonicity assumption on the mapping $F$ .

Now let
$\Omega(x)=\arg\max\{\langle F(x), x-y\rangle|y\in S\}$ .

Then the function $g$ is differentiable at $x$ if and only if

$\nabla F(x)y=\nabla F(x)y’$ for all $y,$ $y’\in\Omega(x)$ . (2.4)

If (2.4) holds, the gradient of $g$ at $x$ is actually given by

$\nabla g(x)=F(x)-\nabla F(x)(y-x)$

for any $y\in\Omega(x)$ . Clearly, the condition (2.4) is satisfied whenever the set $\Omega(x)$ is a
singleton. As pointed out by Auslender [2, p. 139], the latter condition is met when
the set $S$ is “strongly” convex in the sense that, for all $x,$ $x’\in S$ such that $x\neq x’$ and
for all $\lambda\in(0,1)$ , there exists a constant $r>0$ such that

$||\lambda x+(1-\lambda)x’-z||\leq r$ $\Rightarrow$ $z\in S$ .

Unfortunately, the strong convexity of $S$ is too restrictive a condition to be met in many
practical applications. For instance, it is never satisfied by a polyhedral convex set.
Thus we cannot in general expect that the gap function $g$ is differentiable everywhere.
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Since the gap function $g$ yields an optimization problem equivalent to the VIP, it
is quite natural to try to solve the VIP by iteratively decreasing the function $g$ . Under
the monotonicity assumption on $F$ , Hearn [19] and Marcotte [33] claim that, if $\nabla g(x)$

exists and $g\{x$ ) $>0$ , then the vector $d=y-x$ with $y\in\Omega(x)$ is a descent direction of
$g$ at $x$ . However, since $g$ is hardly differentiable everywhere as mentioned above, the
Frank-Wolfe method that uses $d$ and $g$ as the search direction and the merit function,
respectively, does not seem to be applicable to a general VIP. Taking into account the
nondifferentiability of $g$ , Marcotte [33] proposed a bundle-type descent algorithm for
the gap function $g$ and proved its convergence under monotonicity assumption on $F$ .
On the other hand, Marcotte and Dussault [34] proposed using the gap function $g$

as a merit function to globalize the Newton method that solves at each iteration the
following linearized VIP: Given $x^{k}$ , find a point $z\in S$ such that

$\langle\overline{F}(z, x^{k}), y-z\rangle\geq 0$ for all $y\in S$, (2.5)

where $\overline{F}(\cdot, x^{k})$ : $\Re^{n}arrow\Re^{n}$ is the affine mapping defined by

$\overline{F}(z, x^{k})=F(x^{k})+\nabla F(x^{k})^{\mathrm{T}}(z-x^{k})$ . (2.6)

Assuming the monotonicity of $F$ and the compactness of $S$ , Marcotte and Dussault [34]
showed that the vector $d^{k}=\overline{z}(x^{k})-x^{k}$ with $\overline{z}(x^{k})$ being a solution to the linearized
VIP (2.5) is a feasible descent direction of $g$ at $x^{k}$ and that the Newton method with
exact line search on $g$ is globally convergent to a solution of the VIP (1.1). Moreover,
assuming the strong monotonicity of $F$ , the polyhedral convexity of $S$ and the strict
complementarity condition at the solution, they showed that the method is quadrat-
ically convergent. Another iterative method that uses the gap function $g$ as a merit
function has also been proposed by the same authors [35] for the VIP (1.1) in which
the constraint set $S$ is a compact polyhedral convex set specified by a system of linear
inequalities.

The following “dual“ gap function has also been used to reformulate the VIP (1.1):

$h(x)= \sup\{\langle F(y),x-y\rangle|y\in S\}$ . (2.7)

When $F$ is monotone, it follows from the definition of functions $g$ and $h$ that

$g(x)\geq h(x)$ for all $x\in\Re^{n}$ , (2.8)

because the monotonicity of $F$ implies

$\langle F(x),x-y\rangle\geq\langle F(y), x-y\rangle$ for all $x,$ $y\in\Re^{n}$ .

Since $g(x)=0$ and $x\in S$ if and only if $x$ solves the VIP (1.1) as mentioned above, and
since $h(x)\geq 0$ clearly holds for each $x\in S$ , the inequality (2.8) indicates that $h(x)=0$

and $x\in S$ hold for any solution $x$ of the VIP (1.1), provided that $F$ is monotone.
Namely, when $F$ is monotone, any solution $x$ to (1.1) is also a solution of the problem

minimize $h(x)$
(2.9)

subject to $x\in S$ .
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Moreover, when $F$ is strictly monotone, the unique solution of (1.1), if exists, uniquely
minimizes the function $h$ over $S$ . Notice that the function $h$ is a convex function, which
may take $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}+\infty$ unless some additional assumption like compactness is imposed
on $S$ . The evaluation of $h$ , however, generally requires maximization of a nonconcave
function, whereas $g$ can be evaluated by maximizing a linear function over $S$ . Though
convex, the function $h$ may not be differentiable in general. Nguyen and Dupuis [38]
proposed a special cutting plane method for minimizing the function $h$ . (Some proper-
ties of the dual gap function $h$ are summarized in [29].)

2.2. Regularized gap functions
Whether or not the general VIP can be reformulated as a differentiable optimiza-

tion problem had long been an open problem until Fukushima [13] and Auchmuty [1]
independently and almost simultaneously gave an affirmative answer to it. Fukushima
[13] considered the regularized gap function defined by

$f_{\alpha}(x)= \max_{y\in S}\{\langle F(x), x-y\rangle-\frac{\alpha}{2}||y-x||^{2}\}$ , (2.10)

where or is a positive parameter. (The Euclidean norm used in the definition (2.10)
may be replaced by any norm induced by a positive definite symmetric matrix [13]. We
adopt the above definition here only for simplicity of notation.) Since the definition
(2.10) of $f_{\alpha}$ consists of maximizing a strongly concave function over a closed convex set,
the supremum is always attained and hence the function $f_{\alpha}$ is finite-valued everywhere.
This is in contrast with the gap function $g$ , which may take value $+\infty$ somewhere.
Moreover, since the maximizer on the right-hand side of (2.10) is unique, the function
$f_{\alpha}$ is guaranteed to be differentiable at any point. Specifically, if we denote the unique
maximizer by $y_{\alpha}(x)$ , then the gradient of $f_{\alpha}$ is given by

$\nabla f_{\alpha}(x)=F(x)-[\nabla F(x)-\alpha I](y_{\alpha}(x)-x)$ . (2.11)

Note that
$y_{\alpha}(x)=\Pi_{S}[x-\alpha^{-1}F(x)]$ , (2.12)

where $\Pi_{S}$ denotes the projection onto $S$ . It is well known that $x$ solves the VIP (1.1)
if and only if $x=\Pi_{S}[x-\alpha^{-1}F(x)]$ . Since the function $f_{\alpha}$ can be expressed as

$f_{\alpha}(x)= \frac{\alpha}{2}\{||\alpha^{-1}F(x)||^{2}-||y_{\alpha}(x)-(x-\mathrm{a} -1F(x))||^{2}\}$ , (2.13)

it is not difficult to deduce from (2.12) and (2.13) that, similar to the gap function $g$ ,
the regularized gap function $f_{\alpha}$ possesses the following properties:

$\mathrm{o}f_{\alpha}(x)\geq 0$ for all $x\in S$ .

$\mathrm{o}f_{\alpha}(x)=0$ and $x\in S$ if and only if $x$ solves the VIP (1.1).

Therefore the VIP (1.1) is equivalent to

minimize $f_{\alpha}(x)$

(2.14)
subject to $x\in S$.
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This fact implies that $f_{\alpha}$ serves as a merit function for the VIP. A remarkable feature
of the regularized gap function $f_{\alpha}$ is of course that it is continuously differentiable.
In general, the function $f_{\alpha}$ need not be convex even though the mapping $F$ has some
desirable properties like the strong monotonicity. (This is also the case for the gap
function $g.$ ) So the function $f_{\alpha}$ may have local minima or stationary points which do
not minimize $f_{\alpha}(x)$ over $S$ globally, i.e., do not solve the VIP (1.1). Since most of
the iterative minimization methods are only guaranteed to converge to local minima or
stationary points, it is important to know when a local minimum or a stationary point
of $f_{\alpha}$ over $S$ is actually a global minimum. In this regard, Fukushima [13] proved the
following result:

$0$ If the Jacobian $\nabla F(x)$ is positive definite on $S$ , then any stationary point of
(2.14) solves the VIP (1.1).

Moreover, Taji, Fukushima and Ibaraki [52] showed that, if $F$ is strongly monotone
with modulus $\mu>0$ and if $\alpha<2\mu$ , then the following error bound is obtained for the
VIP (1.1):

$||x-x^{*}|| \leq\ulcorner\frac{f_{\alpha}(x)}{\mu-\alpha/2}$ for all $x\in S$, (2.15)

where $x^{*}$ is the unique solution of the VIP (1.1).
The minimization formulation (2.14) naturally suggests that a globally convergent

algorithm for solving the VIP (1.1) be developed on the basis of the merit function $f_{\alpha}$ .
Fukushima [13] showed that, if $\nabla F(x)$ is positive definite on $S$ , then the vector

$d^{k}=y_{\alpha}(x^{k})-x^{k}$

is a feasible descent direction of $f_{\alpha}$ at each $x^{k}$ . A descent algorithm that utilizes the
vector $d^{k}$ as a search direction and performs line search for the merit function $f_{\alpha}$ was
developed in [13]. Note that, in this ‘first-order’ method, we need not evaluate the
gradient $\nabla f_{\alpha}(x)$ . This could be desirable because the evaluation of $\nabla f_{\alpha}(x)$ requires
the evaluation of $\nabla F(x)$ , which may be expensive in some practical problems. If one is
willing to use $\nabla F(x)$ , then it is possible to develop a ‘second-order’ method of Newton
type. Specifically, Taji, Fukushima and Ibaraki [52] showed that the vector

$d^{k}=\overline{z}(x^{k})-x^{k}$ ,

where $\overline{z}(x^{k})$ is a solution of the linearized VIP (2.5), is a feasible descent direction of
$f_{\alpha}$ at each $x^{k}$ , provided that $F$ is strongly monotone with modulus $\mu$ and $\alpha$ is chosen
small enough to satisfy $\alpha<2\mu$ . Note that, under the strong monotonicity assumption,
the solution $\overline{z}^{k}$ of the linearized VIP (2.5) exists uniquely. It was shown in [52] that this
algorithm is globally convergent under the above-mentioned assumptions and that the
rate of convergence is quadratic under additional assumptions such as the polyhedral
convexity of $S$ and the strict complementarity at the solution. This algorithm shares
much in common with the Newton method of Marcotte and Dussault [34], which uses
the gap function $g$ as a merit function. It is worth mentioning, however, that using the
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regularized gap function $f_{\alpha}$ enables us to adopt inexact line search with Armijo rule
[52].

Similar but more general classes of regularized gap functions have been considered
by several authors [1, 29, 43, 55, 60, 61]. Those function$s$ are typically derived by
replacing the quadratic term in the definition (2.10) of $f_{\alpha}$ by a more general convex
term. In particular, Larsson and Patriksson [29] recently presented a unified framework
of regularized gap functions derived from the class of Auchmuty’s merit functions [1].
Error bound results that generalize the condition (2.15) have been established in [29,
61]. Descent methods, which are extensions of the one given in Fukushima [13], have
been proposed in [29, 43, 55, 60, 61]. In particular, Zhu and Marcotte [60] proposed
a modified descent algorithm which uses varying parameter $\alpha$ in the regularized gap
function $f_{\alpha}$ . A remarkable feature of the latter algorithm is that its convergence requires
only monotonicity of $F$ (see also [43]).

By definition, the evaluation of the regularized gap function $f_{\alpha}$ requires computing
the projection of a point $x$ onto the closed convex set $S$ . In general, however, this is not
an easy task unless $S$ has a certain tractable structure such as polyhedral convexity. To
cope with this difficulty, Taji and Fukushima $[50, 51]$ recently proposed a modification
of the regularized gap function $f_{\alpha}$ by way of polyhedral approximations to $S$ , and
showed that many of the favorable properties of $f_{\alpha}$ are transmitted to the modified
regularized gap function.

2.3. The $\mathrm{D}$-gap function
The equivalent optimization formulations discussed so far are all constrained prob-

lems, each of which is to minimize a certain merit function over the feasible set $S$ of
the original VIP. Recently Yamashita and Fukushima [57] considered further apply-
ing the Moreau-Yosida regularization to some gap functions. The resulting functions,
which may not be easy to evaluate in general, certainly possess nice theoretical proper-
ties. Aside from the differentiability, those functions are shown to provide global error
bounds for the VIP under the strong monotonicity only.

More recently, Peng [44] considered the function

$M_{\alpha}(x)=f_{\alpha}(x)-f_{1/\alpha}(x)$ , (2.16)

where $f_{\alpha}$ is the regularized gap function defined by (2.10) and $\alpha$ is a parameter such
that $0<\alpha<1$ , and showed the following results:

$\mathrm{o}M_{\alpha}(x)\geq 0$ for all $x\in\Re^{n}$ .

$\mathrm{o}M_{\alpha}(x)=0$ if and only if $x$ solves the VIP (1.1).

Thus the VIP (1.1) is equivalent to the unconstrained minimization problem

minimize $M_{\alpha}(x)$

(2.17)subject to $x\in\Re^{n}$ .

By definition, it is clear that the differentiability of $M_{\alpha}$ is inherited from $f_{\alpha}$ . In fact,
the function $M_{\alpha}$ shares much in common with $f_{\alpha}$ . Among others, the following result
is very important.
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$0$ If the Jacobian $\nabla F(x)$ is positive definite for each $x$ , then any stationary point
of (2.17) solves the VIP (1.1).

Moreover, Peng [44] proved that $M_{\alpha}$ satisfies the following inequalities:

$(1- \alpha)||r_{1}(x)||^{2}\leq M_{\alpha}(x)\leq\frac{1-\alpha}{\alpha}||r_{1}(x)||^{2}$ for all $x\in\Re^{n}$ , (2.18)

where $r_{1}$ is the “natural” residual for the VIP defined by $r_{1}(x)=x-y_{1}(x)$ . The
inequalities (2.18) in particular imply that the function $\sqrt{M_{\alpha}}$ provides an error bound
for the VIP if $||r_{1}||$ does. For the VIP, it is known that the latter is true if $F$ is strongly
monotone and Lipschitz continuous on $\Re^{n}[40]$ . In [45], it is shown that, in the case of
the $\mathrm{C}\mathrm{P}$ , the function $M_{\alpha}$ is reduced to a merit function called the implicit Lagrangian
[32] (see \S 3.2). Thus $M_{\alpha}$ may be regarded as a generalization of the implicit Lagrangian
for the CP to the VIP.

The results obtained in $[44, 45]$ have further been extended by Yamashita, Taji and
Fukushima [59], who considered the function

$g_{\alpha\beta}(x)=f_{\alpha}(x)-f_{\beta}(x)$ , (2.19)

where $f_{\alpha}$ and $f_{\beta}$ are regularized gap functions with parameters $\alpha$ and $\beta$ such that
$0<\alpha<\beta$ . (In [59], the functions $f_{\alpha}$ and $f_{\beta}$ are defined by (2.10) with the quadratic
term replaced by a more general convex term.) The function $g_{\alpha\beta}$ is called the D-gap
function, where “

$\mathrm{D}$
” stands for the word “difference”. Similar to the function $M_{\alpha}$ , the

following properties hold for the $\mathrm{D}$ -gap function $g_{\alpha\beta}$ :

$<\rangle g_{\alpha\beta}(x)\geq 0$ for all $x\in\Re^{n}$ .

$\mathrm{o}g_{\alpha\beta}(x)=0$ if and only if $x$ solves the VIP (1.1).

Therefore the VIP (1.1) is equivalent to the unconstrained minimization problem

minimize $g_{\alpha\beta}(x)$

(2.20)
subject to $x\in\Re^{n}$ .

The function $g_{\alpha\beta}$ is differentiable whenever $F$ is differentiable. Also we have the fol-

lowing result:

$0$ If the Jacobian $\nabla F(x)$ is positive definite for each $x$ , then any stationary point
of (2.20) solves the VIP (1.1).

Moreover, it is shown in [59] that $g_{\alpha\beta}$ satisfies the following inequalities:

$\frac{\beta-\alpha}{2}||x-y_{\beta}(x)||^{2}\leq g_{\alpha\beta}(x)\leq\frac{\beta-\alpha}{2}||x-y_{\alpha}(x)||^{2}$ for all $x\in\Re^{n}$ ,

where $y_{\alpha}(x)$ is the unique maximizer in the definition (2.10) of $f_{\alpha}$ and $y_{\beta}(x)$ is defined
similarly for $f_{\beta}$ . Also it is shown in [59] that, if $F$ is strongly monotone and if either
$F$ is Lipschitz continuous or $S$ is compact, then the function $\sqrt{g_{\alpha\beta}}$ provides an error
bound for the VIP.
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Although the $\mathrm{D}$-gap function $g_{\alpha\beta}$ is not twice differentiable, it is possible to apply a
Newton-type method to minimize it. Such an attempt has recently been made in [48].

The results obtained in [59] and [48] have been further refined by Kanzow and
$\mathrm{F}\mathrm{u}\mathrm{k}\mathrm{u}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{m}\mathrm{a}[26]\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}s\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{c}\mathrm{a}s\mathrm{e}\mathrm{o}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{V}\mathrm{I}\mathrm{P},$$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{f}\mathrm{e}\mathrm{a}s\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{t}S\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{b}\mathrm{o}\mathrm{x}\mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}$

by

$S= \prod_{i=1}^{n}[l_{i}, u_{i}]$ (2.21)

with $l_{i}\in[-\infty, +\infty)$ and $u_{i}\in(-\infty, +\infty]$ such that $l_{i}\leq u_{i}$ for all $i=1,$ $\cdots,$ $n$ .
Note that, in the box constrained case, the vectors $y_{\gamma}(x),\gamma=\alpha,$ $\beta$ , can be written
componentwise as

$y_{\gamma,i}(x)$ $=$ $\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}_{[l_{i},]}u_{i}(x_{i}-\frac{1}{\gamma}F_{i}(x))$

$=$ mid $\{x_{i}-\frac{1}{\gamma}F_{i}(x),$ $l_{i},$ $u_{i}\}$ $i=1,$ $\ldots,n$ , (2.22)

The Cartesian structure of the problem enables us to slightly refine the above-mentioned
result on stationary points of (2.20) as follows:

$\mathrm{o}$ If the Jacobian $\nabla F(x)$ is a $\mathrm{P}$-matrix for each $x$ , then any stationary point of
(2.20) solves the VIP (1.1) with the box constraints $S$ given by (2.21).

Moreover we have the following results on the boundedness of level sets of the D-gap
function $g_{\alpha\beta}$ .

$\mathrm{o}$ Let $S$ be given by (2.21). If $F$ is a uniform $\mathrm{P}$-function, then the level set $s\mathcal{L}(c)$ $:=$

$\{x\in\Re^{n}|g_{\alpha\beta}(x)\leq c\}$ are bounded for all $c\geq 0$ . If the set $S$ is bounded, then
$\mathcal{L}(c)$ are also bounded for all $c\geq 0$ .

Note that the latter half of this result does not depend on the box structure of $S$ .
The error bound result with the $\mathrm{D}$-gap function for the general VIP can be refined

for the box constrained VIP

$0$ Let $S$ be given by (2.21) and $F$ be a uniform $\mathrm{P}$-function. If either $F$ is Lipschitz
continuous or $S$ is bounded, then there exists a constant $c>0$ such that

$||x-x^{*}||\leq c\sqrt{g_{\alpha\beta}(x)}$,

holds for all $x\in\Re^{n}$ , where $x^{*}$ is the unique solution of the VIP (1.1).

It is not difficult to observe that the $\mathrm{D}$ -gap function $g_{\alpha\beta}$ is semismooth. However,
by some reasons, it is not necessarily easy to deal with generalized Hessian$s$ of $g_{\alpha\beta}$ in
the ordinary sense. Kanzow and Fukushima [26] developed a Newton-type algorithm
for minimizing $g_{\alpha\beta}$ , which uses an approximation to the generalized Hessian. The
resulting algorithm is easily implemented and is shown to have global and superlinear
convergence properties.
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3. REFORMULATIONS OF CP
Since the CP is a special case of the VIP such that the feasible set $S$ is the nonneg-

ative orthant in $\Re^{n}$ , any merit function for the VIP can in principle be used as a merit
function for the $\mathrm{C}\mathrm{P}$ . For example, the regularized gap function yields an equivalent op-
timization problem with simple nonnegativity constraints on the variables. Moreover,

remarkable progress has recently been made in the study of merit functions that lead
to unconstrained optimization reformulations of the $\mathrm{C}\mathrm{P}$ . In this section, we first review
optimization formulations with simple bound constraints and then discuss two impor-
tant classes of merit functions that lead to unconstrained optimization reformulations
of the $\mathrm{C}\mathrm{P}$ .

3.1. Optimization formulations with simple bound constraints
The regularized gap function $f_{\alpha}$ for the VIP can be specialized to the CP as follows:

$f_{\alpha}(x)$ $=$ $\langle F(x), x-[x-\frac{1}{\alpha}F(x)]_{+}\rangle-\frac{\alpha}{2}||[x-\frac{1}{\alpha}F(x)]_{+}-x||^{2}$

$\langle F(x), x\rangle+\frac{\alpha}{2}(||[x-\frac{1}{\alpha}F(x)]_{+}||^{2}-||x||^{2})$ , (3.1)

where $[z]_{+}$ denotes the vector with components $\max(z_{i}, 0),$ $i=1,$ $\cdots,$ $n$ . The CP is
equivalent to the optimization problem

minimize $f_{\alpha}(x)$

(3.2)
subject to $x\geq 0$ .

Because the function $f_{\alpha}$ can easily be evaluated and the optimization problem (3.2) has
the simple bound constraints on the variables only, globally convergent algorithms that
utilize the regularized gap function, originally developed for the VIP, may be specialized
to the CP in an effective manner [49].

For the LCP (1.3), Friedlander, Mart\’inez and Santos [11] considered the optimiza-
tion problem

minimize $\rho||Mx+q-z||^{2}+(\langle x, z\rangle)^{p}$

(3.3)
subject to $x\geq 0,$ $z\geq 0$ ,

where $\rho>0$ and $p>1$ are arbitrary constants. Clearly this problem is equivalent to
the LCP (1.3) in the sense that a global optimal solution of (3.3) with zero objective
value is a solution of the LCP and vice versa. It was shown in [11] that, under some
condition, which is implied by the positive semidefiniteness of $M$ , any stationary point
of problem (3.3) is a solution of the LCP (1.3). Using a similar idea, the same authors
[12] proposed a bound constrained optimization reformulation of a linearly constrained
VIP.

For the CP (1.2), Mor\’e [36] considered the following optimization problem, which
is similar to the problem (3.3) for the LCP:

minimize $||F(x)-z||^{2}+ \sum_{i=1}^{n}(x_{i}z_{i})^{2}$

(3.4)
subject to $x\geq 0,$ $z\geq 0$ .
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In particular, it was shown in [36] that any stationary point of problem (3.4) comprises
a solution of the CP (1.2) under a regularity condition, which is satisfied, for example,
if $\nabla F(x)$ is a positive definite matrix or an $M$-matrix. Mor\’e [36] also proposed a trust
region method for solving (3.4) and discussed its global and superlinear convergence
properties.

Yet another bound constrained optimization formulation of the CP (1.2) is the
following problem:

minimize $\sum_{i=1}^{n}[\min(x_{i}, F_{i}(x))]^{2}$

(3.5)
subject to $x\geq 0$ .

It is clear that this problem is equivalent to the CP (1.2). It was shown in [41] that,
under a regularity condition, a stationary point of (3.5) is a solution to the CP (1.2).
Unlike the optimization reformulations mentioned in this subsection, the objective func-
tion in problem (3.5) is not differentiable. Nevertheless, the algorithms proposed by
Pang and Gabriel $[41, 15]$ are shown to have global and superlinear convergence prop-
erties under some regularity assumptions.

3.2. Implicit Lagrangian
Mangasarian and Solodov [32] introduced the following merit function, which is now

commonly called the implicit Lagrangian, for the $\mathrm{C}\mathrm{P}$ :

$M_{\alpha}(x)= \langle F(x), x\rangle+\frac{\alpha}{2}(||[x-\frac{1}{\alpha}F(x)]_{+}||^{2}-||x||^{2}$

$+||[F(x)- \frac{1}{\alpha}x]_{+}||^{2}-||F(x)||^{2})$ , (3.6)

where $\alpha$ is a parameter such that $0<\alpha<1$ . They showed that

$\mathrm{o}M_{\alpha}(x)\geq 0$ for all $x\in R^{n}$ .
$\mathrm{o}M_{\alpha}(x)=0$ $\Leftrightarrow$ $x$ solves the CP (1.2).

Therefore the CP (1.2) is equivalent to the unconstrained optimization problem

minimize $M_{\alpha}(x)$

(3.7)
subject to $x\in\Re^{n}$ .

Comparing the definitions (3.1) and (3.6), one may notice some similarity between
the regularized gap function and the implicit Lagrangian. In fact, these two functions
can be treated in a unified manner [54]. As observed by Peng and Yuan [45], in particu-
lar, the implicit Lagrangian $M_{\alpha}$ can be represented as the difference of two regularized
gap functions (see (2.16)). Like $f_{\alpha}$ , the implicit Lagrangian $M_{\alpha}$ is differentiable and
the gradient of $M_{\alpha}$ can be expressed as

$\frac{1}{\alpha}\nabla M_{\alpha}(x)$ $=$ $(I- \frac{1}{\alpha}\nabla F(x))([x-\frac{1}{\alpha}F(x)]_{+}-x)$

$+( \nabla F(x)-\frac{1}{\alpha}I)([F(x)-\frac{1}{\alpha}x]_{+}-F(x))$ .

Yamashita and Fukushima [56] proved the following result:
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$0$ If $\nabla F(x)$ is positive definite for every $x\in\Re^{n}$ , then any stationary point of $M_{\alpha}$ is
a solution to the CP (1.2).

This result was recently improved by Jiang [20], who showed that the positive definite-
ness of $\nabla F(x)$ can be replaced by the weaker condition that $\nabla F(x)$ is a P-matrix.

Concerning error bounds for the $\mathrm{C}\mathrm{P}$ , Luo et al. [30] showed that there exist $\kappa>0$

and $\delta>0$ such that

$M_{\alpha}(x)\geq\kappa \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x,X^{*})^{2}$ for all $x\in\{x|M_{\alpha}(x)\leq\delta\}$ ,

where $X^{*}$ is the solution set of the $\mathrm{C}\mathrm{P}$ . Moreover, Yamashita and Fukushima [56] showed
that, if $F$ is strongly monotone and Lipschitz continuous, then the following inequality
holds for some $\kappa>0$ :

$M_{\alpha}(x)\geq\kappa||x-x^{*}||^{2}$ for all $x\in\Re^{n}$ ,

where $x^{*}$ denotes the unique solution to the $\mathrm{C}\mathrm{P}$ . Note that the last inequality in par-
ticular implies that, if $F$ is strongly monotone and Lipschitz continuous, then the level
sets of the implicit Lagrangian $M_{\alpha}$ are bounded. More on the error bound results for
the $\mathrm{C}\mathrm{P}$ , the reader may refer to [54].

To solve a differentiable $\mathrm{C}\mathrm{P}$ , we may directly apply any gradient-based algorithm to
the equivalent minimization problem (3.7) (see [32]). As an alternative to the gradient-
based algorithms, a simple descent method that does not require evaluating $\nabla F(x)$ has
been proposed in [56].

3.3. NCP functions
Recently the following function V : $\Re^{n}arrow\Re$ has attracted the attention of many

researchers in the field of complementarity problems:

$\Psi(x)=\frac{1}{2}\sum_{i=1}^{n}\varphi(x_{i}, F_{i}(x))^{2}$ , (3.8)

where $\varphi$ : $\Re^{2}arrow\Re$ is defined by

$\varphi(a, b)=\sqrt{a^{2}+b^{2}}-a-b$. (3.9)

This function was first introduced by Fischer [7] but attributed to Burmeister. As can
be seen easily, the function $\varphi s$atisfies

$\varphi(a, b)=0$ $\Leftrightarrow$ $a\geq 0,$ $b\geq 0$ , $ab=0$ , (3.10)

so that the CP is equivalent to the system of equations

$\Phi(x)=0$ , (3.11)

where $\Phi(x)=(\varphi(x_{1}, F_{1}(x)),$ $\varphi(x_{2}, F_{2}(x)),$ $\cdots,$
$\varphi(x_{n}, F_{n}(x)))^{\mathrm{T}}$ . Hence the CP can be

cast as the following unconstrained optimization problem:

minimize $\Psi(x)$
(3.12)

subject to $x\in\Re^{n}$ .
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Alternatively, one may obtain another reformulation of the CP by considering the
augmented system of equations.

6 $(x, z)=0$ , (3.13)

where di $(x, z)=(F(x)-z, \varphi(x_{1}, z_{1}), \varphi(x_{2}, z_{2}), \cdots, \varphi(x_{n}, z_{n}))^{\mathrm{T}}$ . This is clearly equiva-
lent to (3.11) and yields the following unconstrained optimization problem:

minimize $\hat{\Psi}(x, z)$

(3.14)
subject to $x\in\Re^{n},$ $z\in\Re^{n}$ ,

where
$\hat{\Psi}(x, z)=\frac{1}{2}(||F(x)-z||^{2}+\sum_{i=1}^{n}\varphi(x_{i,\sim i}’)^{2})$ .

Any function satisfying the condition (3.10) may be called an $NCP$-function [10].
Besides the above-mentioned function $\varphi$ , various NCP functions are known to date $(s\mathrm{e}\mathrm{e}$ ,
e.g., [23, 24, 27] $)$ . In this section, however, we will confine ourselves to the NCP function
$\varphi$ defined by (3.9), because it enjoys many favorable properties in the complementarity
problem. First it is noted that $\Psi$ is differentiable. (Note that $\varphi(x_{i}, F_{i}(x))$ is not
differentiable at a point $x$ such that $x_{i}=F_{i}(x)=0.)$ The gradient of V is given by

$\nabla\Psi(x)=[D_{a}(x)+\nabla F(x)D_{b}(x)]\Phi(x)$ , (3.15)

where $D_{a}(x)$ and $D_{b}(x)$ are diagonal matrices with nonpositive diagonal elements $a_{i}(x)$

and $b_{i}(x),$ $i=1,$ $\cdots,$ $n$ , respectively, which are given by

$(a_{i}(x), b_{i}(x))=\{\begin{array}{l}(\frac{x}{\sqrt{x_{i}^{2}+F_{i}(x)^{2}}}-1,.\frac{F_{i}(x)}{\sqrt{x^{2}+F_{t}(x)^{2}}}-1)(x_{i}, F_{i}(x))\neq(0,0)(\xi_{i}-1, \eta_{i}-1)(x_{i}, F_{i}(x))=(0,0)\end{array}$

for some $\xi_{i}$ and $\eta_{i}$ such that $\xi_{i}^{2}+\eta_{i}^{2}\leq 1$ .
Geiger and Kanzow [16] proved the following. results:

$\mathrm{o}$ If $\nabla F(x)$ is positive semidefinite for every $x\in\Re^{n}$ , then any stationary point of
$\Psi$ is a solution to the CP (1.2).

$\mathrm{o}$ If $F$ is strongly monotone, then the level sets of $\Psi$ are bounded.

Comparing these with the corresponding results for the implicit Lagrangian, we see
that the NCP function $\Psi$ enjoys these properties under weaker assumptions than the
implicit Lagrangian. (In [56], a counter-example is provided to show that the positive
definiteness of $\nabla F(x)$ cannot be replaced even by the strict monotonicity of $F$ in order
to guarantee that any stationary point of $M_{\alpha}$ solves the $\mathrm{C}\mathrm{P}.$ ) Facchinei and Soares
[5] pointed out that the monotonicity and the strong monotonicity assumptions in the
above results may further be replaced by the weaker conditions that $F$ is a $P_{0}$-function
and that $F$ is a uniformly $P$-function (see also [4]). Tseng [53] studied growth properties
of various NCP functions including V and Q.

As mentioned above, the functions $\Phi$ and 6 are not differentiable. In spite of this
fact, a number of Newton-type methods have been developed to solve the nonsmooth

257



equation reformulations (3.11) and (3.13) for the LCP $[8, 9]$ and the CP [4, 5, 6, 21, 24,
58]. A key property for such algorithms to converge superlinearly is the semismoothness
of the functions $\Phi$ and 6. The semismoothness of vector functions was introduced in
[46] and used in the analysis of generalized Newton methods for nonsmooth equations
$[46, 47]$ (see also [22]). In the present case, the function $\Phi$ is actually shown to be
semismooth $[5, 21]$ . A direction-finding problem in a Newton-type method for (3.11)
may therefore be given as

$V_{k}d=-\Phi(x^{k})$ , (3.16)

where $V_{k}$ is an $n\cross n$ matrix chosen from the generalized Jacobian $\partial\Phi(x^{k})$ . If a solution
$d^{k}$ of (3.16) is obtained, then the next iterate $x^{k+1}$ may be determined by line search for
the merit function Q. A possible trouble with this approach is that the matrix $V_{k}$ is not
necessarily nonsingular, and hence the linear equation (3.16) may not have a solution,

even though the function $F$ is monotone. In order to guarantee the nonsingularity of
$V_{k}$ , we need to assume that $\nabla F(x)$ is positive definite or $F$ is a uniform $P$-function [21].
A remedy for this trouble is to use the. steepest descent direction for the merit function
$\Psi$ when the system (3.16) is not solvable or $d^{k}$ does not afford a direction of sufficient
decrease for $\Psi[4,5,6,21]$ . Another cure is to slightly perturb $V_{k}$ to obtain a positive
definite matrix, so that the modified direction-finding subproblem is always consistent
[8, 9, 58]. Under appropriate conditions, those methods are globally convergent to a
solution of the LCP or the $\mathrm{C}\mathrm{P}$ . Moreover, it can be shown that, under some regularity
assumptions, they have a superlinear or quadratic convergence property.

As shown above, the NCP function $\Psi$ turns out to be very useful in solving the $\mathrm{C}\mathrm{P}$ .
Continuing effort is still under way to develop a merit function with better properties
in regard to its local and global behaviors $[31, 28]$ .

4. CONCLUDING REMARKS
In this article, we have reviewed the recent developments of merit functions for-

$\mathrm{j}\mathrm{d}\mathrm{v}\mathrm{i}2\mathrm{k}\mathrm{p}\mathrm{s}$ the VIP and $\mathrm{C}\mathrm{P}$ . In closing, we point out that some of those results can be
extended to more general classes of problems. For example, for the generalized com-
plementarity problem (GCP)

$F(x)\geq 0$ , $G(x)\geq 0$ , $\langle F(x), G(x)\rangle=0$ (4.1)

with $F$ : $\Re^{n}arrow\Re^{n}$ and $G$ : $\Re^{n}arrow\Re^{n}$ , Tseng, Yamashita and Fukushima [54] showed
that the regularized gap function $f_{\alpha}$ and the implicit Lagrangian $M_{\alpha}$ can be derived in
a unified manner, and extended a number of basic results about those merit functions
for the $\mathrm{C}\mathrm{P}$ . (In [54], the GCP (4.1) is considered under a more general setting where
the vector inequality is defined in terms of a closed convex cone and its polar cone.)
For the GCP (4.1), Kanzow and Fukushima [25] also extended various results known
for the merit function V with the NCP function $\varphi$ defined by (3.9) for the $\mathrm{C}\mathrm{P}$ . On the
other hand, Giannessi [17] considered the quasi-variational inequality problem (QVIP),
which is to find a point $x\in S(x)$ such that

$\langle F(x), y-x\rangle\geq 0$ for all $y\in S(x)$ , (4.2)
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where $S(x)$ is given by

$S(x)=\{y\in \mathrm{Y}(x)|c(x, y)\in C\}$ ,

with a point-to-set mapping $\mathrm{Y}(x)$ : $\Re^{n}arrow\Re^{n}$ , a function $c:\Re^{n}\cross\Re^{n}arrow\Re^{m}$ and a closed
convex cone $C\subseteq\Re^{m}$ . When $\mathrm{Y}(x)$ and $c(x, y)$ are independent of $x$ , the QVIP (4.2)
reduces to an ordinary VIP. In [17], attempts were made to extend some gap functions
for the ordinary VIP to the QVIP (4.2).
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