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要旨

We define a hypergraph representation of a protein which captures its tertiary structure
in a loose way. By using the notions of hypergraphs, we define a conformation rule as

-a kind of hypergraph rewriting. With a conformation rule, a procedure of conformation
from sequences is described. Then we discuss a method of learning a conformation rule
from a collection of hypergraph representations of proteins. A polynomial-time PAC-
learning algorithm is shown for a class of conformations. This algorithm is now being
implemented with Common Lisp for experiments.

1 Introduction
..

Protein conformation has been analyzed in terms of free energy. Various computational
methods have been extensively developed for searching minimal energy conformations. For
example, a recursive method is developed to identify a large number of low energy conformations
[11] and genetic algorithms are also applied to this problem $[8, 12]$ . Another interesting heuristic
method is the hydrophobic zipper method by [2]. Based on the fact- many hydrophobic contacts
are topologicall-y local, th..e hydrophobic zipper method randomly selects hydrophobic contacts
among neighbors in a sequence and zip.s.up other hydrophobic contacts.

Inspired by this hydrophobic zipper method, but apart from the free-energy minimization
problem, we define a conformatiO.$\mathrm{n}$ rule as a rewriting rule of hypergraphs [1]. For this definition,
we introduce a hypergraph representation of a protein by which the three dimensional structure
of the protein is loosely captured. A conformation rule is applied to a $\mathrm{s}\mathrm{e}\mathrm{q}\sim$uence from local toward
global as in the hydrophobic zipper method, and finally produces a hypergraph which represents
the structure.

数理解析研究所講究録
992巻 1997年 28-35 28



We then consider the problem of learning conformation rules from hypergraph representations
of proteins. A conformation is defined as a function from sequences to hypergraphs. Thus the
problem is to learn functions from examples. The PAC-learning paradigm was extended to
include functions by Natarajan and Tadepalli [7] and some results on concept learning have
been extended for functions $[5, 6]$ . This paper has two contributions. One is a formulation
of conformation rules by using hypergraphs, and the other is a polynomial-time PAC-learning
algorithm for a class which is defined by this new concept of conformation rules. We are now
implementing this algorithm with Common Lisp for experiments by using 153 proteins in PDB
whose tertiary structures are already determined.

2 Preliminaries

For an undirected graph $G=(V, E)$ , we denote by $d(u, v)$ the length of the shortest path
between $u$ and $v$ . The diameter $\delta(G)$ is defined to be $\max\{d(u, v)|u, v\in V\}$ . If $G$ is not
connected, $\delta(G)=\infty$ .

For an undirected graph $G=(V, E)$ , we say that $(i_{1}, \ldots , i_{k})$ is a $k$ -cycle in $G$ if $i_{1},$
$\ldots,$

$i_{k}$ are
mutually distinct nodes of $G$ and $\{i_{1}, i_{2}\},$

$\ldots,$
$\{i_{k-1}, i_{k}\},$ $\{i_{k}, i_{1}\}$ are edges in $E$ .

We denote the cardinality of a set $S$ by $|S|$ . For an alphabet $\Omega,$
$\Omega^{+}$ denotes the set of

all nonempty strings over $\Omega$ . The length of a string $x\in\Omega^{+}$ is denoted by $|x|$ . For $n\geq 1$ ,
$\Omega^{[n\iota_{=}}.\{X\in\Omega^{+} ! |x|\leq n\}-$ .

2.1
’

Hypergraphs

A hypergraph $H=(V, F)$ consists of a set $V$ of nodes and a set $F$ of hyperedges, each of which
is a nonempty subset of $V[1]$ . In this paper we assume that $|e|\geq 2$ for all $e\in F$ without any
notice. A chain-hypergraph is a hypergraph $H=(V, F)$ such that $\cdot$ $V=\{1,2, \ldots , n\}$ for some
$n\geq 1$ and each $\{i, i+1\}$ is contained in some hyperedge in $F$ for $1\leq i\leq n-1$ , i.e., there is $e$

in $F$ with $\{i, i+1\}\subseteq e$ .
$-$

The rank of $H$ is $r(H)= \max_{e\in H}|e|$ . For a node $v$ , the degree of $v$ is $d_{H}(v)=|\{e|e\in F,$ $v\in$

$e\}|$ and the degree of $H$ is $d(H)= \max_{v\in V}d_{H}(v)$ . For a node $v$ of $H$ , the set of hyperedges
containing $v$ is called the neighborhood of $v$ and is denoted by $N_{H}(v)=\{e|e\in F, v\in e\}$ .

For a set $F$ of hyperedges, we call

simplify$(F)=F-$ { $e\in F|$ there is $e’$ in $F$ with $e\subseteq e’$ and $e\neq e’$ }

the simplification of $F$ . We say that $H=(V, F)$ is simple if $F=\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{y}(F),\mathrm{i}.\mathrm{e}.$ , there are no
two distinct hyperedges $e_{1}$ and $e_{2}$ in $F$ satisfying $e_{1}\subseteq e_{2}$ .

In this paper we consider a hypergraph $H=(V, F)$ whose nodes are labeled with a mapping
$\varphi$ : $Varrow\triangle$ , where $\Delta$ is an alphabet. It is denoted by $H=(V, F, \varphi)$ and called a hypergraph
over $\Delta$ . We confuse $H=(V, F, \varphi)$ Wit-h $H=(V.’ F)\backslash$ without ariy no.tice.
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2.2 PAC-learnability of a class of functions

This section reviews some notions and results on the PAC-learnability of a class of functions
by following Natarajan [6].

In this section, the alphabet $\Omega$ is assumed to be finite.

Definition 1. [5] Let $\mathcal{G}$ be a class of functions from a finite set $X$ to a finite set Y. The
generalized $VC$-dimension of $\mathcal{G}$ , denoted by $D(\mathcal{G})$ , is the maximum over the sizes $|Z|$ of subsets
$Z\subseteq X$ such that there exist two functions $f$ and $g$ in $\mathcal{G}$ satisfying the following conditions:

1. $f(x)\neq g(x)$ for all $x\in Z$ .

2. For all $Z_{1}\subseteq Z$ , there exists $h\in \mathcal{G}$ that agrees with $f$ on $Z_{1}$ and with $g$ on $Z-Z_{1}$ .

Lemma 1. [5] Let $\mathcal{G}$ be a class of functions from a finite set $X$ to a finite set Y. Then

$2^{D(\mathcal{G})}\leq|\mathcal{G}|\leq|X|^{D(}Q)|\mathrm{Y}|^{2}.D(\mathcal{G})$ .

$\square$

Let $f$ : $\Omega^{+}arrow\Omega^{+}$ . For integers $n_{1},$ $n_{2}\geq 1$ , the projection $f^{[n_{1}][]}n_{2}$ of $f$ on $\Omega^{[n_{1}]}\cross\Omega^{[n_{2}]}$ is the
function $f^{[n_{1}}$ ] $[n_{2}]:\Omega^{[}n_{1}]arrow\Omega^{[n_{2}]}$ defined by $f^{[n_{1}]}[n_{2}](X)=f(x)$ if $f(x)$ is in $\Omega^{[n_{2}]}$ for all $x$ in $\Omega^{[n_{1}]}$ .
If there is some $x$ in $\Omega^{[n_{1}]}$ such that $f(x)$ is not in $\Omega^{[n_{2}]}$ , then $\backslash f^{[n_{1}][]}n_{2}$ is undefined. For a class
$\mathcal{F}$ of functions from $\Omega^{+}$ to $\Omega^{+}$ , we define $\mathcal{F}^{[n_{1}][]}n_{2}=$ { $f^{[n_{1}}][n_{2}]|f\in \mathcal{F},$ $f^{[n_{1}][}n_{2}\mathrm{I}$ is defined}.

Definition 2. Let $\mathcal{F}$ be a class of functions from $\Omega^{+}$ to $\Omega^{+}$ with a representation $R$ . An
algorithm $Q$ is said to be a polynomial-time fitting for $\mathcal{F}$ in representation $R$ if the following
conditions hold:

1. $Q$ is a polynomial-time algorithm taking as input a finite subset $S$ of $\Omega^{\vdash}\cross\Omega^{+}$ .

2. If there exists a function in $\mathcal{F}$ that is consistent with $S,$ $Q$ outputs a name of the function
in representation $R$ .

We say that $\mathcal{F}$ is of polynomial-dimension if there is a $\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}\dot{\mathrm{l}}p(n1, n2)$ in $n_{1}$ and $n_{2}$ such
that $D(\mathcal{F}^{[n_{1}][n]}2)\leq p(n_{1}, n_{2})$ .

We say that $\mathcal{F}$ is of polynomial-expansion if there exists a polynomial $q(n)$ such that for all
$f\in \mathcal{F}$ and $x\in\Omega^{+},$ $|f(X)|\underline{<}q(|x|)$ .

The following theorem will be used to prove a result in Section 5 on the PAC-learnability of
conformation rules. We do not provide a formal definition of the $\mathrm{P}.\mathrm{A}$C-le.a.rnability of a class of
functions. The readers are referred to [5] or Chapter 5 in [6].
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Theorem 1. [5] Let $\mathcal{F}$ be a class of functions from $\Omega^{+}$ to $\Omega^{+}$ with a representation R. $\mathcal{F}$ is
polynomial-time PAC-learnable in $R$ if the following hold:

1. $\mathcal{F}$ is of polynomial-dimension.

2. $\mathcal{F}$ is of polynomial-expansion.

3. There exists a polynomial-time fitting for $\mathcal{F}$ in $R$ . $\square$

3 Hypergraph Representation of a Protein

Let $P$ be a protein of the primary structure $A_{1}A_{2}\cdots A_{n}$ . Its tertiary structure is usually
represented by a sequence of the positions of amino acid residues in the three dimensional
space as $(p_{1}, A_{1}),$ $(p_{2}, A_{2}),$

$\ldots$ , $(p_{n}, A_{n})$ , where $p_{i}=(x_{i}, y_{i,i}z)$ is the position of the amino acid
residue $A_{i}$ for $1\leq i\leq n$ . The distance between $p_{i}$ and $p_{j}$ is denoted by $|p_{\tilde{l}}-pj|$ . Let $\Sigma$ be the
alphabet consisting of symbols representing the amino acid residues.

Let $\epsilon>0$ be a real number. For a protein $P$ with a tertiary structure $(p_{1}, A_{1}),$ $(p_{2}, A_{2})$ ,
... , $(p_{n}, A_{n})$ , let $G_{P}=(V, E)$ be an undirected graph defined as follows:

1. $V=\{1,2, \ldots, n\}$ .

2. For any $i=1,$ $\ldots,$ $n-1,$ $\{i, i+1\}$ is in $E$ .

3. For any distinct $i,$ $j$ in $V$ with $|p_{i}-p_{j}|\leq\epsilon,$ $\{i,j\}$ is in $E$ .

We call the undirected graph $G_{P}=(V, E)$ the structure graph of $P$ with $\epsilon$-range.
For a positive integer $k$ , let $\tilde{F}_{1}=$ { $e|e\subseteq V,$ $2\leq|e|\leq k,$ $G_{P}[e]$ is a complete graph}, where

$G_{P}[e]$ is the node-induced subgraph of $e$ in $G_{P}[3]$ . Let $F=\mathrm{S}\mathrm{i}\mathrm{m}_{\mathrm{P}^{\mathrm{l}\mathrm{i}}}\mathrm{f}\mathrm{y}(\tilde{F}1)$ and let $\varphi$ : $Varrow\Sigma$

be a mapping defined by $\varphi(i)=A_{i}$ for $1\leq i\leq n$ . Then a hypergraph $H_{P}=(V, F, \varphi)$ is a
simple chain-hypergr.

$.$

$\mathrm{a}$ph over $\Sigma$ . We call $H_{P}=(V, F, \varphi)$ the $k$ -hypergraph representation of $P$

by complete graphs.
. We have another ways to define the $k$-hypergraph representation of $P$ . In the same way as the

above definition $\mathrm{o}\mathrm{f}H_{P}$ , by using $\tilde{F}_{2}=\{\{i_{1}, \ldots, i_{j}\}|i_{1},$
$\ldots,$

$i_{j}\in V,$ $2\leq j\leq k$ , $(i_{1}, \ldots , i_{j})$ is j-cycle
in $G_{P}$ } instead of $\tilde{F}_{1}$ , we can define the $k$-hypergraph representation of $P$ by $cycle\mathit{8}$. When we

employ $\tilde{F}_{3}=\{e|e\subseteq V, 2\leq|e|\leq k, \delta(G_{P}[e])\leq c\}$ for some constant $c$ , we can also define the
$k$-hypergraph representation of $P$ by graphs with. $dia$. meter at most $c$ .

Instead of the explicit representation with amino acid residues, it is often used to classify the
amino acid residues into several categories (e.g., [2, 9, 10]). In order to deal with such cases,
we represent a protein in a more extended way. Namely, we consider simple chain-hypergraphs
whose nodes are labeled with some “colors”, which are not necessarily the same as the amino
acid residues. Let $\triangle$ be an alphabet which consists of such “colors” labeling the nodes of
hypergraphs.
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In this paper, we assume that the tertiary structure of a protein is represented by a simpie
chain-hypergraph over some alphabet $\Delta$ in a way mentioned above.

4 Conformation Rules

In this section, we define a conformation rule which transforms strings over $\Delta$ to chain-
hypergraphs over $\triangle$ . Then for a chain-hypergraph $G$ , we obtain a simple chain-hypergraph by
the simplification of $G$ .

Let $CH(\triangle)$ be the set of all chain-hypergraphs over $\Delta$ . A conformation over $\triangle$ is a function
$c$ : $\triangle^{+}arrow CH(\Delta)$ such that $c(s)=(V, F, \psi)$ for a string $s=x_{1}\cdots x_{n}\in\Delta^{+}$ satisfies $V=$

$\{1, \ldots , n\}$ and $\psi(i)=x_{i}$ for $1\leq i\leq n$ .
We give a way of defining a conformation by introducing conformation rules over $\Delta$ .

Definition 3. A bundle rule over $\Delta$ is a pair $\rho=(B, U)$ of a hypergraph $B=(.V, F, \psi)_{0}.\mathrm{v}\mathrm{e}\mathrm{r}$

$\Delta$ and a subset $U$ of $V$ satisfying the following conditions:

1. $|U|\geq 2$ .

2. $U$ is not in $F$ .

3. For any hyperedge $e$ in $F,$ $e\cap U\neq\emptyset$ .

We call $|U|$ the bundle size of $\rho$ . The degree of $\rho$ is defined to be $d(B)$ . The rank of $\rho$ is defined
to be $r(B)$ .

Definition 4. A conformation unit over $\Delta$ is a finite set $\gamma=\{(B_{1}, U_{1}), \ldots, (B_{t}, U_{t})\}$ of bundle
rules over $\triangle$ . We say that a conformation unit $\gamma$ is of rank $k$ (degree $d$) if $|U_{i}|\leq k$ and
$r(B_{i})\leq k(d(B_{i})\leq d)$ for $1\leq i\leq t$ . A conformation rule over $\Delta$ is a sequence $(\gamma_{1}, \ldots, \gamma_{m})$

of conformation units over $\triangle$ . We say that a conformation rule is of rank $k$ (degree $d$) if each
conformation unit is of rank $k$ (degree $d$). We denote by $\Gamma_{\Delta}$ the set of all conformation units
over $\triangle$ and by $\Gamma_{(k,d,\Delta)}$ the set of all conformation units over $\triangle$ such that the rank is at most $k$

and the degree is at most $d$ for integers $k\geq 2$ and $d\geq 1$ .

Remark 1. Obviously, $\Gamma_{\Delta}$ is infinite. Note that $\Gamma_{(k,d,\triangle)}.$ is. finite if $\triangle$ is finite. On the other
hand, $\bigcup_{k\geq 2},\Gamma_{(k,d,\triangle}‘$) a

$\backslash \backslash$

nd $\bigcup_{d\geq 1}\Gamma_{(k,d},\triangle$),$.\mathrm{a}\mathrm{r}\mathrm{e}\sim$
infinite.

. ...
Definition 5. Let $(B_{1}, U_{1})$ and $(B_{2}, U_{2})$ be bundle rules over $\Delta$ with $B_{1}=(V_{1}, F_{1}, \psi_{1})$ and
$B_{2}=(V_{2}, F_{2}, \psi_{2})$ , respectively. We say that $(B_{1}, U_{1})$ is isomorphic to $(B_{2}, U_{2}),$ , denoted by
$(B_{1}, U_{1})\approx(B_{2}, U_{2})$ , if there is a bijection $\iota$ : $V_{1}arrow V_{2}$ such that (1) $\psi_{1}(v)=\psi_{2}(\iota(v))$ for all $v$

in $V_{1},$ (2) $\iota(U_{1})=U_{2},$ (3) $\iota(e_{1})\in F_{2}$ for all $e_{1}\in F_{1}$ , and (4) $\iota^{-1}(e_{2})\in F_{1}$ for all $e_{2}\in F_{2}$ .
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$\iota \mathrm{m}$ : a conformation rule $(\gamma_{1}, \ldots , \gamma_{m})$ over $\Delta$ of rank $k$ and
a string $s=x_{1}\cdots x_{n}$ in $\Delta^{+}$

$l_{\mathrm{E}}\mathrm{n}l$ : a chain-hypergraph $H=(V, F, \psi)$ over $\Delta$ of rank $k$

Output: a hyper graph $H_{s}=(V_{\epsilon}, F_{s}, \psi\delta)$ Output: a conformation rule $(\gamma_{1}, . . . , \gamma_{m})$ over $\Delta$ of rank $k$

procedure $\mathrm{c}_{\mathrm{o}\mathrm{N}\mathrm{F}\mathrm{O}\mathrm{R}}\mathrm{M}((\gamma 1, . . . , \gamma_{m}), s)$ procedure EXTRACT$(H, m)$
begin $\mathrm{b}\mathrm{e}\mathrm{g}_{-}:\mathrm{n}$

$V_{\epsilon}$ $:=\{1, \ldots, n\}$ ; $F$ $:=\{\{i, i+1\}|1\leq i\leq n-1\}$ ;
let $\psi_{s}$ be a mapping defined by $\psi_{s}(i)=x$ . for $1\leq i\leq n$ ; for $\ellarrow 1$ to $m$ do
$F:=\{\{i, i+1\}|1\leq i\leq n-1\}$ ; begin
$\tau:=\min\{n, m\}$ ; $w:=\ell+2;/*w$ is the window size $*/$

for $larrow 1$ to $\tau$ do TEMP $:=\emptyset;\gamma\ell:=\emptyset$ ;
begin foreach $i$ : $1\leq i\leq n-w+1$ do

$w:=\ell+2;/*w$ is the window size $*/$ $\mathrm{b}\ovalbox{\tt\small REJECT}^{}\mathrm{n}$

TEMP $:=\emptyset$ ; $j:=i+w-1$ ;
foreach $i$ : $1\leq i\leq n-w+1$ do foreach $X\cdot X\subseteq\{i+1, . . . , j-1\}$ with $|X|\leq k-2$ do
begin

$-$ . if there is $e\in F$ wi.th $\{i\}\cup X\cup$. $\{j\}\subseteq e$ then
$j:=i+w-1$ ; begin
foreach $e$ : $e\subseteq-\{i, \ldots , \mathrm{j}\}$ with $|e|\leq k$ do .. $U:=\{i\}\cup X\cup\{j\}$ ;
begin

$F_{U}:= \bigcup_{\iota\in U}N_{D}(l)$ , where $D=(V,\overline{F}, \psi)$ ,
$\overline{F}:=\bigcup_{\iota\in\epsilon}N_{H}(l)$ , where $H=(V_{\epsilon} , F, \psi_{s})$ ;

$V_{U}.=$ { $u|u\in e’$ for some $e’\in F_{U}$ };
$\overline{V}:=$ { $u|u\in e’$ for some $e’\in\overline{F}$ }; $\psi_{U}:=\psi \mathrm{I}_{V_{U};}/*\mathrm{t}\mathrm{h}\mathrm{e}$ restriction of $\psi$ to $V_{U}*/$

$\overline{\psi}:=\psi_{\delta}|_{\overline{Y}}$ ; $/*\mathrm{t}\mathrm{h}\mathrm{e}$ restriction of $\psi_{s}$ to $\overline{V}*/$ add $(B_{U}, U)$ to $\gamma p$ , where $B_{U}=(V_{U}, F_{U,\psi}U)$ ;
ff $\overline{B}=(H, e)\approx B$ for some $B$ in $\gamma_{l}$ , where $\overline{H}=(\overline{V}, \overline{F},\overline{\psi})$; add $U$ to TEMP;

then add a hyperedge $e$ to TEMP; end;
end; end;

end; $\overline{F}:=\tilde{F}\cup$ TEMP;
$F:=F\cup TEMP$ ; end;

end; end
$F_{\epsilon}:=F$ ;

end

$\grave{\grave,}\langle 2$ : Algorithm EXTRACT1: Algorithm CONFORM

Let $\sigma=(\gamma_{1}, \ldots, \gamma_{m})$ be a conformation rule over $\triangle$ . We apply the conformation rule $\sigma$ to a
string $s=x_{1}\cdots x_{n}$ in $\triangle^{+}$ in the following way.

We start with a hypergraph $H_{1}=(V_{s}, F_{1}, \psi S)$ , where $V_{s}=\{1, \ldots , n.\}.’ F_{1}-=\{\{i, i+1\}|1\leq$

$i\leq n-1\}$ and $\psi_{s}(i)=x_{i}$ for $1\leq i\leq n$ .
We regard conformation as a process of creating new hyperedges by enlarging the “window”

on $V_{s}$ corresponding to the string $s=x_{1}\cdots x_{n}$ from smaller to larger. A window of siz.e $w$ at
position $i$ is an interval $[i, \ldots , i+w-1]$ consisting of consecutive $w$ nodes in $V_{s}$ .

At stage $\ell(1\leq\ell\underline{<}m)$ , the window size is set to be $w=\ell+2$ . In a window $[i, \ldots, i+w-1]$

at the $\ell \mathrm{t}\mathrm{h}$ stage, bundle rules in the $l\mathrm{t}\mathrm{h}$ conformation unit $\gamma_{\ell}$ in $\sigma$ are applied to create new
hyperedges $e$ such that $e$ consists of only $\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}\dot{\mathrm{s}}$ in $[i, \ldots, i+w-1]$ . A new creation of a
hyperedge $e$ in the window depends on the structure of the neighborhood of $e$ in the hypergraph
$H_{f}=(V_{S}, F_{\ell}, \psi s)$ . Namely, we consider a subhypergraph $\tilde{H}=(\tilde{V},\tilde{F},\tilde{\psi})$ such that $\tilde{F}=\{f|f\in$

$F_{\ell},$ $f \cap e\neq\emptyset\},\tilde{V}=\bigcup_{f\in\overline{F}}f$ and $\tilde{\psi}$ is the restriction of $\psi_{s}$ to $\tilde{V}$ . A new $\mathrm{h}$y-peredge $e$ will be
created if there is a bundle rule $B$ in $\gamma_{\ell}$ which is isomorphic to $(\tilde{H}, e)$ .

After creating all new hyperedges at the $\ell \mathrm{t}\mathrm{h}$ stage, these hyperedges are added to $F_{\ell}$ . A
formal description is given in Fig. 1.

The following proposition is obvious by definition:.

Proposition 1. For a conformation rule $(\gamma_{1}, \ldots, \gamma_{m})$ over $\Delta$ of rank $k$ and a string
$s=x_{1}\cdots x_{n}\square$

in $\Delta^{+},$ $\mathrm{C}\mathrm{o}\mathrm{N}\mathrm{F}\mathrm{O}\mathrm{R}\mathrm{M}((\gamma_{1,\ldots,\gamma_{m}}), s)$ is a chain-hypergraph of rank $k$ .

Definition 6. For a conformation rule $\sigma=(\gamma_{1}, \ldots, \gamma_{m})$ over $\Delta$ , we define a conformation $c_{\sigma}$

by $c_{\sigma}(s)=\mathrm{C}\mathrm{o}\mathrm{N}\mathrm{F}\mathrm{O}\mathrm{R}\mathrm{M}(\sigma, s)$ for $s$ in $\Delta^{+}$ .
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For a string $s=x_{1}\cdots x_{n}$ and a conformation rule $\sigma$ over $\Delta$ of rank $k$ , let $c_{s}--(V_{s}, F_{s}, \psi s)$

be the chain-hypergraph obtained by CoNFORM $(\sigma, s)$ and let $F=\mathrm{s}\mathrm{i}\mathrm{m}_{\mathrm{P}^{\mathrm{l}\mathrm{i}}}\mathrm{f}\mathrm{y}(F)s$ . Then $G=$

$(V_{s}, F, \psi S)$ is a simple chain-hypergraph.

5 PAC-Learning of Conformation

Let $C=\{c_{\sigma}|\sigma\in\Gamma_{\Delta}^{+}\}$ . For $n\geq 1$ , let $c_{\sigma}^{[n]}$ be a function $c_{\sigma}^{[n]}$ : $\triangle[n]arrow CH^{[n]}(\triangle)$ obtained by

restricting $c_{\sigma}$ to $\triangle[n]$ , where $CH^{[n]}.(\triangle)$ is the set of all chain-hypergraphs with at most $n$ nodes.
Then let $C^{[n]}=\{c_{\sigma}^{[n]}|c_{\sigma}\in C\}$ .

As noted in Remark 1, the alphabet $\Gamma_{\triangle}$ is infinite even if $\Delta$ is finite. This makes a trouble
in discussing the PAC-learnability of a class of conformations. However, if we restrict the rank
and degree of conformation rules to constant integers $k$ and $d$ , respectively, the alphabet $\Gamma_{(k,d,\Delta)}$

is finite for a finite alphabet $\Delta$ .
Our main result is the following theorem:

Theorem 2. Let $C_{(k,d,\Delta)}=\{c_{\sigma}|\sigma\in\Gamma_{()}^{+}\}k,d,\Delta$ for integers $k\geq 2$ and $d\geq 1$ . Then the class
$C_{(k,d,\Delta)}$ is polynomial-time PAC-learnable.

6 Method of Experiments

6.1 Implementation

We have finished most of the implementation of the PAC-learning algorithm shown in the
proof of Theorem 1 by Common Lisp. In our implementation, we set the rank $k$ of bundle
rule to be 4 because of the difficulty arising from time and space complexity. The algorithm
CONFORM is used for predicting conformation.

6.2 Data

From PDB, we have chosen 153 proteins for our experiments. Each protein file is expressed
as a distance matrix of positions of amino acid residues. In order to define the structure graph,
the range $\epsilon$ is set to be $3\mathrm{A}\sim 5\mathrm{A}$ .

The choice of the alphabet $\Delta$ for labeling the nodes of a hypergraph is a key to experiments.
The alphabet $\triangle$ represents a classification of amino acid residues by their properties. In Hart
and Istrail [4], they used the hydrophobic-hydrophilic model by Dill [2] that regards a protein as
a linear chain amino acid residues that are of two types $H$ (hydrophobic) and $P$ (hydrophilic).
In this case $\Delta$ is $\{H, P\}$ . In addition to the alphabet $\Sigma$ of amino acid residues, we will use
$\Delta=\{H, P\}$ although some amino acids are neither hydrophobic nor hydrophilic.
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There are many another choices for $\triangle$ by considering another properties of amino acid
residues. In a final version of the paper, we will report the results of a series of experiments
under various conditions $\mathrm{a}\mathrm{n}\mathrm{d}_{\mathrm{C}\mathrm{O}}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{e}$ the results with their tertiary structures.
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