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Moduli spaces of maps with two critical points
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Dept. of Math., College of Sci. and Tech., Nihon Univ.

Abstract

We give directly a defining equation of the symmetry locus, a singular
part of the moduli space of the quadratic rational maps. We show a char-
acterization of this locus. We can expand analogous discussion for the cubic
polynomials and give a “chart” making a comparison between properties of
these moduli spaces in Appendix A. Moreover, we apply these method to the
polynomials of degree n, and give some conjectures.

1 Quadratic rational maps

1.1 Moduli space of quadratic rational maps

Let C be the Riemann sphere and Rat,(C) the space of all quadratic rational
maps from C to itself. The group PSL,(C) of Mdbius transformations acts on the
space Rat,(C) by conjugation,

gofog ™ €Raty(C) for g€ PSLy(C), f € Raty(C).

Two maps fi, fo € Raty(C) are holomorphically conjugate, denoted by fi ~ f3,
if and only if there exists g € PSLy(C) with go fiog™" = f;. The quotient space of
Ratz(C) under this action will be denoted by M;(C), and called the moduli space

of holomorphic conjugacy classes (f) of quadratic rational maps f.

Milnor introduced coordinates in M,(C) as follows; for each f € Ratz(C), let
21, 22, 73 be the fixed points of f and p; the multipliers of ziy i = f(z) (1 <1< 3).
Consider the elementary symmetric functions of the three multipliers,

o1 = fy + po + p3, 02 = pafie + popts + Uspy, O3 = Hafiofis.

These three multipliers determine f up to holomorphic conjugacy, and are subject
only to the restriction that
- O3 = 01 — 2.



Hence the moduli space M,(C) is canonically isomorphic to C* with coordinates
o, and o3 (Lemma 3.1 in [Mil93]).

For each y € C let Per,(u) be the set of all conjugacy classes (f) of maps f which
having a periodic point of period n and multiplier u.
Each of Per;(x) and Pery(p) forms a straight lines as follows:

Peri(u) = {(f) € Ma(C)i00 = (s +u™")or — (4 +2u7)}
Pery(p) = {(f) € M3(C);02 = =201 + 1}, |

(Lemmas 3.4 and 3.6 in [Mil93]).

Remark Per;(—1) C Pery(1) by definition. But, in the case of M,(C), it is clear
that two families coincide.

1.2 Symmetry locus

By an automorphism of a quadratic rational map f, we will mean g € PSL,(C)
which commutes with f. The collection Aut(f) of all automorphisms of f forms a
finite group. It is clear that Aut(f) is isomorphic to Aut(f) for any f € (f).

The set

S = {(f); Aut(f) is non-trivial} C M,(C)

is called the symmetry locus.

Corollary 1  The symmetry locus S of quadratic rational maps forms an irre-
ducible algebraic curve as follows; '

S(oy,049) = 209 + 0ioy — 02 — 402 —~ 801045 + 1207, + 120, — 36 = 0. (1)

Proof of Corollary 1.

Aut(f) coincides with the group consisting of all permutations of the fixed points
which preserve the multipliers. In the case of f has the three distinct fixed points,
Aut(f) has order 1, 2, or 6 according as three multipliers are distinct, two are equal,
or all the three are equal, respectively, while, if f has multiple fixed points then
Aut(f) is non-trivial if and only if f has a triple fixed point. The multipliers p; are
the roots of the equation:

ﬂ3—01ﬂ2+0'2/l—0'1+2=0. (2)

The equation (2) has multiple roots if and only if its discriminant is equal to zero.
Hence we have

(02 — 201 + 3)(207 + 0702 — 0F — 40) — 80105 + 1207 + 1205 — 36) = 0.
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Figure 1: My(R) with the real cut of S.  Figure 2: Lines {Pery(p)} in the real cut
of the moduli space M,(C)

The first factor corresponds with Per;(1). Considering the line of the first factor

(Per;(1)) tangent to the curve of the second factor (S) with tangency of degree

three, the second factor is the required equation.

' |

The following result is obtained immediately by the definition of the envelope of
the family of curves.

Corollary 2 The envelope of {Per;(u)}, coincides with the symmetry locus.

Remark (Theorem 5.1.of [Mil93]) A quadratic rational map has a non-trivial
automorphism if and only if it is conjugate to a map in the unique normal form

f(z) = k(z+ 1) with k € C\ {0}.

1.3 Real moduli space

Let Raty(R) be the set of real quadratic rational maps. Then the parameters
o; (1 < ¢ < 3) are all real, because the three fixed points and the correspond-
ing multipliers are either all real or one real and a pair of complex conjugate
numbers. According to J. Milnor, we define the real moduli space M,(R) for
Ratz(R) to be simply the real (01,02)-p1ane This notation needs some care when
used: if we put Sg = S N M2(R), and denote by ( ) the real conjugacy class,
then (Raty(R)/PGL2(R)) \ < a(z+ 1% > < > ecrx 18 canonically isomor-

phic to R? \ Sg, whereas there is a ca,nomcal two- to one correspondence between

{(a(z £ 1)) }oenx and Sp.
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2 Cubic polynomials

2.1 Moduli space of cubic polynomials

Let be Poly;(C) the space of all cubic polynomials from C to itself. The group
Poly;(C) of affine transformations acts on the space Poly,;(C) by conjugation,

gopogle Poly,(C) for g € Poly,(C), p € Poly,(C).

Two maps p;, p; € Poly,(C) are holomorphically conjugate, denoted by p; ~ p,;,
if and only if there exists g € Poly,(C) with g o p; 0 g7! = p,. The quotient space
of Poly;(C) under this action will be denoted by M3(C), and called the moduli
space of holomorphic conjugacy classes (p) of cubic polynomials p.

Doing the same as the case of quadratic rational maps, we introduce coordinates
~in M3(C) as follows; for each p € Poly;(C), let z1, z3, 23, za(= 00) be the fixed
points of p and y; the multipliers of z;; u; = p'(2zi) (1 <7 < 3), and uy = 0. Consider
the elementary symmetric functions of the four multipliers,

=1+ po + ps + e = 1+ p2 + p3
Oy = pajby + pipi3 + pafea + popis + pofis + pafts = pafia + fips + papis
O3 = [1fioft3 + f1fiofis + flafiafha + floflafls = fl1fioft3
Oy = prpapaps = 0.

These multipliers determine uniquely p up to holomorphic conjugacy, and are subject
only to the restriction that ‘
3 - 20’1 + 09 = O

Hence the moduli space M3(C) is canonically isomorphic to C? with coordinates oy

and o3.

Proposition 1 The locus Pery(p) forms a straight lines as follows:

Pery () = {(f) € Ms(C); 03 = (—p* + 2p)0 + p* — 3u} .
The locus Pery(pn) forms an algebraic curve of degree three as follows:

Pery(p) = {(f) € My(C);03 + (40— (1 +57)01 + 252)03 — (4 — 16)0?
+(61p — 252)0% — (4p® + 246u — 1134)0y — p® + 512
—~99u — 459 = 0} . .
Note that this curve is irreducible if and only if p # 1. In the case of p =1,

Per,(1) = {Pery(— }U{ ); 03 + 407 — 610y + 254 = 0}.
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2.2 Symmetry locus

Using conjugation described in above, we can define symmetry locus of this moduli
space as one in M;(C), and we obtain next results.

Theorem 1 The symmetry locus S of cubic polynomials forms an irreducible
algebraic curve:

S(01,03) = 2703 + (07 — 6)(20, — 3)* = 0. (3)

The following result is obtained immediately by the definition of the envelope of
the family of curves. )

Corollary 3  The envelope of {Per;(1)}, coincides with the symmetry locus.

Figure 3: M3(R) with the real cut of S. Figure 4: Lines {Perl(u)} in the real cut
of the moduli space M3(C).

Remark A cubic polynomial has non-trivial automorphism if and only if it is
conjugate to a map in the unique normal form p(z) = 2° + az.

2.3 Real moduli space

Let Poly;(R) be the set of real cubic polynomials. By the same reason for the
case of My, we define the real moduli space M3(R) for Poly;(R) to be simply the
real (0y,03)-plane. This notation needs some care when used: if we put Sz =
SNMj3(R), and denote by ( ), the real conjugacy class, then (Poly;(R)/Poly,(R))\
{(z® + az)y, (—2® + az)g }serx is canonically isomorphic to R?\ Sg, whereas there

is a canonical two-to-one correspondence between {(+z® + az)},ecrx and Sg.



3 Polynomials of degree n

3.1 Moduli space of polynomials of .degree n

Now we discuss about the moduli space M, (C) for the space, Poly,(C), of polyno-
mials of degree n.

Doing the same as the case of cubic polynomials, we try introducing coordinates
in M,(C) as follows; for each p(z) € Poly,(C), let z;, ---, 2z,, z,41(= 00) be the
fixed points of p and p; the multipliers of z;; p; = p'(2;) (1 <@ <n), and p,q1 = 0.
Consider the elementary symmetric functions of the n multipliers,

On,1 ::u‘l++ﬂn7
On2 = faflz + -+ fncifin = Loy Hi Sori i

Onmn = B2 P,

Onnt1 = 0.
Example 1  For example, we assume p(z) € Poly,(C);
o fixed points: 21, 23, 23, 24, 00
e multiplier: pq,ps, t3, pt4,0

e elementary symmetric functions:

041 = p1+ po+ p3 + py

O4,2 = Pafig + pafis + pafia + popis + popg + papiy
Oa3 = [iflofis + Piflofa + H1ftafty + Pofispiy

04,4 = H1f2f3}4

J45 = 0 )

Applying Fatou-index theorem to these fixed points;

S SENNRNS NS B S
1—[!1 1'—/,&2 1—/13 ].—[14 1-0

1, (4)

where p; # 1 (1 < ¢ < n). Arranging this equation for the form of elementary
symmetric functions;

4 = 3(p1 + p2 + pa + pa) + 2(pp2 + paps + papa + pops + pops + paps)
—(papiapis + papiapa + prpapa + popaps) = 0.

Hence we have
‘ 4 — 3041 + 2042 — 043 =0. (5)

For the equation (5), the cases p; = 1 are also allowable.
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Now we consider a polynomial p(z) = a42* + a32® + a22% + a3z + a¢ € Poly,(C)
that has at least two fixed points. After affine conjugation, we can assume they are
0 and 1. Then, we will solve the following question: “Do the four multipliers

po = p'(0), 1 = p'(1), p2 = P'(22), ps = p'(23),

where z,, zo are fized points of p(z), determine the five coefficients a4, as, az, a;, ao
of p(z)¢” o
In fact, the following equations hold;

a=0 because of f(0)

=0,
a; = fip because of f'(0) = po,
ay = aq+3—2puo — py because of f'(1) =y,

azs=1—a4—az—po because of f(1)=1,
and a4 is a common root of the following two equations;

Ar =(p3 — 2pspz + p3 — pg + 2p1p0 — p3)ag + (—dpg + (4pa + 8 + (—4p1 —
8)po+4pu3 —8pf +8pu1)ag + (—6pg + (—4ps +28)pg + (4pi +4p1 — 44)ug +
(=443 +4p7 — 81 +32)po — 6puy + 2843 — 444 + 321 — 16)af+ (—4pg +
(—12p1 +32) g + (=8puf + 6441 — 96) g + (847 — 9641 + 128) g + (1247 —
6443 + 9643 —64) o+ 43 —32u5 + 9643 — 12843 +64p1)ag — p§+(—6p1 +
12)ud + (=15p2 + 60py — 60)pud + (—20p3 + 12042 — 240p; + 160)ud +
(—15u3 412043 —360u2 +480u; —240) p2 + (— 645 +60u] — 24043 +480u% —
4801 +192)po — p8 + 12u5 — 604} + 160u3 — 240p2 + 1924, — 64 = 0,

Ag =(pa + pa + po+ pa — 4)ad + (205 — 4po — 243 +4pn)ag + pg + (3pa — 6)ug +
(Bu? — 1211 + 12)po + p3 — 6pf + 124, — 8 = 0.

Above two equations have common roots if and only if po, 1, g2, 3 satisfy the
equation (5). Since po, ft1, p2, p3 are the four multipliers of p(z) and they should
satisfy the equation (5), the two equations always have common roots. Hence five
coefficients of p(z) are calculated by its four multipliers, however, this calculation is
not decisive when they have distinct two common roots.

For the case of Poly, (C), it is clear from (4) that the equation corresponds to (5)
cannot have the term of o, ,. Hence we can put

o+ ciop1+ 02+ -+ cho10ppn-1 =0

where ¢;, (0 < k < n — 1) are functions of n variable.
Paying attention to the form of elementary symmetric functions, we obtain the

following equation;
[+
k
(—1)f > — k.
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where ( L ) means binomial coefficient. For convenience, put ¢, = 1. we have

n—1

Z(—l)k(n —k)on, =0. (6)

k=0

Question Is the moduli space M,(C) for polynomials of dégree n canonically

isomorphic to C™™! with coordinates oy, o3, -+, 0,_2, and 0,7

3.2 Symmetry locus

Proposition 2 A polynomial of degree four has a non-trivial automorphism if

and only if it is conjugate to a map in the unique normal form
{z*+az}, a€C.
For a map p(z) in this normal form, Aut(p) is a cyclic group of order three.

Outline of proof. Let p(z) € Poly,(C).
1. In the case of a map p(z) with multiple fixed points.

(a) The case of p(z) with a fixed point of order four: Aut(p) is non-trivial.
(b) The case of p(z) with a fixed point of order three: Aut(p) is trivial.

(c) The case of p(z) with two fixed points of order two: there is not such
p(2)- |

(d) The case of p(z) with a fixed point of order two: Aut(p) is trivial.
2. In the case of a map p(z) with four distinct fixed points.

(a) The case of four distinct multipliers: Aut(p) is trivial.

(b) The case that only two of multipliers are coincide: Aut(p) is trivial.
(c) The case of two pair of same multipliers: there is not such p(z).
)

(d) The case of three same multipliers: By an affine conjugation, if three
fixed points (whose multipliers are same) are mapped on the vertices of a
regular triangle whose barycenter is the origin and the other fixed point
on the origin, then Aut(p) is non-trivial. Otherwise Aut(p) is trivial.

(e) The case of four same multipliers: there is not such p(z).
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Therefore a map p(z) has non-trivial automorphisms if and only if p(z) is in the case

1-(a) and the first part of 2-(d). We can check easily that these maps coincide with
the normal form {z* 4+ az}. ' |

Conjecture A polynomial of degree n has a non-trivial automorphism if and only
if it is conjugate to a map in the unique normal form

{z” + > A(k)zk}
kl(n—1),k#n—1

where A(k) are parameters in C.
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A Comparison between the quadratic rational

maps and cubic polynomials

Quadratic rational maps

Cubic polynomials

Moduli Space

MQ(C) ~ 02

M3(C) >~ C2

Real Moduli Space

MQ(R) ~ R2

excepts on the symm. locus

‘Ms(R) ~ R?

excepts on the symm. locus

200+ 02 =4
Per;(—1) = Pery(1)

Coordinates (01,02), o03=0;—2 (01,03), 3—20,+0,=0
Normal Forms Fixed Pint Normal Form, etc. | {f(z) =2°+az + b} (ap)
Periodic.Orbits Pery(p): Pery(p) :
o= (p+ o — (W +2) | o3=(—p>+2u)01 +p® —3p
Pery(p) : Pery(p) :

cubic algebraic curve

Per;(—1) C Pery(1)

Symmetry Locus

the envelope of {Per;(p)}
normal form : {k(z + 1)}

the envelope of {Per;(u)}

normal form : {z° + az}

Topological

Partition

degreet2, monotone,

unimodal, bimodal

Ro, 7217 RZ) RB

Hyp. Components

B,C,D,E

A, B, C, D
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