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1 Introduction
Since Bellman [1], an enormous amounts of efforts has been devoted to the study of “dy-
namic programming”. There are two types –deterministic dynamic programming and
stochastic dynamic programming – Since any deterministic system is considered as a
special (degenerate) case of stochastic system, we in this paper are mainly concerned with
stochastic dynamic programming, which is frequently called “Markov decision process”. In
this field, there are many research monographs (Howard [13], White [38][39], Nemhauser
[28], Denardo [8], Hinderer [12], Bertsekas [4], Bertsekas and Shreve [5], Whittle [40],
Hartley, Thomas and White[ll], Sniedovich [36], Puterman [31][32] and others) as well as
research papers (Blackwell [6], Denardo [7], Kreps [24][25], Porteus [29][30], Mitten [27],
Iwamoto [14][15] and others). The study is concerned with the sequential optimization
of additive function as objective function, which includes the discouted case. Especially,
in the field of economics, discounted dynamic programming has been extensively applied
(Sargeant [33] and Stokey and Lucas [37]).

In this paper, we study stochastic optimization of associative function, called associative
problem. Especially, three typical associative functions–additive, multiplicative and mini-
mum functions-, generate additive problem, multiplicative problem and minimum problem,
respectively.

As was mentioned above, the additive problem has been extensively studied. It is tacitly
known that there exists an optimal policy which is Markov- Markov policy is enough-
for the additive problems ([3, pp.152, $l.19- 22],[5$ , pp.6,Z.20-23], and others). In fact, some
papers have at the outset restricted to the set of all Markov policies. And then they have
tried to find an optimal policy for the problems under consideration. However, first of all,
it should be clarified that the plausibility for this restriction is reasonable. Sometimes, for
some reason or other, the clarffication is omitted.

The multiplicative problem has also been studied under the restriction that each stage-
return function takes nonnegative values. Similar results to additive problem are obtained.

The minimum problem has been originally proposed by Bellman and Zadeh in their sem-
inal paper [3], which has encouraged the study of decision-making in a fuzzy environment
([9], [21], [22], [23]). Recently pointing out a mathematical inconsistency in [3], Iwamoto
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and Fujita [18] have derived a valid recursive formula through an invariant imbedding
method ([2], [26], [36]).

Throughout the study of these three problems, it has been focussed to derive a recursive
equation for a given class of (perhaps not general but Markov) policies. In this paper, we
rather raise the question whether there exists an optimal policy for the associative problem
with the class or not. If it exists, we further focus our attention on the question whether
the optimal policy is Markov or not.

Sections 2 discusses additive problem. We derive recursive equations both for the general
class and for the Markov class. Identifying both optimal value functions, we show that
Markov policy is enough.

Section 3 discusses multiplicative problem unth negative retums. Since regular dynamic
programming does not appply to this multiplicative problem, we propose another two
methods–bynamic programming method and invariant imbedding method-. It is shown
that neither the general class nor the Markov class does admit the recursive equation. In
general, both optimal value functions do not coincide. Nevertherless, it is shown through
an invariant imbedding method that there exist an optimal policy in the general class and
not necessarily in the Markov class.

Section 4 discusses minimum problem through the invariant imbedding method. Both
formulation of and results for minimum problem are same for multiplicative one with
negative returns. It is also shown that neither the general class nor the Markov class
admits the recursive equation. In general, both optimal value functions do not coincide.
Nevertherless, it is shown that there exist an optimal policy in the general class.

As a summary, in the last section, we discusses associative problem. It is emphasized
that the invariant imbedding method does in general apply and is essential for associa-
tive problem. It is also pointed that same formulation and results as the forementioned
multiplicative and minimum problems are obtained. The main results of the paper are
as follows. Though Markov policy is enough for both additive problem and multiplica-
tive problem with nonnegative returns, it is not always optimal for associative problem.
Though associative problem does not necessarily admit the recursive equation, a general
policy, which is constructed through invariant imbedding, is optimal in associative problem.

Throughout the paper the following data is given:
$N\geq 2$ is an integer; the total number of stages
$X=\{s_{1}, s_{2}, \ldots, s_{p}\}$ is a finite state space
$U=\{a_{1}, a_{2}, \ldots, a_{k}\}$ is a finite action space
$r_{n}$ : $X\cross Uarrow R^{1}$ is an n-th reward function $(0\leq n\leq N-1)$

$k:Xarrow R^{1}$ is a terminal reward function (1)
$f$ : $X\cross Uarrow X$ is a deterministic transition law

; $f(x, u)$ represents the successor state of $x$ for action $u$

$p$ is a Markov trvrnsition law
: $p(y|x,u)\geq 0\forall(x, u, y)\in X\cross U\cross X$, $\sum_{y\in X}p(y|x, u)=1\forall(x, u)\in X\cross U$
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$y\sim p(\cdot|x, u)$ denotes that next state $y$ conditioned on state $x$ and action $u$

appears with probability $p(y|x, u)$ .

2 Additive Processes
We begin to discuss additve problem. The following formulation and analysis play an
important role for characterizing associative problem. Let us consider the stochastic max-
imization problem with additive function as follows :

Maximize $E[r_{0}(x_{0}, u_{0})+r_{1}(x_{1}, u_{1})+\cdots+r_{N-1}(x_{N-1}, u_{N-1})+k(x_{N})]$

subject to (i) $x_{n+1}\sim p(\cdot|x_{n}, u_{n})$ (2)
(ii) $u_{n}\in U$ $n=0,1,$ $\ldots$ , $N-1$ .

2.1 General policies
In this subsection we consider the original problem (2) with the set of all general policies.
We call this problem general problem. With any general policy $\sigma=\{\sigma_{n}, \ldots, \sigma_{N-1}\}$ over
the $(N-n)$-stage process starting on n-th stage and terminating at the last stage, we
associate the expected value:

$I^{n}(x_{n};\sigma)$
$= \sum_{(x_{n+1}},..\sum_{x_{N}}.,\cdot\cdot\sum\{[r_{n}(x_{n}, u_{n})+\cdots+r_{N-1}(x_{N-1}, u_{N-1})+k(x_{N})])\in \mathrm{x}\cross\cdots\cross \mathrm{x}$

$\mathrm{x}p(x_{n+1}|x_{n}, u_{n})\cdots p(x_{N}|x_{N-1}, u_{N-1})\}$ (3)

where $\{u_{n}, x_{n+1)}\ldots, x_{N-1}, u_{N-1}, x_{N}\}$ is stochastically generated through the general policy
$\sigma$ and the starting state $x_{n}$ as follows :

$\sigma_{n}(x_{n})=u_{n}arrow p(\cdot|x_{n}, u_{n})\sim x_{n+1}arrow$

$\sigma_{n+1}(x_{n}, x_{n+1})=u_{n+1}arrow p(\cdot|x_{n+1}, u_{n+1})\sim x_{n+2}arrow$

$\sigma_{n+2}(x_{n}, x_{n+1}, x_{n+2})=u_{n+2}arrow p$ ( $\cdot$ I $x_{n+2},$ $u_{n+2}$ ) $\sim x_{n+3}arrow$ (4)
. . . $arrow$

$\sigma_{N-1}(x_{n}, x_{n+1}, \ldots, x_{N-1})=u_{N-1}arrow p(\cdot|x_{N-1}, u_{N-1})\sim x_{N}$ .
We define the family of the corresponding general subproblems as follows :

$V^{N}(x_{N})$ $=$ $k(x_{N})$ $x_{N}\in X$

$V^{n}(x_{n})$ $=$ ${\rm Max} I^{n}(x_{n};\sigma)\sigma$ $x_{n}\in X$, $0\leq n\leq N-1$ . (5)

Note that the general problem (2) is identical to (5) with $n=0$. Then we have the recursive
formula for the general subproblems :

Theorem 2. 1 ([19])

$V^{N}(x)$ $=$ $k(x)$ $x\in X$

$V^{n}(x)$ $=$
${\rm Max}[r_{n}(x, u)+ \sum_{y\in X}V^{n+1}(y)p(y|x, u)]u\in U$

$x\in X$ , $0\leq n\leq N-1$ . (6)
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2.2 Markov policies

In this subsection we restrict the problem (2) to the set of all Markov policies. We call this
problem Markov problem. Here a policy

$\pi=\{\pi_{0}, \pi_{1}, . . . , \pi_{N-1}\}$ (7)

is called Markov if

$\pi_{0}$ : $Xarrow U$, $\pi_{1}$ : $Xarrow U$, . . . , $\pi_{N-1}$ : $Xarrow U$. (8)

We remark that the size in (1) yields $k^{p}$ n-th decision functions $\pi_{n}(n=0,1, \ldots , N-1)$

and $k^{Np}$ Markov policies $\pi$ .
Note that any Markov policy $\pi=\{\pi_{n}, \ldots, \pi_{N-1}\}$ over the $(N-n)$-stage process

is associated with its expected value $I^{n}(x_{n};\pi)$ defined by (3), where the alternate se-
quence $\{u_{n}, x_{n+1}, \ldots, x_{N-1}, u_{N-1}, x_{N}\}$ is similarly generated through the Markov policy $\pi$

and the starting state $x_{n}$ as in (4). Here we rematk that

$u_{n}=\pi_{n}(x_{n})$ , $u_{n+1}=\pi_{n+1}(x_{n+1}),$ $\cdots,$ $u_{N-1}=\pi_{N-1}(x_{N-1})$ . (9)

We define the corresponding Markov subproblems as follows:

$v^{N}(x_{N})$ $=$ $k(x_{N})$ $x_{N}\in X$

$v^{n}(x_{n})$ $=$ ${\rm Max} I^{n}(x_{n};\pi)\pi$ $x_{n}\in X$ , $0\leq n\leq N-1$ . (10)

Then (10) with $n=0$ reduces to the Markov problem (2). We have the recursive formula
for the Markov subproblems :

Theorem 2. 2 ([19])

$v^{N}(x)$ $=$ $k(x)$ $x\in X$

$v^{n}(x)$ $=$
${\rm Max}[r_{n}(x, u)+ \sum_{y\in X}v^{n+1}(y)p(y|x, u)]u\in U$

$x\in X$ , $0\leq n\leq N-1$ . (11)

Theorem 2. 3 ([19]) (i) A Markov policy yields the optimal value function $V^{0}(\cdot)$ for the
general problem. That is, there exists an optimal Markov policy $\pi^{*}for$ the general problem
(2) :

$I^{0}(x_{0)}\pi^{*})=V^{0}(x_{0})$ for all $x_{0}\in X$ . (12)

In fact, letting $\pi_{n}^{*}(x)$ be a maximizer of (11) (or (6)) for each $x\in X,$ $0\leq n\leq N-1$ , we
have the optimal Markov policy $\pi^{*}=\{\pi_{0}^{*}, \ldots, \pi_{N-1}^{*}\}$ .
(ii) The optimal value functions for the Markov subproblems (10) are equal to the optimal
value functions for the general problems (5) :

$v^{n}(x)=V^{n}(x)$ $x\in X$ , $0\leq n\leq N$ . (13)
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3 Multiplicative Processes
In this section we consider the stochastic maximization of multiplicative function as follows
:

Maximize $E[r_{0}(x_{0}, u_{0})r_{1}(x_{1}, u_{1})\cdots r_{N-1}(x_{N-1}, u_{N-1})k(x_{N})]$

subject to (i) $x_{n+1}\sim p(\cdot|x_{n}, u_{n})$ (14)
(ii) $u_{n}\in U$ $n=0,1,$ $\ldots,$ $N-1$

We treats two cases for multiplicative process. One is with nonnegative returns. The other
is with negative returns.

3.1 Nonnegative Returns
We assume the nonnegativity of return functions :

$r_{n}(x, u)\geq 0$ $(x, u)\in X\cross U,$ $1\leq n\leq N-1$ . (15)

3.1.1 General policies

In this subsection we consider the original problem (14) with the set of all general policies.
We call this problem general problem. With any general policy $\sigma=\{\sigma_{n}, \ldots , \sigma_{N-1}\}$ , we
associate the corresponding expected value:

$I^{n}(x_{n};\sigma)$
$= \sum_{(x_{n+1}},..\sum_{x_{N}}.,\cdot\cdot\sum\{[.r_{n}(x_{n}, u_{n})\cdots r_{N-1}(x_{N-1}, u_{N-1})k(x_{N})])\in \mathrm{x}\cross\cdot\cdot\cross \mathrm{x}$

$\cross p(x_{n+1}|x_{n}, u_{n})\cdots p(x_{N}|x_{N-1}, u_{N-1})\}$. (16)

We define the family of the corresponding general subproblems as follows :
$V^{N}(x_{N})$ $=$ $k(x_{N})$ $x_{N}\in X$

$V^{n}(x_{n})$ $=$ ${\rm Max} I^{n}(x_{n};\sigma)\sigma$ $x_{n}\in X$ , $0\leq n\leq N-1$ . (17)

Then we have the recursive formula for the general subproblems :
Theorem 3. 1

$V^{N}(x)$ $=$ $k(x)$ $x\in X$

$V^{n}(x)$ $=$
${\rm Max}[r_{n}(x, u) \sum_{y\in X}V^{n+1}(y)p(y|x, u)]u\in U$

$x\in X$ , $0\leq n\leq N-1$ . (18)

3.1.2 Markov policies

In this subsection we restrict the problem (14) to the set of all Markov policies. We call
this problem Markov problem.

Any Markov policy $\pi=\{\pi_{n}, \ldots, \pi_{N-1}\}$ over the $(N-n)$-stage process is associated with
its expected value $I^{n}(x_{n};\pi)$ defined by (16). For the corresponding Markov subproblems:

$v^{N}(x_{N})$ $=$ $k(x_{N})$ $x_{N}\in X$

$v^{n}(x_{n})$ $=$ ${\rm Max} I^{n}(x_{n};\pi)\pi$ $x_{n}\in X$ , $0\leq n\leq N-1$ . (19)

We have the recursive formula:
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Theorem 3. 2

$v^{N}(x)$ $=$ $k(x)$ $x\in X$

$v^{n}(x)$ $=$
${\rm Max}[r_{n}(x, u) \sum_{y\in X}v^{n+1}(y)p(y|x, u)]u\in U$

$x\in X$, $0\leq n\leq N-1$ . (20)

Theorem 3. 3 (i) A Markov policy yields the optimal value function $V^{0}(\cdot)$ for the general
problem. That is, there vists an optimal Markov policy $\pi^{*}for$ the general problem (14) :

$I^{0}(x_{0};\pi^{*})=V^{0}(x_{0})$ for all $x_{0}\in X$ . (21)

In fact, letting $\pi_{n}^{*}(x)$ be a maximizer of (18) (or (20)) for each $x\in X,$ $0\leq n\leq N-1$ , we
have the optimal Markov policy $\pi^{*}=\{\pi_{0}^{*}, \ldots, \pi_{N-1}^{*}\}$ .
(ii) The optimal value functions for the Markov subproblems (19) are equal to the optimal
value functions for the geneml problems (17) :

$v^{n}(x)=V^{n}(x)$ $x\in X$, $0\leq n\leq N$. (22)

3.2 Negative Returns
In this subsection we take away the nonnegativity assumption (15) for return functions.
We rather assume that it takes at least a negative value:

$r_{n}(x, u)<0$ for some $(x, u)\in X\cross U,$ $0\leq n\leq N-1$ . (23)

Then, in general, neither recursive formula (18) nor (20) holds.
Nevertheless, we have the following positive result :

Theorem 3. 4 A genervtl policy yields the optimal value function $V^{0}(\cdot)$ for the general
problem. That is, there exists an optimal general policy $\sigma^{*}for$ the general problem (14) :

$f(x_{0};\sigma^{*})=V^{0}(x_{0})$ for all $x_{0}\in X$ . (24)

Theorem 3. 5 ([10]) In general, Markov policy does not yield the optimal value function
$V^{0}(\cdot)$ for the general problem. That is, there exists a stochastic decision process with
multiplicative function such that for any Markov policy $\pi$

$V^{0}(x_{0})>J^{0}(x_{0};\pi)$ for some $x_{0}\in X$ . (25)

In the following we show two alternatives for the negative case, i.e., under assumption
(23). One is a $\mathrm{b}\mathrm{i}$-decision approach. The other is an invariant imbedding approach.

3.2.1 Bi-decision processes

In this subsection we consider the problem (14) with the set of all general policies. We call
this problem general problem. With any general policy $\sigma=\{\sigma_{n}, \ldots, \sigma_{N-1}\}$ , we associate
the corresponding expected value:

$I^{n}(x_{n};\sigma)$
$= \sum_{(x_{n+1}},..\sum_{x_{N}}.,\cdot\cdot\sum\{[r_{n}(x_{n}, u_{n})\cdots r_{N-1}(x_{N-1}, u_{N-1})k(x_{N})])\in x\cross\cdots\cross \mathrm{x}$

$\cross p(x_{n+1}|x_{n}, u_{n})\cdots p(x_{N}|x_{N-1},u_{N-1})\}$ . (26)
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We define both the family ofmaximum subproblems and the family ofminimum subproblems
as follows:

$V^{N}(x_{N})$ $=k(x_{N})$ $x_{N}\in X$

$V^{n}(x_{n})$ $=$ ${\rm Max} I^{n}(x_{n};\sigma)\sigma$ $x_{n}\in X$ , $0\leq n\leq N-1$ (27)

$W^{N}(x_{N})$ $=$ $k(x_{N})$ $x_{N}\in X$

$W^{n}(x_{n})$ $= \min_{\sigma}I^{n}(x_{n};\sigma)$ $x_{n}\in X$ , $0\leq n\leq N-1$ . (28)

For each $n(1\leq n\leq N-1),$ $x\in X$ we divide the control space $U$ into two disjoint subsets
:

$U(n, x, -)=\{u\in U|r_{n}(x, u)<0\}$ , $U(n, x, +)=\{u\in U|r_{n}(x, u)\geq 0\}$ . (29)

Then we have the bicursive $fo7mula$ (system of two recursive formulae) for the both
subproblems:

Theorem 3. 6 (See also Bicursive Formula [15, $pp.\mathit{6}\mathit{8}\mathit{5}_{f}l.\mathit{1}\mathit{3}- \mathit{2}\mathit{2}]$)

$V^{N}(x)$ $=$ $W^{N}(x)=k(x)$ $x\in X$

$V^{n}(x)$
$=u \in U(n_{)}x-){\rm Max},[r_{n}(x, u)\sum_{y\in X}W^{n+1}(y)p(y|x, u)]$

$\bigvee_{u\in U(n,x+)}{\rm Max},[r_{n}(x, u)\sum_{y\in X}V^{n+1}(y)p(y|x, u)]$
, (30)

$W^{n}(x)$
$= \min_{u\in U(n,x-)},[r_{n}(x, u)\sum_{y\in X}V^{n+1}(y)p(y|x, u)]$

$\wedge\min_{u\in U(n,x,+)}[r_{n}(x, u)\sum_{y\in X}W^{n+1}(y)p(y|x, u)]$
(31)

$x\in X$ , $0\leq n\leq N-1$ .

Let $\pi=\{\pi_{0}, \ldots, \pi_{N-1}\}$ be a general policy for maximum problem and
$\sigma=\{\sigma_{0)}\ldots, \sigma_{N-1}\}$ be a general policy for minimum problem, respectively. Then the pair
$(\pi, \sigma)$ is called a strategy for both maximum and minimum problem (14).

Given any strategy $(\pi, \sigma)$ , we regenerate two policies, upper policy and lower policy, to-
getger with corresponding two stochastic processes. The upper policy $\mu=\{\mu_{0}, \ldots, \mu_{N-1}\}$ ,
which governs the upper process $Y=\{Y_{0}, \ldots, \mathrm{Y}_{N}\}$ on the state space $X=\{s_{1}, s_{2}, \ldots , s_{p}\}$

([15, pp.683]), is defined as follows:

$\mu_{0}(x_{0}):=\pi_{0}(x_{0})$ (32)

$\mu_{1}(x_{0}, x_{1}):=\{\pi_{1}(x_{0},x_{1})\sigma_{1}(x_{0},x_{1})$ for $r_{0}(x_{0}, u_{0})\{\begin{array}{l}\leq 0>0\end{array}$ (33)

where
$u_{0}=\pi_{0}(x_{0})$ .
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$\mu_{2}(x_{0},x_{1}, x_{2}):=\{\begin{array}{l}\pi_{2}(x_{0},x_{1}, x_{2})\sigma_{2}(x_{0}, x_{1}, x_{2})r_{1}(x_{1},u_{1})\{\end{array}$

$\sigma_{2}(x_{0},x_{1}, x_{2})$

$\pi_{2}(x_{0)}x_{1}, x_{2})$

$\leq 0\leq 0>0>0$ $u_{1}=\{\begin{array}{l}\sigma_{1}(x_{0},x_{1})\pi_{1}(x_{0},x_{1})\sigma_{1}(x_{0}, x_{1})\pi_{1}(x_{0}, x_{1})\end{array}$ (34)

$\mu_{n}(x_{0}, \ldots,x_{n}):=\{$ $\pi_{n}(x_{0}\sigma_{n}(x_{0}\sigma_{n}(x_{0}\pi_{n}(x_{0},$”’ $:::_{x_{n})}^{x_{n})}:::_{x_{n})}^{X_{n})},$”’ for $r_{n-1}(x_{n-1}, u_{n-1})\{\begin{array}{l}\leq 0\leq 0>0>0\end{array}$

$u_{n-1}=\{\begin{array}{l}\sigma_{n-1}(x_{0}, \ldots, x_{n-1})\pi_{n-1}(x_{0}, \ldots, x_{n-1})\sigma_{n-1}(x_{0}, \ldots, x_{n-1})\pi_{n-1}(x_{0}, \ldots, x_{n-1})\end{array}$ (35)

and so on.
On the other hand, the replacement of triplet $\{\mu, \sigma, \pi\}$ by $\{\nu, \pi, \sigma\}$ in the regeneration

process above yields the lower policy $\nu=\{\nu_{0}, \ldots : \nu_{N-1}\}$ , which in turn governs the lower
process $Z=\{Z_{0}, \ldots, Z_{N}\}$ on the state space $X$ ([15, pp.684]).

Now let us return to the problem of selecting an optimal policy for maximum problem
(14) with the set of all general policies. We have obtained the bicursive formula (30),(31)
for the general subproblems. Let for each $n(0\leq n\leq N-1),$ $x\in X\pi_{n}^{*}(x)$ and $\hat{\sigma}_{n}(x)$ be a
maximizer for (30) and a minimizer for (31), respectively. Then we have a pair of policies
$\pi^{*}=\{\pi_{0}^{*}, \ldots , \pi_{N-1}^{*}\}$ and $\hat{\sigma}=\{\hat{\sigma}_{0)}\ldots , \hat{\sigma}_{N-1}\}$ . Thus, the pair $(\pi^{*},\hat{\sigma})$ is a strategy for
problem (14). The preceding discussion for strategy $(\pi^{*},\hat{\sigma})$ regenerates both upper policy
$\mu^{*}=\{\mu_{0}^{*}, \ldots, \mu_{N-1}^{*}\}$ and lower policy $\hat{\nu}=\{\hat{\nu}_{0}, \ldots,\hat{\nu}_{N-1}\}$. From the construction (32)-(35)
together with bicursive formula (30),(31), we see that upper policy $\mu^{*}=\{\mu_{0}^{*}, \ldots , \mu_{N-1}^{*}\}$ is
optimal policy for maximum problem (14). Thus, the general policy $\mu^{*}$ yields the optimal
value function $V^{0}(\cdot)$ in (27) for the general maximum problem.

Similarly, the lower policy $\hat{\nu}=\{\hat{\nu}_{0}, \ldots , \hat{\nu}_{N-1}\}$ is optimal for minimum problem (14). The
general policy $\hat{\nu}$ yields the optimal value function $W^{0}(\cdot)$ in (27) for the general minimum
problem.

Further, restricting the problem (14) to the set of all Markov policies, we have the same
bicursive formula (30),(31) for the Markov problem. It is shown that the corresponding
optimal value functions for Markov subproblems $\{v^{n}(\cdot), w^{n}(\cdot)\}$ are identical to the optimal
value functions $\{V^{n}(\cdot), W^{n}(\cdot)\}$ in (27),(28), respectively:

$V^{n}(x)=v^{n}(x)$ $W^{n}(x)=w^{n}(x)$ $x\in X0\leq n\leq N$. (36)

Letting $\pi_{n}^{*}(x)$ and $\hat{\sigma}_{n}(x)$ be a maximizer for the resulting recursive formula for
$\{v^{n}(\cdot), w^{n}(\cdot)\}$ , we have a pair of Markov policies $\pi^{*}$ and $\hat{\sigma}$ . Then, the regenerated upper
policy $\mu^{*}$ is not Markov but optimal for maximum problem (14). Thus, the general policy
$\mu^{*}$ yields the optimal value function $V^{0}(\cdot)$ in (27) for the general maximum problem.
However, Markov policy does not always yield the optimal value function $V^{0}(\cdot)$ in (27) for

150



the general maximum problem. Because even if the strategy $(\pi^{*},\hat{\sigma})$ obtained by selecting
both maximizer and minimizer for bicursive formula is Markov, the resulting upper and
lower policies $\mu^{*}$ and $\hat{\nu}$ are not necessarily Markov. In general, both the policies constructed
through (32)-(35) and its dual $\mathrm{h}\mathrm{o}\mathrm{m}(\pi^{*},\hat{\sigma})$ are general for Markov problems.

Similarly, the lower policy $\hat{\nu}$ is optimal for minimum problem (14). The general policy $\hat{\nu}$

yields the optimal value function $W^{0}(\cdot)$ in (27) for the general minimum problem. However,
Markov policy does not always yield the optimal value function $W^{0}(\cdot)$ in (28) for the general
minimum problem.

3.2.2 Imbedded processes

In this subsection we imbed the problem (14) into a family of terminal processes on one-
dimensionally augumented state space. We note that the return, which may take negative
values, is multiplicatively accumulating.

Let us return to the original stochastic maximization problem (14) with multiplicative
function. Without loss of generality, we may assume that

$-1\leq r_{n}(x, u)\leq 1$ $(x, u)\in X\cross U,$ $0\leq n\leq N-1$

$-1\leq k(x)\leq 1$ $x\in X$ . (37)

Under the condition (37), we imbed the problem (14) into the family of parametrized
problems as follows :

Maximize $E[\lambda_{0}r_{0}(x_{0}, u_{0})r_{1}(x_{1}, u_{1})\cdots r_{N-1}(x_{N-1}, u_{N-1})k(x_{N})]$

subject to (i) $x_{n+1}\sim p(\cdot|x_{n},u_{n})$ (38)
(ii) $u_{n}\in U$ $n=0,1,$ $\ldots,$ $N-1$

where the papameter ranges over $\lambda_{0}\in[-1,1]$ .
First we consider the imbedded problem (38) with the set of all general policies, called

general problem. Here we note that any general policy:

$\sigma=\{\sigma_{0}, \sigma_{1}, . . . 2 \sigma_{N-1}\}$ (39)

consists of the following decision functions

$\sigma_{0}$ : $X\cross[-1,1]arrow U$

$\sigma_{1}$ : $(X\cross[-1,1])\cross(X\cross[-1,1])arrow U$

$\sigma_{N-1}$ : $(X\cross[-1,1])\cross(X\cross[-1,1])\cross\cdots\cross(X\cross[-1,1])arrow U$ .

Thus, any general policy $\sigma=\{\sigma_{n}, \ldots, \sigma_{N-1}\}$ over the $(N-n)$-stage process yields its
expected value:

$K^{n}(x_{n}, \lambda_{n} ; \sigma)$ $= \sum_{(x_{n+1}},..\sum_{x_{N}}.,\cdots\sum\{[\lambda_{n}r_{n}(x_{n},u_{n})\cdots r_{N-1}(x_{N-1}, u_{N-1})k(x_{N})])\in x\cross\cdots\cross \mathrm{x}$

$\cross p(x_{n+1}|x_{n},u_{n})\cdots p(x_{N}|x_{N-1}, u_{N-1})\}$ (40)
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where the alternating sequence of action and augumented state

$\{u_{n}, (x_{n+1}, \lambda_{n+1}), u_{n+1}, (x_{n+2}, \lambda_{n+2}), ... , u_{N-1}, (x_{N}, \lambda_{N})\}$

is stochastically generated through the policy $\sigma$ and the starting state $(x_{n}, \mathrm{A}_{n})$ as follows :

$\sigma_{n}(x_{n}, \lambda_{n})=u_{n}arrow\{\begin{array}{l}p(\cdot|x_{n}, u_{n})\sim x_{n+1}\lambda_{n}r_{n}(x_{n}, u_{n})=\lambda_{n+1}\end{array}$

$arrow\sigma_{n+1}(x_{n}, \lambda_{n}, x_{n+1}, \lambda_{n+1})=u_{n+1}arrow\{\begin{array}{l}p(\cdot|x_{n+1}, u_{n+1})\sim x_{n+2}\lambda_{n+1}r_{n+1}(x_{n+1}, u_{n+1})=\lambda_{n+2}\end{array}$

$arrow\sigma_{n+2}(x_{n}, \lambda_{n}, x_{n+1}, \lambda_{n+1}, x_{n+2}, \lambda_{n+2})=u_{n+2}$ (41)

$arrow\{\begin{array}{l}p(\cdot|x_{n+2}, u_{n+2})\sim x_{n+3}\lambda_{n+2}r_{n+2}(x_{n+2}, u_{n+2})=\lambda_{n+3}\end{array}$ $arrow$ .. .

$arrow\sigma_{N-1}(x_{n}, \lambda_{n}, x_{n+1}, \lambda_{n+1}, \ldots, x_{N-1}, \lambda_{N-1})=u_{N-1}$

$arrow\{\begin{array}{l}p(\cdot|x_{N-1}, u_{N-1})\sim x_{N}\lambda_{N-1}r_{N-1}(x_{N-1}, u_{N-1})=\lambda_{N}\end{array}$

We define the family of the corresponding general subproblems:

$V^{N}(x_{N}, \lambda_{N})$ $=$ $\lambda_{N}k(x_{N})$ $x_{N}\in X$ , $-1\leq\lambda_{N}\leq 1$

$V^{n}(x_{n}, \lambda_{n})$ $=$ ${\rm Max} K^{n}(x_{n}\sigma’\lambda_{n} ; \sigma)$ $x_{n}\in X$ , $-1\leq\lambda_{n}\leq 1$ , $0\leq n\leq N$ -1(42)

Then the general problem (38) is identical to (42) with $n=0$. We have the recursive
formula for the general subproblems :

Theorem 3. 7

$V^{N}(x, \lambda)$ $=$ $\lambda k(x)$ $x\in X$ , $\lambda\in[-1,1]$

$V^{n}(x, \lambda)$ $=$
${\rm Max} \sum_{y\in X}V^{n+1}(y, \lambda r_{n}(x, u))p(y|x, u)u\in U$

(43)

$x\in X$ , $\lambda\in[-1,1]$ , $0\leq n\leq N-1$ .

Second we consider the Markov problem. That is, we restrict the imbedded problem (38)
to the set of all Markov policies. Here Markov policy

$\pi=\{\pi_{0}, \pi_{1}, . . . , \pi_{N-1}\}$ (44)

consists in turn of two-variable decision functions :

$\pi_{n}$ : $X\cross[-1,1]arrow U$ $0\leq n\leq N-1$ .

Note that any Markov policy $\pi=\{\pi_{n}, \ldots, \pi_{N-1}\}$ over the $(N-n)$-stage process yields
its expected value $K^{n}(x_{n}, \lambda_{n} ; \pi)$ through (40). The alternating sequence of action and
augumented state

$\{u_{n}, (x_{n+1}, \lambda_{n+1}), u_{n+1}, (x_{n+2}, \lambda_{n+2}), . . . , u_{N-1}, (x_{N}, \lambda_{N})\}$
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is similarly generated through the policy $\pi$ and the state $(x_{n}, \lambda_{n})$ as in (41), where
$\pi_{n}(x_{n}, \lambda_{n})=u_{n}$

$\pi_{n+1}(x_{n+1}, \lambda_{n+1})=u_{n+1}$ (45)

$\pi_{N-1}(x_{N-1}, \lambda_{N-1})=u_{N-1}$ .

We define the family of the corresponding Markov subproblems:

$v^{N}(x_{N}, \lambda_{N})$ $=$ $\lambda_{N}k(x_{N})$ $x_{N}\in X$, $-1\leq\lambda_{N}\leq 1$

$v^{n}(x_{n}, \lambda_{n})$ $=$ ${\rm Max} K^{n}(x_{n}\pi’\lambda_{n} ; \pi)$ $x_{n}\in X$ , $-1\leq\lambda_{n}\leq 1,0\leq n\leq N-1.(46)$

Note that the Markov problem (38) is also (46) with $n=0$. Then we have the recursive
formula for the Markov subproblems :

Theorem 3. 8

$v^{N}(x, \lambda)$ $=\lambda k(x)$ $x\in X$, $\lambda\in[-1,1]$

$v^{n}(x, \lambda)$

$={\rm Max} \sum_{y\in X}v^{n+1}(y, \lambda r_{n}(x, u))p(y|x, u)u\in U$ (47)

$x\in X$, $\lambda\in[-1,1]$ , $0\leq n\leq N-1$ .
Theorem 3. 9 (i) A Markov policy yields the optimal value function $V^{0}(\cdot)$ for the general
problem. That is, there exists an optimal Markov policy $\pi^{*}for$ the general problem (38):

$V^{0}(x_{0}, \lambda_{0})=K^{0}(x_{0}, \lambda_{0} ; \pi^{*})$ for all $(x_{0}, \lambda_{0})\in X\cross[-1,1]$ . (48)

In fact, letting $\pi_{n}^{*}(x, \lambda)$ be a maximizer of (47) (or (43)) for each $(x, \lambda)\in X\cross[-1,1],$ $0\leq$

$n\leq N-1$ , we have the optimal Markov policy $\pi^{*}=\{\pi_{0}^{*}, \ldots, \pi_{N-1}^{*}\}$ .
(ii) The optimal value functions for the Markov subproblems (46) are equal to the optimal
value functions for the geneml problems $(\not\in \mathit{2})$ :

$v^{n}(x, \lambda)=V^{n}(x, \lambda)$ $(x, \lambda)\in X\cross[-1,1]$ , $0\leq n\leq N$. (49)

4 Minimum Processes
In this section we consider two types of minimum problems. One is deterministic opti-
mization of minimun function. The other is stochastic. We summarize only results. More
detailed analysis and a related example are given in [20].

4.1 Deterministic Dynamics
Let us consider the deterministic maximization problem for minimum function:

Maximize $r_{0}(x_{0}, u_{0})$ A $r_{1}(x_{1}, u_{1})\wedge\cdots$ A $r_{N-1}(x_{N-1}, u_{N-1})$ A $k(x_{N})$

subject to (i) $f(x_{n},u_{n})=x_{n+1}$ (50)
(ii) $u_{n}\in U$ $n=0,1,$ $\ldots,$ $N-1$ .
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4. $1.\mathrm{I}$ General policies

In this subsection we consider the geneml problem (50), which is accompanied with the
set of all general policies. We associate any general policy $\sigma=\{\sigma_{n}, \ldots, \sigma_{N-1}\}$ for the
$(N-n)$-stage process with its expected value :

$J^{n}(x_{n};\sigma)$ $=$ $r_{n}(x_{n}, u_{n})\wedge\cdots$ A $r_{N-1}(x_{N-1}, u_{N-1})$ A $k(x_{N})$ (51)

where $\{u_{n}, x_{n+1}, \ldots, x_{N-1}, u_{N-1},x_{N}\}$ is uniquely determined by the deteministic transition
law $f$ together with general policy $\sigma$ and $x_{n}$ .

We consider the following family of general subproblems:

$V^{N}(x_{N})$ $=k(x_{N})$ $x_{N}\in X$

$V^{n}(x_{n})$ $=$ ${\rm Max} J^{n}(x_{n};\sigma)\sigma$ $x_{n}\in X,$ $0\leq n\leq N-1$ . (52)

Note that the general problem (50) is identical to (52) with $n=0$. Further we should
remark that the maximization for the subproblems above is taken for all general policies,
namely, in problem (52)

$\sigma_{n}$ : $Xarrow U$, $\sigma_{n+1}$ : $X\cross Xarrow U$, ... , $\sigma_{N-1}$ : $X\cross\cdots\cross Xarrow U$.

Then we have the backward recursive formula for the general subproblems :

Theorem 4. 1

$V^{N}(x)$ $=k(x)$ $x\in X$

$V^{n}(x)$ $={\rm Max}[r_{n}(x, u)u\in U\wedge V^{n+1}(f(x, u))]$ $x\in X$ , $0\leq n\leq N-1$ . (53)

4.1.2 Markov policies

We consider the problem (50) with the set of all Markov policies, as Bellman and Zadeh
[3, \S 4] have done. We call this problem Markov problem. Note that any Markov policy
$\pi=\{\pi_{n}, \ldots, \pi_{N-1}\}$ for the $(N-n)$-stage process is associated with its value $J^{n}(x_{n};\pi)$

through (51).
We consider the following family of Markov subproblems:

$v^{N}(x_{N})$ $=$ $k(x_{N})$ $x_{N}\in X$

$v^{n}(x_{n})$ $=$ ${\rm Max} J^{n}(x_{n};\pi)\pi$ $x_{n}\in X$, $0\leq n\leq N-1$ . (54)

Thus (54) with $n=0$ reduces to the Markov problem (50). Further we remark that the
maximization for the above subproblems is restricted to the set of all Markov policies,
namely, in problem (54)

$\pi_{m}:Xarrow U$ $n\leq m\leq N-1$ .
Then we have the backward recursive formula for the Markov subproblems :
Theorem 4. 2 (Bellman and Zadeh [3, \S 4])

$v^{N}(x)$ $=$ $k(x)$ $x\in X$

$v^{n}(x)$ $=$ ${\rm Max}$ [$r_{n}(x,$$u)u\in U$ A $v^{n+1}(f(x,$ $u))$ ] $x\in X$ , $0\leq n\leq N-1$ . (55)
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Furthermore we have

Theorem 4. 3 (i) A Markov policy yields the optimal value function $V^{0}(\cdot)$ for the general
problem. That is, there vists an optimal Markov policy $\pi^{*}for$ the geneml problem (50) :

$J^{0}(x_{0;}\pi^{*})=V^{0}(x_{0})$ for all $x_{0}\in X$ . (56)

In fact, letting $\pi_{n}^{*}(x)$ be a maximizer of (55) (or (53)) for each $x\in X,$ $0\leq n\leq N-1$ , we
have the optimal Markov policy $\pi^{*}=\{\pi_{0}^{*}, \ldots,\pi_{N-1}^{*}\}$ .
(ii) The optimal value functions for the Markov subproblems (54) are equal to the optimal
value functions for the geneml subproblems (52) :

$v^{n}(x)=V^{n}(x)$ $x\in X$ , $0\leq n\leq N$. (57)

4.2 Stochastic Dynamics
Let us consider the stochastic maximization problem with minimum function:

Maximize $E$ [ $r_{0}(x_{0},$ $u_{0})$ A $r_{1}(x_{1},$ $u_{1})\wedge\cdots$ A $r_{N-1}(x_{N-1},$ $u_{N-1})$ A $k(x_{N})$ ]
subject to (i) $x_{n+1}\sim p(\cdot|x_{n}, u_{n})$ (58)

(ii) $u_{n}\in U$ $n=0,1,$ $\ldots,$ $N-1$ .

4.2.1 General policies

In this subsection we consider the problem (58) with the set of all general policies, called
general problem. Any general policy $\sigma=\{\sigma_{n}, \ldots, \sigma_{N-1}\}$ over the $(N-n)$-stage process
yields its expected value:

$J^{n}(x_{n};\sigma)$
$= \sum_{\mathrm{t}x_{n+1}},..\sum_{x_{N}}.,\cdots\sum${ [$r_{n}(x_{n},$

$u_{n})\wedge)\in x\cross\cdots\cross X\ldots$
A $r_{N-1}(x_{N-1},$ $u_{N-1})$ A $k(x_{N})$ ]

$\cross p(x_{n+1}|x_{n}, u_{n})\cdots p(x_{N}|x_{N-1}, u_{N-1})\}$ (59)

where $\{u_{n}, x_{n+1}, \ldots, x_{N-1}, u_{N-1}, x_{N}\}$ is stochastically generated by (4) through $\sigma$ and $x_{n}$ .
We define the following family of geneml subproblems:

$V^{N}(x_{N})$ $=$ $k(x_{N})$ $x_{N}\in X$

$V^{n}(x_{n})$ $=$ ${\rm Max} J^{n}(x_{n};\sigma)\sigma$ $x_{n}\in X$, $0\leq n\leq N-1$ . (60)

Thus the general problem (58) is identical to (60) with $n=0$ . However, in general, the
recursive formula for the general subproblems :

$V^{N}(x)$ $=k(x)$ $x\in X$

$V^{n}(x)$ $={\rm Max}$ [$r_{n}(x,u)u\in U$ A $\sum_{y\in X}V^{n+1}(y)p(y|x,$
$u)$ ] $x\in X$, $0\leq n\leq N-1$ (61)

does not hold.
Nevertheless, we have the following positive result :
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Theorem 4. 4 A general policy yields the optimal value function $V^{0}(\cdot)$ for the geneml
problem. That is, there exists an optimal geneml policy $\sigma^{*}for$ the general problem (58) :

$J^{0}(x_{0;}\sigma^{*})=V^{0}(x_{0})$ for all $x_{0}\in X$ . (62)

In fact, an invariant imbedding approach $([2],[16],[26])$ for the general problem (58) yields
an optimal general policy $\sigma^{*}=\{\sigma_{0}^{*}, \ldots, \sigma_{N-1}^{*}\}$ .

4.2.2 Markov policies

In this subsection we consider the problem (58) restricted to the set of all Markov policies
as Bellman and Zadeh [3, \S 5] have done. We cffi this problem Markov problem. Any
Markov policy $\pi=\{\pi_{n}, \ldots, \pi_{N-1}\}$ over the $(N-n)$-stage process yields its expected value
$J^{n}(x_{n};\pi)$ thorough (59).

We define the corresponding Markov subproblems as follows:
$v^{N}(x_{N})$ $=k(x_{N})$ $x_{N}\in X$

$v^{n}(x_{n})$ $={\rm Max} J^{n}(x_{n};\pi)\pi$ $x_{n}\in X$, $0\leq n\leq N-1$ . (63)

Then the Markov problem (58) becomes (63) with $n=0$ . In general, the recursive formula
for the Markov subproblems :

$v^{N}(x)$ $=$ $k(x)$ $x\in X$

$v^{n}(x)$ $=$ ${\rm Max}$ [$r_{n}(x,$$u)u\in U$ A $\sum_{y\in X}v^{n+1}(y)p(y|x,$
$u)$ ] $x\in X$, $0\leq n\leq N-1$ (64)

does not hold. We remark that Bellman and Zadeh derive the recursive formula for $\{v^{0}(\cdot$

$)$ , $v^{1}(\cdot),$
$\ldots$ , $v^{N}(\cdot)\}([3,$ \S 5] $)$ . (See also $([9],[21],[23],[22])$ . However, the recursive formula

(64) does not hold, as is shown by Iwamoto and Fujita ([18]).

Theorem 4. 5 ([20]) In general, Markov policy does not yield the optimal value function
$V^{0}(\cdot)$ for the geneml problem. That is, there exists a stochastic decision process with
minimum function such that for any Markov policy $\pi$

$V^{0}(x_{0})>J^{0}(x_{0};\pi)$ for some $x_{0}\in X$. (65)

4.3 Imbedded Process
Let us return to the original stochastic maximization problem (58) with minimum function.
Note that, without loss of generality, we may assume that

$0\leq r_{n}(x,u)\leq 1$ $(x, u)\in X\cross U,$ $0\leq n\leq N-1$

$0\leq k(x)\leq 1$ $x\in X$ . (66)

In this section we, under the condition (66), imbed the problem (58) into the family of
parametrized problems as follows :

Maximize $E$ [ $\lambda_{0}$ A $r_{0}(x_{0},$ $u_{0})$ A $r_{1}(x_{1},$ $u_{1})\wedge\cdots$ A $r_{N-1}(x_{N-1},$ $u_{N-1})$ A $k(x_{N})$ ]
subject to (i) $x_{n+1}\sim p(\cdot|x_{n}, u_{n})$ (67)

(ii) $u_{n}\in U$ $n=0,1,$ $\ldots$ , $N-1$

where the papameter ranges over $\lambda_{0}\in[0,1]$ .
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4.3.1 General policies

First we consider the imbedded problem (67) with the set of all general policies, called
general problem. Here we note that any general policy:

$\sigma=\{\sigma_{0}, \sigma_{1}, ... 2 \sigma_{N-1}\}$ (68)
consists of the following decision functions

$\sigma_{0}$ : $X\cross[0,1]arrow U$

$\sigma_{1}$ : $(X\cross[0,1])\cross(X\cross[0,1])arrow U$

$\sigma_{N-1}$ : $(X\cross[0,1])\cross(X\cross[0,1])\cross\cdots\cross(X\cross[0,1])arrow U$.

Thus, any general policy $\sigma=\{\sigma_{n}, \ldots, \sigma_{N-1}\}$ over the $(N-n)$-stage process yields its
expected value:

$K^{n}(x_{n}, \lambda_{n} ; \sigma)$ $= \sum_{(x_{n+1}},..\sum_{x_{N})}.,\cdots\sum\{[\lambda_{n}\bigwedge_{\cross\in X\cross\cdots X}r_{n}(x_{n}, u_{n})\wedge\cdots\wedge r_{Narrow 1}(x_{N-1}, u_{N-1})\wedge k(x_{N})]$

$\cross p(x_{n+1}|x_{n}, u_{n})\cdots p(x_{N}|x_{N-1}, u_{N-1})\}$ (69)

where the alternating sequence of action and augumented state
$\{u_{n}, (x_{n+1}, \lambda_{n+1}), u_{n+1}, (x_{n+2}, \lambda_{n+2}), . . . , u_{N-1}, (x_{N}, \lambda_{N})\}$

is stochastically generated through the policy $\sigma$ and the starting state $(x_{n}, \lambda_{n})$ as follows :

$\sigma_{n}(x_{n}, \lambda_{n})=u_{n}arrow\{\begin{array}{l}p(\cdot|x_{n}, u_{n})\sim x_{n+1}\lambda_{n}\wedge r_{n}(x_{n}, u_{n})=\lambda_{n+1}\end{array}$

$arrow\sigma_{n+1}(x_{n}, \lambda_{n}, x_{n+1}, \lambda_{n+1})=u_{n+1}arrow\{\begin{array}{l}p(\cdot|x_{n+1}, u_{n+1})\sim x_{n+2}\lambda_{n+1}\wedge r_{n+1}(x_{n+1}, u_{n+1})=\lambda_{n+2}\end{array}$

$arrow\sigma_{n+2}(x_{n}, \lambda_{n}, x_{n+1}, \lambda_{n+1}, x_{n+2}, \lambda_{n+2})=u_{n+2}$ (70)

$arrow\{\begin{array}{l}p(\cdot|x_{n+2}, u_{n+2})\sim x_{n+3}\lambda_{n+2}\wedge r_{n+2}(x_{n+2}, u_{n+2})=\lambda_{n+3}\end{array}$ $arrow$ . . .

$arrow\sigma_{N-1}(x_{n}, \lambda_{n}, x_{n+1}, \lambda_{n+1}, \ldots, x_{N-1}, \lambda_{N-1})=u_{N-1}$

$arrow\{\begin{array}{l}p(\cdot|x_{N-1}, u_{N-1})\sim x_{N}\lambda_{N-1}\wedge r_{N-1}(x_{N-1}, u_{N-1})=\lambda_{N}\end{array}$

We define the family of the corresponding general subproblems:
$V^{N}(x_{N}, \lambda_{N})$ $=$ $\lambda_{N}$ A $k(x_{N})$ $x_{N}\in X$ , $0\leq\lambda_{N}\leq 1$

$V^{n}(x_{n}, \lambda_{n})$ $=$ ${\rm Max} K^{n}(x_{n}\sigma’\lambda_{n} ; \sigma)$ $x_{n}\in X$, $0\leq\lambda_{n}\leq 1$ , $0\leq n\leq N-1.(71)$

Then the general problem (67) is identical to (71) with $n=0$. We have the recursive
formula for the general subproblems :
Theorem 4. 6

$V^{N}(x, \lambda)$ $=$ $\lambda\wedge k(x)$ $x\in X$ , $\lambda\in[0,1]$

$V^{n}(x, \lambda)$ $=$
${\rm Max} \sum_{y\in X}V^{n+1}(y, \lambda\wedge r_{n}(x, u))p(y|x, u)u\in U$ (72)

$x\in X$ , $\lambda\in[0,1]$ , $0\leq n\leq N-1$ .
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4.3.2 Markov policies

Second we consider the Markov problem. That is, we restrict the imbedded problem (67)
to the set of all Markov policies. Here Markov policy

$\pi=\{\pi_{0}, \pi_{1}, . .. 2 \pi_{N-1}\}$ (73)

consists in turn of two-variable decision functions :

$\pi_{n}$ : $X\cross[0,1]arrow U$ $0\leq n\leq N-1$ .

Note that any Markov policy $\pi=\{\pi_{n}, \ldots , \pi_{N-1}\}$ over the $(N-n)$-stage process yields
its expected value $K^{n}(x_{n}, \mathrm{A}_{n} ; \pi)$ through (69). The alternating sequence of action and
augumented state

$\{u_{n}, (x_{n+1}, \lambda_{n+1}), u_{n+1}, (x_{n+2}, \lambda_{n+2}), . . . , u_{N-1}, (x_{N}, \lambda_{N})\}$

is similarly generated through the policy $\pi$ and the state $(x_{n}, \lambda_{n})$ as in (70), where

$\pi_{n}(x_{n}, \lambda_{n})=u_{n}$

$\pi_{n+1}(x_{n+1}, \lambda_{n+1})=u_{n+1}$ (74)

$\pi_{N-1}(x_{N-1}, \lambda_{N-1})=u_{N-1}$ .

We define the family of the corresponding Markov subproblems:

$v^{N}(x_{N}, \lambda_{N})$ $=$ $\lambda_{N}$ A $k(x_{N})$ $x_{N}\in X$ , $0\leq\lambda_{N}\leq 1$

$v^{n}(x_{n}, \lambda_{n})$ $=$ ${\rm Max} K^{n}(x_{n}\pi’\lambda_{n} ; \pi)$ $x_{n}\in X$, $0\leq\lambda_{n}\leq 1$ , $0\leq n\leq N-1$ . (75)

Note that the Markov problem (67) is also (75) with $n=0$ . Then we have the recursive
formula for the Markov subproblems :

Theorem 4. 7

$v^{N}(x, \lambda)$ $=$ $\lambda\wedge k(x)$ $x\in X$, $\lambda\in[0,1]$

$v^{n}(x, \lambda)$ $=$
${\rm Max} \sum_{y\in X}v^{n+1}$

($yu\in U$ ’ A A $r_{n}(x,$ $u)$ )$p(y|x, u)$ (76)

$x\in X$ , $\lambda\in[0,1]$ , $0\leq n\leq N-1$ .

Theorem 4. 8 (i) A Markov policy yields the optimal value function $V^{0}(\cdot)$ for the general
problem. That is, there exists an optimal Markov policy $\pi^{*}for$ the general problem (67):

$V^{0}(x_{0}, \lambda_{0})=K^{0}(x_{0}, \lambda_{0} ; \pi^{*})$ for all $(x_{0}, \lambda_{0})\in X\cross[0,1]$ . (77)

In fact, letting $\pi_{n}^{*}(x, \lambda)$ be a maximizer of (76) (or (72)) for each $(x, \lambda)\in X\cross[0,1],$ $0\leq$

$n\leq N-1$ , we have the optimal Markov policy $\pi^{*}=\{\pi_{0}^{*}, \ldots, \pi_{N-1}^{*}\}$ .
(ii) The optimal value functions for the Markov subproblems (75) are equal to the optimal
value functions for the general problems (71) :

$v^{n}(x, \lambda)=V^{n}(x, \lambda)$ $(x, \lambda)\in X\cross[0,1]$ , $0\leq n\leq N$ . (78)
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5 Associative Processes
In this section, as a summary, we discuss associative problem. Without loss of generality,
we may assume that

$a\leq r_{n}(x, u)\leq b$ $(x, u)\in X\cross U,$ $0\leq n\leq N-1$

$a\leq k(x)\leq b$ $x\in X$ (79)

where
$-\infty<a<b<\infty$ .

Let $\circ:$ $[a, b]\cross[a, b]arrow[a, b]$ be an associative binary relation with a left-identity element
$\iota$ :

$\lambda\circ(\mu 0\nu)=(\lambda 0\mu)\circ\nu$ $\forall\lambda,\mu,$ $\nu\in[a, b]$ (80)
$\iota 0\lambda=\lambda$ $\forall\lambda\in[a, b]$ . (81)

The common value (80) is denoted by $\lambda 0\mu 0\nu$. We also use the notation $r_{1}\mathrm{o}r_{2}\mathrm{o}\cdots \mathrm{o}r_{n}$.
Then the equality

$r_{1}\mathrm{o}r_{2}\mathrm{o}\cdots \mathrm{o}r_{n}=\iota \mathrm{o}r_{1}\mathrm{o}r_{2}\mathrm{o}\cdots \mathrm{o}r_{n}$ (82)
plays an essential role in imbedding. The binary relation is said to be monotone
(resp. strictly monotone) if

$\mu<\nu$ $\Rightarrow$ $\lambda\circ\mu\leq\lambda\circ\nu$ (resp. $\lambda 0\mu<\lambda 0\nu$ ). (83)

Thus we see that Sections 2,3 and 4 have the following triplets $([a, b], 0, \iota)$ :

(i) (addition) $[a, b]=[-M, M]$ for some $M>0$ , $0=+$, $\iota=0$ (84)
(ii) (multiplication) $[a, b]=[-1,1]$ , $0=\cross$ , $\iota=1$ (85)
(iii) (minimum) $[a, b]=[0,1]$ , $\circ=\wedge$ , $\iota=1$ (86)

, respectively. Further, the addition $+\mathrm{i}\mathrm{s}$ strictly monotone, the multiplication $\cross \mathrm{i}\mathrm{s}$ not
necessarily monotone (is rather bitone in the sense of [15]), and the minimum A is monotone.

In addition, we have five more triplets as follows ([16]) :

(iv) (multiplication-addition) $[a, b]=[-M, M]$ for some $M>1$ ,
a $\mathrm{o}b=ab+a+b$ , $\iota=-1$ (87)

(v) (maximum) $[a, b]=[0,1]$ , a $\mathrm{o}b=a\vee b$ , $\iota=0$ (88)

(vi) (additive ffaction) $[a, b]=[0,1]$ , a $\mathrm{o}b=\frac{a+b}{1+ab}$ , $\iota=0$ (89)
$ab$

(vii) (multiplicative ffaction) $[a, b]=[0,1]$ , a $\mathrm{o}b=\overline{1+\overline{a}\overline{b}}$ ’

where $\overline{x}=1-x$ , $\iota=1$ (90)
(viii) (terminal) $[a, b]=[0,1]$ , a $\mathrm{o}b=b$, $\iota=\mathrm{a}\mathrm{n}\mathrm{y}$ element $\in[0_{f}1]$ . (91)

Further, the multiplication-addition is not necesarrily monotone. It is rather bitone. The
maximum is monotone. The additive fraction is strictly monotone except for at $a=1$ , so is
the multiplicative haction except for at $a=0$. Finally, the terminal is strictly monotone.
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5.1 Deterministic Dynamics

Let us consider the deterministic maximization of associative function;

Maximize $r_{0}(x_{0},u_{0})\circ r_{1}(x_{1}, u_{1})\circ\cdots\circ r_{N-1}(x_{N-1}, u_{N-1})\circ k(x_{N})$

subject to (i) $f(x_{n}, u_{n})=x_{n+1}$ (92)
(ii) $u_{n}\in U$ $n=0,1,$ $\ldots,$ $N-1$ .

Then we have
Theorem 5. 1 (i) Under the monotonicity

(i-1) both the recursive formulae for general problem and for Markov problem hold,
(i-2) both the optimal value functions are coincident,

and
(i-3) there exist an optimal policy in Markov class.

(ii) However, in general,
(ii-l) ne\’ither the recursive formula for geneml problem nor for Markov problem holds,

and
(ii-2) there exists an optimal policy in general class.

Remark 1. The general optimal policy for (92) is constructed through an invariant imbed-
ding with additional one-dimensional parameter just as was shown both for multiplicative
problem with negative returns and for minimum problem. Needless to say, regular dyanamic
programming approach applies for associative problem with monotonicity (83). Without
introducing an additional one-dimensional parameter, we can derive the recursive equation
both for general problem and for Markov problem.

5.2 Stochastic Dynamics
Let us consider the stochastic maximization of associative function:

Maximize $E[r_{0}(x_{0}, u_{0})\circ r_{1}(x_{1}, u_{1})\circ\cdots \mathrm{o}r_{N-1}(x_{N-1}, u_{N-1})\circ k(x_{N})]$

subject to (i) $x_{n+1}\sim p(\cdot|x_{n}, u_{n})$ (93)
(ii) $u_{n}\in U$ $n=0,1,$ $\ldots,$ $N-1$ .

Then we have
Theorem 5. 2 (i) In general, neither the recursive formula for general problem nor for
Markov problem holds.

(ii) Nevertheless, there always exists an optimal policy in geneml class.
Remark 2. The general optimal policy is also constructed through the invariant imbedding
approach. Even if associative problem (93) satisfies the monotonicity, regular dynamic pro-
gramming does not apply. It does not always yield recursive formula for general and Markov
problems. Thus, as far as stochastic optimization, the invariant imbedding approach is a
fundamental tool for deriving a valid recursive formula for an one-dimensionally extended
problem. An optimal Markov policy for the extended problem generates in tern an optimal
general policy for the original general problem (93). The method is called stochastic final
state approach [16]. (For the details on deterministic final state approach, see [34], [35] and
[36, pp.300] $)$ .
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