Coinvariant Algebras of Some Finite Groups

上智大学 篠田健一（Ken－ichi SHINODA）

0．Recently Y．Ito and I．Nakamura［IN2］，［N2］studied the Hilbert scheme of G－orbits $\operatorname{Hilb}^{G}\left(\mathbf{C}^{2}\right)$ for a finite group $G \subset S L(2, \mathbf{C})$ and showed a direct correspondence between the representation graph of G（McKay observation）and the singular fiber of the minimal resolution of \mathbf{C}^{2} / G（Dynkin curve）．In this article we report some attempts to extend the results to finite subgroups of $S L(3, \mathbf{C})$ ，which is being studied jointly with Iku Naka－ mura（Hokkaido Univ．）and Yasushi Gomi（Sophia Univ．）．For simplicity we take the complex number field \mathbf{C} as a ground field and representations considered are complex representations．

1．Let G be a finite group， $\operatorname{Irr}(G)=\left\{\chi_{1}, \ldots, \chi_{s}\right\}$ be the set of all irreducible characters of G and $\operatorname{Irr}(G)^{\sharp}=\operatorname{Irr}(G)-\left\{1_{G}\right\}$ ．Given a character χ of G ，we can form the representation graph $\Gamma(G)=\Gamma_{\chi}(G)$ as follows：the set of vertices is $\operatorname{Irr}(G)$ and the directed edge of weight $m_{i j}$ from χ_{i} to χ_{j} is determined by the relation

$$
\chi \cdot \chi_{i}=\sum_{j=1}^{s} m_{i j} \chi_{j}, \quad i=1, \ldots, s
$$

We use the convention that a pair of opposing directed edges of weight 1 is represented by a single edge and the weight $m_{i j}$ is omitted if $m_{i j}=1$ ．

Example 1．Let G be the quaternion group of order 8．Then $\operatorname{Irr}(G)$ consists of 4 linear charcters and the character χ of 2－dimensional representaion．Then $\Gamma_{\chi}(G)$ is eactly the extended Dynkin diagram of type D_{4} centered at χ ．

Example 2．Let G be the alternating group of degree 5，A_{5} ．Then $\operatorname{Irr}(G)=\{1, \chi=$ $\left.3_{1}, 3_{2}, 4,5\right\}$ ，（where the characters are expressed by the degrees of the corresponding rep－ resentations），and $\Gamma_{\chi}(G)$ becomes as follows：

2．In［M］J．McKay stated the following which is now famous as McKay observation．
Proposition．Let G be a finite subgroup of $S L(2, \mathbf{C})$ and χ be the character of the inclusion representation．Then $\Gamma_{\chi}(G)$ is an extended Dynkin diagram of type A，D or E．

Conversely every such extended Dynkin diagram is obtained as a representation graph of a subgroup of $S L(2, \mathbf{C})$.

Thus McKay observation establishes a bijective correspondence between subgroups G of $S L(2, \mathbf{C})$ and the extended Dynkin diagram \bar{X}_{G} of type A, D and E.
3. There is another famous correspondence between subgroups G of $S L(2, \mathbf{C})$ and the Dynkin diagram X_{G} of type A, D and E.(The extended Dynkin diagram of X_{G} is \bar{X}_{G}.) Let $S=\mathbf{C}^{2} / G$ and $p: \widetilde{S} \rightarrow S$ be the minimal resolution of sigularity. Then the singular fiber, $p^{-1}(0)$, is a union of projective lines, Dynkin curve of type X_{G}, having intersection matrix $-C$, where C is the Cartan matrix of type X_{G}. In particular the graph obtained by Dynkin curve as follows is the Dynkin diagram X_{G} : the set of vertices is that of projective lines appearing in Dynkin curve and two lines are joined iff they meet. For details, please see a survey article of R.Steinberg[St] or P.Slodowy[Sl].

These two correspondences were famous, but relations between them had not been clear. Recently an explanation of these correspondences was given by Y.Ito and I.Nakamura[IN1], [IN2] and I.Nakamura[N1], [N2], using Hilbert schemes.
4. Let $\operatorname{Hilb}^{n}\left(\mathbf{C}^{m}\right)$ be the Hilbert scheme of \mathbf{C}^{m} parametrizing all the 0-dimensional subschemes of length n and let $\operatorname{Symm}^{n}\left(\mathbf{C}^{m}\right)$ be the n-th symmetric product of \mathbf{C}^{m}, that is, the quotient of n-copies of \mathbf{C}^{m} by the natural action of the symmetric group of degree n. There is a canonical morphism π from $\operatorname{Hilb}^{n}\left(\mathbf{C}^{m}\right)$ to $\operatorname{Symm}^{n}\left(\mathbf{C}^{m}\right)$ associating to each 0 -dimensional subscheme of \mathbf{C}^{m} its support. Let G be a finite subgroup of $S L(m, \mathbf{C})$. The group G acts on \mathbf{C}^{m} so that it acts naturally on both $\operatorname{Hilb}^{n}\left(\mathbf{C}^{m}\right)$ and $\operatorname{Symm}^{n}\left(\mathbf{C}^{m}\right)$. Since π is G-equivariant, π induces a morphism from the G-fixed point set $\operatorname{Hilb}^{n}\left(\mathbf{C}^{m}\right)^{G}$ to the G-fixed point set $\operatorname{Symm}^{n}\left(\mathbf{C}^{m}\right)^{G}$.

Now consider the special situation that n is the order of the group G and $m=2$. Then $\operatorname{Symm}^{n}\left(\mathbf{C}^{2}\right)^{G}$ is isomorphic to the quotient space \mathbf{C}^{2} / G and there is a unique irreducible component of $\operatorname{Hilb}^{n}\left(\mathbf{C}^{2}\right)^{G}$ dominating $\operatorname{Symm}^{n}\left(\mathbf{C}^{2}\right)^{G}$, which we denote by $\operatorname{Hilb}^{G}\left(\mathbf{C}^{2}\right)$ and call it the Hilbert scheme of G-orbits, following the notation and the definition by I.Nakamura. Notice that we have a morphism $p: \operatorname{Hilb}^{G}\left(\mathbf{C}^{2}\right) \rightarrow \mathbf{C}^{2} / G$ induced by π. The following theorem is proved in a unified way.

Theorem. [IN2]. $\operatorname{Hilb}^{G}\left(\mathbf{C}^{2}\right)$ is nonsingular and $p: \operatorname{Hilb}^{G}\left(\mathbf{C}^{2}\right) \rightarrow \mathbf{C}^{2} / G$ is a minimal resolution of singularity.
5. Let $R=\mathbf{C}[x, y]$ be the ring of regular functions on \mathbf{C}^{2} and M be the maximal ideal corresponding to the origin, that is $M=(x, y)$. For a finite group $G \subset S L(2, \mathbf{C})$ of order n, let R^{G} be the invarint algebra of G and N be the ideal of R generated by invariant homogeneous polynomials of positive degree which generate R^{G}. The ring $R_{G}=R / N$ is called the coinvariant algebra of G.

We identify a G-invariant 0 -dimensional subscheme with its defining ideal of R. For $I \in \operatorname{Hilb}^{G}\left(\mathbf{C}^{2}\right)$ with support origin, put $V(I)=I /(M I+N)$. Then $V(I)$ is a G-module and we denote its character by $\chi_{V(I)}$. Let E be the exceptional set of p and $\operatorname{Irr}(E)$ be
the set of irreducible components of E. For $\chi \in \operatorname{Irr}(G)^{\sharp}$, define

$$
E(\chi)=\left\{I \in E \mid\left(\chi, \chi_{V(I)}\right)_{G} \neq 0\right\}
$$

where $(,)_{G}$ is the usual inner product on functions on G. Then by verifying every case the following theorem is obtained.

Theorem. [IN2],[N2].

$$
E=\{I \mid G \text {-invarinant ideal of } R, N \subset I \subset M, R / I \simeq \mathbf{C} G\}
$$

and the map $\chi \mapsto E(\chi)$ gives a bijective correspondence between $\operatorname{Irr}(G)^{\sharp}$ and $\operatorname{Irr}(E)$.
6. Let G be a subgroup of $S L(3, \mathbf{C}) . R, R^{G}, R_{G}, M$ and N are defined similarly for \mathbf{C}^{3} and G as in 5 . Now theorem 5 suggests the necessity to study

$$
F_{G}:=\{I \mid G \text {-invarinant ideal of } R, N \subset I \subset M, R / I \simeq \mathbf{C} G\}
$$

which would be a fiber of the origin of the quotient space \mathbf{C}^{3} / G in the Hilbert scheme of G-orbits. For that purpose we need detailed structures of the coinvariant algebras R_{G}. What we have mainly obtained so far are

- decomposition of R_{G} (or its overalgebra) into irreducible components, particularly for groups of orders $60\left(A_{5}\right), 168(P S L(2,7)), 108,180,216,504,648$, and 1080,
- explicit determination of basis for each irreducible component above for A_{5} and $P S L(2,7)$.

As an outcome of these calculations we can show that $F_{A_{5}}$ is a union of projective lines whose graph is given by

and a graph for $P S L(2,7)$ also can be given. Details will appear in [GNS].

References

[GNS] Y.Gomi, I.Nakamura and K.Shinoda, Coinvariant algebras of some finite groups, (in preparation).
[IN1] Y.Ito and I.Nakamura, Hilbert schemes and simple singularities, to appear in Proc. Japan Academy.
[IN2] _ Hilbert schemes and simple singularities A_{n} and D_{n}, (preprint).
[M] McKay, Graphs, singularities, and finite groups, Proc. Symp. Pure Math., AMS 37(1980),183-186.
[N1] I.Nakamura, Simple singularities, McKay correspondence and Hilbert schemes of G-orbits, (preprint).
[N2] , Hilbert schemes and simple singulariries E_{6}, E_{7} and E_{8},(preprint).
[Sl] P.Slodowy, Simple singularities, Springer Lecture Note 815(1980).
[St] R.Steinberg, Kleinian singularities and unipotent elements, Proc. Symp. Pure Math.; AMS 37(1980),265-270.

