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ABSTRACT. Null designs are defined as the elements of the kernel of the incidence matrices
of $k$-subsets and $t$-subsets of an $n$-set. It has been known that the set of null designs is
the direct sum of the Specht modules of certain types as a group representation of the
symmetric group. The same is true for the $q$-analogue of null designs if we use irreducible
unipotent representations of the general linear groups over a finite field

A bijection between two known bases of the module of null designs of the Boolean
algebras $(q=1)$ is constructed.

1. Introduction

Let $B_{n}^{q}$ denote the subspace lattice of an $n$-dimensional vector space over the finite
field $\mathrm{F}_{q}$ (if $q=1$ then the subset lattice of an $n$-set $[n]\equiv\{1,2,$

$\ldots,$
$n\}$ ), for a positive

integer $n$ and a prime power $q$ .
For $0\leq i\leq n$ , let

$X_{i}\equiv$ { $x\in B_{n}^{q}$ : rank$(x)=i$}
and for a given field $I\acute{\iota}$ and a finite set $X$ , let $K[X]$ be the $K$-vector space of the formal
sums

$\sum_{x\in \mathrm{x} ,c_{x}\in \mathrm{A}\prime}c_{x}X$ .

We will deal with only a field $K$ of characteristic zero for the purpose of this paper.
For $0\leq i\leq j\leq n$ , we define two $K$-linear maps

$d_{ji:}K[X_{j}]arrow K[X_{i}]$ and $u_{ij}$ : $K[X_{i}]arrow K[X_{j}]$ by

$d_{ji}(x)=y \leq_{X}\sum_{y\in}x_{i}y$

for $x\in X_{j}$ and

$u_{ij}(y)= \sum Xx\in \mathrm{x}y\leq x\mathrm{j}$

for $y\in X_{i}$ .

Note that $d_{ij}$ and $u_{ji}$ just represent the incidence matrix between $X_{j}$ and $X_{i}$ .
If we take $K$ as the underlying field then, for given integers $0\leq t\leq k\leq n-k$ , the

set of null $(t, k)$ -designs is defined by the $K$-vector space

$N_{k,t}^{q}\equiv I\mathrm{f}e\Gamma(d_{k},t)$ .
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The following $\mathrm{i}\dot{\mathrm{s}}$ a well known theorem which will be playing a key role in the proof of
the main theorem.
space over $\mathrm{F}_{q}$ , which is defined by $\frac{[n][n-1]\ldots[n-.m+1\rceil}{[m][m-1]..[1]}$ , where $[i]=1+q+\cdots+q^{i-1}$ .

Theorem 1.1 [5]. For $0\leq i\leq j\leq n-i-1_{;}$ the
$A_{ij}=(a_{xy})$ , defined by

$a_{xy}=\{$
1 if $y\leq x$

$0$ otherwise

has the full rank
$u_{ij}$ is an injection. 1

In the next section, we summarize the known theorems about the ordinary represen-
tations of the symmetric group and the general linear group over $\mathrm{F}_{q}$ . Then, in the third
section, we state a theorem which express $N_{t,k}^{q}$ as a representation of the symmetric
group on $n$ letters or the general linear group over a finite field. Finally, a construction
of a bijection between two known bases of $N_{t,k}^{1}$ is given.

2. Group Representations

Obviously, $N_{t,k}^{q}$ is a representation of the symmetric group $S_{n}$ of $n$ letters if $q=1$ ,
and it is a representation of the general linear group over $\mathrm{F}_{q},$ $GL_{n}(q)$ , if $q\neq 1$ .

Remember that we only deal with a field of characteristic $0$ as the underlying field of
group representations.

To investigate the structure of $N_{t,k}^{q}$ as group representations, we summarize the main
theorems we will need about the representations of $S_{n}$ and $GL_{n}(q)$ . For the detailed
definition and the proof of the theorems we refer to [3], [4] and [6].

The $(q)$ -Specht modules are defined for each partition $\lambda=(\lambda_{1}, \ldots, \lambda_{h})$ of $n$ . Remem-
ber that the diagram $[\lambda]$ is the set of ordered pairs $(a, b),$ $1\leq a\leq h,$ $1\leq b\leq\lambda_{a}$ and
a tableau of type $\lambda$ is an array of integers obtained by replacing the nodes in $[\lambda]$ by the
numbers 1, 2, ..., $n$ . Tabloids are the tableaux with forgotten columns, i.e. we think each
row of a tabloid as a set and we use $\{T\}$ for the tabloid obtained from tableau $T$ . Let
$V$ be an $n$-dimensional vector space over $\mathrm{F}_{q}$ ($V=[n]$ , if $q=1$ ). Flags of type $\lambda$ are the
sequences of subspaces (subsets, if $q=1$ ) of $V$

$\langle 0\rangle=V_{0}\subset V_{1}\subset\cdots\subset V_{n}=V$ , where

$Dim(V_{i}/V_{i-1})=\lambda_{i}$ ( $|V_{i}-V_{i-}1|=\lambda_{i}$ if $q=1$ ) for $1\leq i\leq n$ .
$M_{\lambda}^{q}$ is the permutation representation of the flags of type $\lambda$ , hence $M_{(ni)}^{q}-i$, is the per-
mutation representation of $i$-dimensional spaces of $B_{n}^{q}$ , if we only read $V_{1}$ of the given
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flag i.e.
$M_{(n-i}^{q},i)=K[Xi]$ .

For each partition $\lambda$ , an irreducible submodule of $M_{\lambda}^{q}$ , called $(q)$ -Specht module, exists,
and they are all non-isomorphic. We are only interested in the two part partitions
$\lambda=(n-\dot{i}, i),$ $2i\leq n$ , so we introduce one way to describe the $(q)$ -Specht module for
$\lambda=(n-i, i)$ .

Theorem 2.1 (Kernel Intersection Theorem, [3, $\mathrm{p}72],$ $[4,$ $\mathrm{p}76]$ ).

$S_{(i)}^{q}=\overline{\bigcap_{j=}}n-i,i10Kerd_{ij}$ I

Remark on Theorem 2.1. For $Kerd_{ij^{\mathrm{S}}}$
’ to be a $KGL_{n}(q)$-module (or $KS_{n}$-module), we

expect $d_{ij^{\mathrm{S}}}$
’ to be module homomorphisms. It, however, is easy enough to check.

Theorem 2.2.

$Di.ms_{(i)}^{q}=n-i,-$ I

Theorem 2.3 (Young’s Rule).

$M_{(n)}^{q} \cong\bigoplus_{=}^{k}-k,ksi0(n-i,i)q$ . 1

For a given tableau $T$ , let $C_{T}$ be the subgroup of of $S_{n}$ consisted with the column
stabilizers of $T$ , then a generator of $S_{(n-i}^{1},i$) is given by

$e_{T}\equiv\kappa\tau\{T\}$ ,where
$\kappa_{T}=\sum_{\pi\in c_{T}}(sgn\pi)\pi$

.

Remember that a tableau $T$ is called standard if each row and each column of $T$ form
increasing sequences.

The following theorem gives us a very natural basis of the Specht modules.

Theorem 2.4.
{ $e_{T}$ : $T$ is a standard $(n-i,$ $i)$ -tableau}

is a basis for $S_{(n-i}^{1},i$). I
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3. $N_{t,k}^{q}$ as a group representation

Since $N_{t,k}^{q}$ is a submodule of $K[X_{k}]=M_{(n-}^{q}k,k)$ ’ by Theorem 2.3, $N_{tk,|}^{q}$ must be a
direct sum of $S_{(i)^{\mathrm{S}}}^{q}n-i,’$ . The following theorem shows how $N_{t,k}^{q}$ is decomposed.

Theorem 3.1. As $KGL_{n}(q)$ -modules (or as $KS_{n}$ -modules if $q=1$ ),

$N_{t,k}^{q} \cong\bigoplus_{i=t+1}^{k}s_{(n}^{q}-i,i)$ .

Sketch of the proof. For each $t+1\leq\dot{i}\leq k$ , we can embed $S_{(n-i}^{q},i$ ) into $M_{()}^{q}n-k,k$ through
$u_{ik}$ since $u_{ik}$ is a monomorphism. Then, we can show that $u_{ik}(s_{(n)}^{q})-i,i$ is a submodule of
$N_{t,k}^{q}$ by doing some calculation (either by direct way or by the help of M\"obius functions).
Now, Theorem 2.2 finishes the proof by comparing the dimensions. 1

The following theorem, due to R. L. Graham, S. -Y. R. Li and W. -C. W. Li , gives a
very nice basis of $N_{t,k}^{1}$ . For convenience, we use a square free polynomial $x_{i}x_{i_{2}}\ldots x_{i}1k$

to represent a $k$-subset $\{i_{1}, i_{2}, \ldots, i_{k}\}$ of $[n]$ .

Theorem 3.4 [1]. For $0\leq t\leq k\leq n-t-1$ , let $S_{t,k,n}$ consist of those $\sigma\in S_{n}$ which
satisfy:

$a$ . $\sigma(1)<\sigma(3)<\cdots<\sigma(2t+1)$ ,
$b$ . $\sigma(2)<\sigma(4)<\cdots<\sigma(2t+2)$ ,
$c$ . $\sigma(2i-1)<\sigma(2i),$ $1\leq i\leq t+1$ ,
$d$. $\sigma(2t+1)<\sigma(2t+3)<\sigma(2t+4)<\cdots<\sigma(k+t+1)$ ,
$e$ . $\sigma(2t+1)<\sigma(k+t+2)<\sigma(k+t+3)<\cdots<\sigma(n)_{f}$ and
$f$. If $2t+3\leq i\leq k+t+1<j\leq n$ and $\sigma(i)<\sigma(2t+2)$ then $\sigma(i)<\sigma(j)$ .

Then $\{\sigma(\omega) : \sigma\in S_{t,k,n}\}$ is a basis of $N_{t,k^{f}}^{1}$ where

$\omega=(x_{1^{-}2}X)(_{X_{3}}-X_{4})’\cdot\cdot(x2t+1-x_{2t+2})_{Xx}2t+s\cdots k+t+1$

and permutations in $S_{n}$ act on $\omega$ by permuting the indices of $x_{i}$ .

4. A bijection between two bases of $N_{t,k}^{1}$

In this section, we construct a bijection between $S_{t,k,n}$ (see Theorem 3.4) and

$ST_{t,k,n}\equiv\cup^{k}$ {$\tau i=t+1$
: $T$ is standard of shape $(n-i,\dot{i})$ },

which give two bases of $N_{t,k}^{1}$ (See Theorem 2.4, 3.1 and 3.4).
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Construction.

For convenience, given $\sigma\in S_{t,k,n}$ , we use the tableau

Tab$(\sigma)=\sigma(1)\sigma(3)$ ... $\sigma(2t+1)\sigma(2t+3)$ .. . $\sigma(k+t+1)\sigma(k+t+2)$ ... $\sigma(n)$

$\sigma(2)\sigma(4)$ ... $\sigma(2t+2)$

to represent $\sigma$ .

A mapping $\phi$ from $S_{t,k,n}$ to $ST_{t,k,n}$ .
1. If Tab$(\sigma),$ $\sigma\in S_{t,k,n}$ is standard, then

$\phi(\sigma)=^{\tau}ab(\sigma)$ .

2. If Tab$(\sigma),$ $\sigma\in S_{t,k,n}$ is not standard, then
$2\mathrm{a}$ . Find the smallest $i_{1}$ such that $2t+3\leq i_{1}\leq k+t+1$ and $\sigma(k+t+2)<\sigma(i_{1})$ .
$2\mathrm{b}$ . Push down $\sigma(i_{1})$ to the second row of Tab$(\sigma)$ (put it at the right end of the

second row) and put $\sigma(k+t+2)$ at the position where $\sigma(i_{1})$ was, then slide
$\sigma(k+t+3),$

$\ldots,$
$\sigma(n)$ to the left by one position. Call the new tableau $T_{1}$ .

3. $T_{1}$ is of shape $(n-t-2, t+2)$ and by the definition of $S_{t,k,n^{\mathrm{S}}}’,$ $T_{1}=Tab(\sigma_{1})$ for
$\sigma_{1}\in S_{t+1,k,n}$ . Apply 1 and 2 to $\sigma_{1}$ .

A mapping $\psi$ from $ST_{t,k,n}$ to $S_{t,k,n}$ .
1. If $T\in ST_{t,k,n}$ is of shape $(n-t-1, t+1)$ , then $\psi(T)=\sigma$ , where Tab$(\sigma)=T$ .
2. If $T\in ST_{t,k,n}$ is of shape $(n-i, i),$ $i>t+1$ , then repeat the following until having a

tableau of shape $(n-t-1, t+1)$ .
$2\mathrm{a}$ . Find the right end number $n_{1}$ of the second row of $T$ . Then, find the largest number

$l$ such that $l<n_{1}$ in the first $k$ columns of the first row of $T$ . Now, insert $l$ between
the $k^{th}$ and $(k+1)^{th}$ numbers of the first row and put $n_{1}$ at the position where $l$

was.

Remark. It is a routine work to prove that $\phi$ and $\psi$ are inverses each other.

Example.

If
Tab$(\sigma)=136857$

24

for $\sigma\in S_{1,4,8_{J}}$ then
1357

$\phi(\sigma)=2468\in ST1,4,8$
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