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ALGEBRAIC STRUCTURE OF NULL DESIGNS

Soo0iJIN CHO

ABSTRACT. Null designs are defined as the elements of the kernel of the incidence matrices
of k-subsets and t-subsets of an n-set. It has been known that the set of null designs is
the direct sum of the Specht modules of certain types as a group representation of the
symmetric group. The same is true for the g-analogue of null designs if we use irreducible
unipotent representations of the general linear groups over a finite field

A bijection between two known bases of the module of null designs of the Boolean
algebras (¢ = 1) is constructed.

1. Introduction

Let B denote the subspace lattice of an n-dimensional vector space over the finite
field Fy (if ¢ = 1 then the subset lattice of an n-set [n] = {1,2,...,n}), for a positive
integer n and a prime power q.

For 0 <: < n,let

’ X; = {z € BL : rank(z) =i}
and for a given field K and a finite set X, let K[X] be the K-vector space of the formal

sums Y yex CzZ.
c:EK

We will deal with only a field K of characteristic zero for the purpose of this paper.
For 0 < < j < n, we define two K-linear maps
dj,' : K[X]] — K[Xz] and Ugj ¢ K[X,] — I{[X]] by

dji(z) = Z y for z€X; and

y<z
yeX;

uii(y) = Z z for yelX;.
y<z
z€X;
Note that d;; and uj; just represent the incidence matrix between X ; and X;.
If we take K as the underlying field then, for given integers 0 < t < k < n — k, the
set of null (t,k)-designs is defined by the K-vector space

N{, = Ker(dg,).
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The following is a well known theorem which will be playing a key role in the proof of

the main theorem. (:;)q is the number of m-dimensional subspace of an n-dimensional

space over [, which is defined by ["][[T;Y[lm]';[ﬁfﬂr g , where [i] =14 ¢+ -+ ¢ L.

Theorem 1.1 [5]. For 0 < i < j < n—1i—1, the (’.’)q by (;‘)q incidence matriz

A;; = (agy), defined by
{ 1 ify<z
Qgy =

0 otherwise

has the full rank (';)q over a field of characteristic zero. Hence, dj; is a surjection and

u;; 18 an injection. i

In the next section, we summarize the known theorems about the ordinary represen-
tations of the symmetric group and the general linear group over Fy. Then, in the third
section, we state a theorem which express NZ & a@s a representation of the symmetric
group on n letters or the general linear group over a finite field. Finally, a construction
of a bijection between two known bases of Ntl,  1s given.

2. Group Representations

Obviously, th’ x 1s a representation of the symmetric group S, of n letters if ¢ = 1,
and it is a representation of the general linear group over F,, GL,(q), if ¢ # 1.

Remember that we only deal with a field of characteristic 0 as the underlying field of
group representations.

To investigate the structure of N, Z x as group representations, we summarize the main
theorems we will need about the representations of S, and GL,(q). For the detailed
definition and the proof of the theorems we refer to [3] , [4] and [6].

The (g)-Specht modules are defined for each partition A = (\;,...,A) of n. Remem-
ber that the diagram [)] is the set of ordered pairs (a,b), 1 < a < h, 1 <b < ), and
a tableau of type ) is an array of integers obtained by replacing the nodes in [A] by the
numbers 1,2,...,n. Tabloids are the tableaux with forgotten columns, i.e. we think each
row of a tabloid as a set and we use {T'} for the tabloid obtained from tableau T'. Let
V be an n-dimensional vector space over Fg (V =[n],if ¢ =1). Flags of type X are the
sequences of subspaces (subsets, if g =1) of V v

0)=VocCcWViCc---CV,=V  where
Dim(V;[Vicy) = N\ (lVi=Vical=Xiifg=1) for1<i<n.

M is the permutation representation of the flags of type ), hence M(qn_i ) is the per-

mutation representation of i-dimensional spaces of BY, if we only read Vl, of the given
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flag i.e.

Mq

(n—id) — K[Xi].

For each partition ), an irreducible submodule of MJ, called (g)-Specht module, exists,
and they are all non-isomorphic. We are only interested in the two part partitions
A = (n —1,1), 2i < n, so we introduce one way to describe the (g)-Specht module for

A= (n—1,1).
Theorem 2.1 (Kernel Intersection Theorem, [3, p72], [4, p76]).

i1 - .
Sgn—i,z') = ﬂ Ker d,‘j . .

§=0

" Remark on Theorem 2.1. For Ker d;j’s to be a KGLy(g)-module (or K.S,-module), we
expect d;;’s to be module homomorphisms. It, however, is easy enough to check.

Dims? .. ="} (" ,
()0,

Theorem 2.3 (Young’s Rule).

Theorem 2.2.

k
M =Sy - B

1=0

For a given tableau T, let Cr be the subgroup of of S,, consisted with the column
stabilizers of T', then a generator of .S'(ln_ ; i) is given by

er = kp{T} ,where kp = Z (sgnm)m .
7€CT

Remember that a tableau T is called standard if each row and each column of T form
increasing sequences. '

The following theorem gives us a very natural basis of the Specht modules.

Theorem 2.4.
{er : T is a standard (n — i,1)-tableau }

is a basis for S(ln_i Ny ]
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q -
3. Nt’k as a group representation

Since thk is a submodule of K[X;] = (n K k)’ by Theorem 2.3, Nf’k must be a
direct sum of S'(n_1 ) ’s. The following theorem shows how Nf’ ¢ 1s decomposed.

Theorem 3.1. As KGLy(q)-modules (or as KS,-modules if ¢ = 1),

N = @S(nu)

i=t+1

Sketch of the proof. For eacht+1 < i < k, we can embed Sgn ; ;) into M(qn k) through
U;k Since u;x is a monomorphism. Then, we can show that u,k(S — l)) is a submodule of

N, tq & by doing some calculation (either by direct way or by the help of Mébius functions).
Now, Theorem 2.2 finishes the proof by comparing the dimensions. i

The following theorem, due to R. L. Graham, S. -Y. R. Li and W. -C. W. Li , gives a
very nice basis of Nt1 - For convenience, we use a square free polynomlal Tiy Tiy... T;
to represent a k-subset {i1,12,...,7x} of [n].

123

Theorem 3.4 [1]. For 0<t<k<n—t—1, let Sy n consist of those o € S, which
satisfy:

a. o(l)<o(3)<---<o(2t+1),
b. 0(2) < o(4) <---< o(2t + 2),
o(2—1) < o(2), 1<i<t+]1,
d o(2t+1)<o(2t+3)<o(2t+4)<--- <ok +t+1),
e. o(2t+1)<o(k+t+2)<o(k+t+3)<---<o(n), and
fIf2t+3<:<k+t+1<j<nando(i) <o(2t+2) then o(s) < o(j).
Then {o(w) : 0 € Stk,n} is a basis of N}, where
w = (z1 — z2)(z3 — zq) - (T2e41 — T2t4+2)T2t43 * * * Thtt1

and permutations in S, act on w by permuting the indices of z;.

4. A bijection between two bases of N},

In this section, we construct a bijection between St ,k,n (see Theorem 3.4) and

k : »
ST kn = U {T : T is standard of shape (n —1,4)},
1=t+1

which give two bases of N}, (See Theorem 2.4, 3.1 and 3.4).
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Construction.

For convenience, given o € S; ¢ », we use the tableau

| iTab(J) :&(1)_ o(3) - o(2t+1) 0(2t+3) oo ok +t+1) 0(k+t+‘2) o+ o(n)

o(2) o(4) -+ o2t +2)
to represent o.

AA mapping ¢ from S; ;. , to ST; i n.
1. If Tab(o), o € Stk n is standard, then

$(c) = Tab(o).

2. If Tab(o), 0 € Stk,n is not standard, then
2a. Find the smallest iy such that 2t +3 <i; <k+t+1and o(k +t+2) < o(s1).

- 2b. Push down o(71) to the second row of Tab(c) (put it at the right end of the
second row) and put o(k + t + 2) at the position where o(i;) was, then slide
o(k +t+3),...,0(n) to the left by one position. Call the new tableau 7j.
3. Ty is of shape (n —t — 2,t 4+ 2) and by the definition of Sy ,’s, Ty = Tab(oy) for
o1 € St+1,k,n- App].y 1 and 2 to o;.

A mapping ¢ from ST} , to Stk ne _
1. T € ST ,n is of shape (n —t — 1,t + 1), then ¢(T) = o, where Tab(s) = T.

2. T € STi ,n is of shape (n — i, ¢), 2 >t + 1, then repeat the following until having a
tableau of shape (n —t — 1,¢ + 1).

2a. Find the right end number n; of the second row of T. Then, find the largest number
I such that [ < n; in the first k columns of the first row of T. Now, insert ! between
the k** and (k + 1)** numbers of the first row and put n; at the position where [
was.

Remark. It is a routine work to prove that ¢ and % are inverses each other.

Example.
If ,
Tab(c) =136857
24
fOT‘ o€ 51,4,8; then
1357

¢(o) = 2468 € STiap
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