## Coinvariant Algebras of Some Finite Groups

## 上智大学 筱田健一(Ken-ichi SHINODA)

**0.** Recently Y.Ito and I.Nakamura [IN2], [N2] studied the Hilbert scheme of G-orbits  $Hilb^G(\mathbb{C}^2)$  for a finite group  $G \subset SL(2, \mathbb{C})$  and showed a direct correspondence between the representation graph of G(McKay observation) and the singular fiber of the minimal resolution of  $\mathbb{C}^2/G(Dynkin \text{ curve})$ . In this article we report some attempts to extend the results to finite subgroups of  $SL(3, \mathbb{C})$ , which is being studied jointly with Iku Nakamura(Hokkaido Univ.) and Yasushi Gomi(Sophia Univ.). For simplicity we take the complex number field  $\mathbb{C}$  as a ground field and representations considered are complex representations.

**1.** Let G be a finite group,  $Irr(G) = \{\chi_1, ..., \chi_s\}$  be the set of all irreducible characters of G and  $Irr(G)^{\sharp} = Irr(G) - \{1_G\}$ . Given a character  $\chi$  of G, we can form the representation graph  $\Gamma(G) = \Gamma_{\chi}(G)$  as follows: the set of vertices is Irr(G) and the directed edge of weight  $m_{ij}$  from  $\chi_i$  to  $\chi_j$  is determined by the relation

$$\chi \cdot \chi_i = \sum_{j=1}^s m_{ij} \chi_j, \qquad i = 1, ..., s.$$

We use the convention that a pair of opposing directed edges of weight 1 is represented by a single edge and the weight  $m_{ij}$  is omitted if  $m_{ij} = 1$ .

**Example 1.** Let G be the quaternion group of order 8. Then Irr(G) consists of 4 linear charcters and the character  $\chi$  of 2-dimensional representation. Then  $\Gamma_{\chi}(G)$  is eactly the extended Dynkin diagram of type  $D_4$  centered at  $\chi$ .

**Example 2.** Let G be the alternating group of degree 5,  $A_5$ . Then  $Irr(G) = \{1, \chi = 3_1, 3_2, 4, 5\}$ , (where the characters are expressed by the degrees of the corresponding representations), and  $\Gamma_{\chi}(G)$  becomes as follows:



2. In [M] J. McKay stated the following which is now famous as McKay observation.

**Proposition.** Let G be a finite subgroup of  $SL(2, \mathbb{C})$  and  $\chi$  be the character of the inclusion representation. Then  $\Gamma_{\chi}(G)$  is an extended Dynkin diagram of type A, D or E.

Conversely every such extended Dynkin diagram is obtained as a representation graph of a subgroup of  $SL(2, \mathbb{C})$ .

Thus McKay observation establishes a bijective correspondence between subgroups G of  $SL(2, \mathbb{C})$  and the extended Dynkin diagram  $\overline{X}_G$  of type A, D and E.

3. There is another famous correspondence between subgroups G of  $SL(2, \mathbb{C})$  and the Dynkin diagram  $X_G$  of type A, D and E.(The extended Dynkin diagram of  $X_G$  is  $\overline{X}_G$ .) Let  $S = \mathbb{C}^2/G$  and  $p: \tilde{S} \to S$  be the minimal resolution of sigularity. Then the singular fiber,  $p^{-1}(0)$ , is a union of projective lines, Dynkin curve of type  $X_G$ , having intersection matrix -C, where C is the Cartan matrix of type  $X_G$ . In particular the graph obtained by Dynkin curve as follows is the Dynkin diagram  $X_G$ : the set of vertices is that of projective lines appearing in Dynkin curve and two lines are joined iff they meet. For details, please see a survey article of R.Steinberg[St] or P.Slodowy[Sl].

These two correspondences were famous, but relations between them had not been clear. Recently an explanation of these correspondences was given by Y.Ito and I.Nakamura[IN1], [IN2] and I.Nakamura[N1], [N2], using Hilbert schemes.

4. Let  $Hilb^{n}(\mathbb{C}^{m})$  be the Hilbert scheme of  $\mathbb{C}^{m}$  parametrizing all the 0-dimensional subschemes of length n and let  $Symm^{n}(\mathbb{C}^{m})$  be the n-th symmetric product of  $\mathbb{C}^{m}$ , that is, the quotient of n-copies of  $\mathbb{C}^{m}$  by the natural action of the symmetric group of degree n. There is a canonical morphism  $\pi$  from  $Hilb^{n}(\mathbb{C}^{m})$  to  $Symm^{n}(\mathbb{C}^{m})$  associating to each 0-dimensional subscheme of  $\mathbb{C}^{m}$  its support. Let G be a finite subgroup of  $SL(m, \mathbb{C})$ . The group G acts on  $\mathbb{C}^{m}$  so that it acts naturally on both  $Hilb^{n}(\mathbb{C}^{m})$  and  $Symm^{n}(\mathbb{C}^{m})$ . Since  $\pi$  is G-equivariant,  $\pi$  induces a morphism from the G-fixed point set  $Hilb^{n}(\mathbb{C}^{m})^{G}$ .

Now consider the special situation that n is the order of the group G and m = 2. Then  $Symm^n(\mathbb{C}^2)^G$  is isomorphic to the quotient space  $\mathbb{C}^2/G$  and there is a unique irreducible component of  $Hilb^n(\mathbb{C}^2)^G$  dominating  $Symm^n(\mathbb{C}^2)^G$ , which we denote by  $Hilb^G(\mathbb{C}^2)$  and call it the Hilbert scheme of G-orbits, following the notation and the definition by I.Nakamura. Notice that we have a morphism  $p: Hilb^G(\mathbb{C}^2) \to \mathbb{C}^2/G$  induced by  $\pi$ . The following theorem is proved in a unified way.

**Theorem.** [IN2].  $Hilb^G(\mathbb{C}^2)$  is nonsingular and  $p: Hilb^G(\mathbb{C}^2) \to \mathbb{C}^2/G$  is a minimal resolution of singularity.

5. Let  $R = \mathbb{C}[x, y]$  be the ring of regular functions on  $\mathbb{C}^2$  and M be the maximal ideal corresponding to the origin, that is M = (x, y). For a finite group  $G \subset SL(2, \mathbb{C})$  of order n, let  $R^G$  be the invariant algebra of G and N be the ideal of R generated by invariant homogeneous polynomials of positive degree which generate  $R^G$ . The ring  $R_G = R/N$  is called the coinvariant algebra of G.

We identify a G-invariant 0-dimensional subscheme with its defining ideal of R. For  $I \in Hilb^G(\mathbb{C}^2)$  with support origin, put V(I) = I/(MI + N). Then V(I) is a G-module and we denote its character by  $\chi_{V(I)}$ . Let E be the exceptional set of p and Irr(E) be

the set of irreducible components of E. For  $\chi \in Irr(G)^{\sharp}$ , define

$$E(\chi) = \{ I \in E | (\chi, \chi_{V(I)})_G \neq 0 \}$$

where  $(,)_G$  is the usual inner product on functions on G. Then by verifying every case the following theorem is obtained.

**Theorem.** [IN2],[N2].

$$E = \{ I \mid G \text{-invariant ideal of } R, N \subset I \subset M, R/I \simeq \mathbf{C}G \}$$

and the map  $\chi \mapsto E(\chi)$  gives a bijective correspondence between  $Irr(G)^{\sharp}$  and Irr(E).

**6.** Let G be a subgroup of  $SL(3, \mathbb{C})$ . R,  $R^G$ ,  $R_G$ , M and N are defined similarly for  $\mathbb{C}^3$  and G as in **5**. Now theorem 5 suggests the necessity to study

 $F_G := \{ I \mid G \text{-invariant ideal of } R, N \subset I \subset M, R/I \simeq \mathbb{C}G \},\$ 

which would be a fiber of the origin of the quotient space  $\mathbb{C}^3/G$  in the Hilbert scheme of G-orbits. For that purpose we need detailed structures of the coinvariant algebras  $R_G$ . What we have mainly obtained so far are

- decomposition of  $R_G$  (or its overalgebra) into irreducible components, particularly for groups of orders  $60(A_5)$ , 168(PSL(2,7)), 108, 180, 216, 504, 648, and 1080,
- explicit determination of basis for each irreducible component above for  $A_5$  and PSL(2,7).

As an outcome of these calculations we can show that  $F_{A_5}$  is a union of projective lines whose graph is given by



and a graph for PSL(2,7) also can be given. Details will appear in [GNS].

## References

[GNS] Y.Gomi, I.Nakamura and K.Shinoda, Coinvariant algebras of some finite groups, (in preparation).

- [IN2] \_\_\_\_\_, Hilbert schemes and simple singularities  $A_n$  and  $D_n$ , (preprint).
- [M] McKay, Graphs, singularities, and finite groups, Proc. Symp. Pure Math., AMS 37(1980),183-186.
- [N1] I.Nakamura, Simple singularities, McKay correspondence and Hilbert schemes of G-orbits, (preprint).
- [N2] \_\_\_\_\_, Hilbert schemes and simple singularities  $E_6, E_7$  and  $E_8$ , (preprint).
- [Sl] P.Slodowy, Simple singularities, Springer Lecture Note 815(1980).
- [St] R.Steinberg, Kleinian singularities and unipotent elements, Proc. Symp. Pure Math., AMS 37(1980),265-270.