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§1. Introduction

The waves parametrically excited by the vertical oscillation of a container are called
Faraday waves. Recently it has been shown in various experiments at high aspect ratio
that the waves form various patterns, such as, stripes, squares, hexagons and trian-
gles, 8-fold and 12-fold quasipatterns(1]{2][3][4]. Quasipatterns are those with long-range
orientational order but with no spatial periodicity.

In the theoretical studies of Faraday waves, the irrotational motion of an incompress-
ible inviscid fluid is often assumed. Moreover, the damping effect is included by the
calculation of the dissipation function for the irrotational fluid motion. Benjamin &
Ursell showed that the linearized hydrodynamic equations for an inviscid fluid can be
written as the Mathieu’s equation and waves are subharmonically excited[5]. Milner|6]
developed the method of Ezerskii et al.[7], and showed that a nonlinear damping called
the cubic damping is important to form patterns, using a Lyapunov functional. More-
over, he concluded that the square pattern is the most favorite for capillary waves of
infinite depth. This conclusion is consistent with the experimental result by Tufillaro
et al.[8]. Miles[9] first noted that the cubic forcing, which is the nonlinear parametric
forcing, is comparable with the cubic damping. He a priori assumed that there are only
two modes and investigated the stability of the stripes and squares in capillary-gravity
waves[10]. Decent & Craik[11] calculated the effect of 3/2 harmonic modes, which af-
fect the cubic forcing and were neglected by Miles[9]. They also obtained coefficient
of six-wave interactions and examined a hysteresis, although they considered only the
waves in a long rectangular tank. But, in their study, some higher-order terms such
as a steady mode and the harmonic mode proportional to the focing amplitude were
neglected, although these terms are necessary in the calculation of the cubic forcing.

In this paper, the pattern selection caused by the first instability in Faraday surface
waves at high aspect ratio is examined with including all the necessary higher terms.
In §2, using the weakly nonlinear approximation, the coeflicients of the cubic damping
and cubic forcing between two line modes intersecting at an arbitrary angle are obtained
for capillary-gravity waves of infinite depth. Next, using a reduction theory, the quintic
amplitude equations are derived, which have a Lyapunov functional. The quihtic terms
are comparable to the cubic damping and forcing. The most favorite pattern, defined by
the minimum of this Lyapunov functional, is examined in §3. This pattern changes from
squares to hexagons, 8-fold quasipatterns, 12-fold quasipatterns, squares and stripes, as
a parameter characterizing the ratio of the gravitational effect increases, or equivalently,

as the wavelength of the Faraday waves increases.
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§2. Derivation of the quintic amplitude equations

2.1 The basic equations

Weakly nonlinear surface waves on an incompressible inviscid fluid are considered,
which are excited by the vertical external sinusoidal forcing which gives the system an
acceleration fqcos(2wt), where ¢ is the time. Let (x,y) and z be the horizontal and
vertical reference coordinates fixed to the virtual container which is laterally unbounded
and infinitely deep. The free surface displacement and the bottom are denoted by z =
n(z,y,t) and z = —oo, respectively. The flow is assumed to be irrotational with a
velocity potential ¢(z,y, z,t). Therefore the basic equations are shown as follows. From
Bernoulli’s theorem, the dynamics condition at the free surface is

B+ L (VO) + {Jocos(2ut) + gy — 1V - (—V—ﬁ——) 0 at z=7, (21)
P 14 (Vn)?

where g is the gravitational acceleration, o is the surface tension coefficient, p is the
density of the fluid, and V = (0;, 0y, 0;). The continuity equation is written as |

V=0 —co<z<m (2.1.2)
The kinematic boundary condition at the free surface is
on+Ve¢-Vn=0,0 at z=n. (2.1.3)
And the boundary condition at the bottom is
0,0=0 as z— —o0. (2.1.4)

Linearized version of egs. (2.1.1) ~ (2.1.4) was studied by Benjamin & Ursell [5]. They
showed that the linearized hydrodynamic equations for an inviscid fluid can be written
for every wavenumber k as the Mathieu’s equation '

k
Oumn + wy (1 + J;LZ cos(2wt)> n =0, (2.1.5)
0 :
where w? = gk + ok®/p. In the nearly inviscid theory, a linear damping with coefficient
& is added to eq. (2.1.5). Thus, the relevant equation now becomes|[14]
wn + &omn 4+ wy | 1+ " cos(2wt) | 7 = 0. (2.1.6)
. Wk
The strongest parametric resonance of eq. (2.1.6) occurs when wy = w[13]. Therefore,
we may expect that the wave with frequency wy is excited. v
Now we expand egs. (2.1.1) and (2.1.3) around z = 0. Moreover, we substitute

b=chtPhat  n=entEmto, fo=cf, 8 — 0+ 0y + 0, (217)
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into them, where € is an expansion parameter which implies the wave steepness. Also
7 = €2t and T = €t are slow time variables. Equating the terms of O(¢), we find

o
Oyp1 — ;Vzﬂl +gm =0,

(2.1.8)
Oym — 01 = 0.
Therefore, considering eqgs.(2.1.2) and (2.1.4), we obtain the solutions
m =) aj(m, ) expi(k; - T —wi) +c.c,,
j (2.1.9)

& = —l% exp(kz) Zdj(Tl,Tz) expi(k; -  —wt) +c.c.,
J

where the magnitude of the wavenumbervector k; of each plane wave (j = £1,42,--)
has the same value k determined from the linear dispersion relation w? = kg + ok*/p.
Also k_; = —k; is assumed and x = (z,y).
We can rewrite 7 as
n(z,y,t) =Y. (&j + eb; + ezcj) expif; + c.c. + (other terms),
j
where 0; = k; - € — wt, and other terms contain the terms of O(e®) and the terms
proportional to expilf; (I # 1).
2.2 The third and fourth order balance equations including linear damp-
ing |
Considering the solvability condition at each order of €, we can obtain equations for
a;, bj and ¢;. Combining these equations, we obtain the equations for a; = a;+€b;+ e2c;.
Here we assumed that both the coefficient of linear damping a and forcing ﬁ = % are
-O(€). Moreover, we assumed that i8a* j+aa; = O(€®). The latter assumption is possible
because the amplitude a; of the excited waves is determined by the net effect of forcing
and damping. The resultant third-order equations for a; are given as

Ona;+ifa’ ;+ aa; + 1-ﬁ—aj 1k2wZT’(j1)lall2aj —ik?w Zfl"l(f)ala_la*_j =0, (2.2.1)
1

where Tl(ji) (z=1,2) are given in Appendix as (A.1) and (A.2), which agrees the result of

Milner[6]. Also, TJ(;) EhmT,(;), TJ(P 5 Ji hm T(l) (#=1,2). And the fourth-order

equations are given as

: 32
Or,a; + ﬂa-j — %a*_
2w 2(“1’ . . (2.2.2)
+iBk* Y Py daja_ia; — Bk > P,(j )|al|2a*_j —iBk*> "R P )afa* a5 =0,
1 1 1
where P,(;) (z =1,2,3) is given in Appendix as (A.3), (A.4) and (A.5). Also, P};) 5 Lin hm Pl(;),
1
Pj(z) 5 Ji hm P (7, = 1,2, 3). The nonlinear terms in egs. (2.2.1) and (2.2.2) imply the

four-wave resonance the cubic forcing and the nonlinear parametric forcing, respectively.
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For convenience, let us analyze the equations which are yielded by summing eq. (2.2.1)
and eq. (2.2.2), and by rewriting 0;, + 0, as
2.8 Damping

In this subsection, we calculate the linear and cubic damping, following Milner[6] and

d’r

Miles[9]. It is assumed that the system is laterally unbounded and of infinite depth, and
that the fluid is uncontaminated. Under these conditions, damping may be caused only
by the dissipation in the bulk [6][9][13]. Now the energy dissipation of an incompressible
fluid is expressed as |

d
o Emec =< D ’ 2.3.1
7 < h>=<D> (2.3.1)

where Epecn is the mechanical energy and D is the dissipation function. The operator
< - > denotes the averaging over the time period 27/w.
Using the velocity potential ¢, Eyecn and D for this system are written as

Erecn = /dCU/ (Vo) 2dz+/da:/ (9 + focos(2wt))zdz
) +;/da:[ 1+(vn)2—1], 2.3

2
D :—21// dz/da:( 8:1:]8:131)’

where v is the kinematic viscosity, and (z1, 22, 23) = (z,y, 2)-

Expanding eq. (2.3.2) around z = 0, and using (2.1.7), we obtain

(

2 25 kjf?
<Emech > = 62 (2%"‘6 198 w f )Zlaj|2+€4szzzh Ia‘JI |a'L

+etkw? ZZ h(2)az a_a* .a’ + €3f Z(a jree) 4+,
J

-3

33 K2 f
<D> = (&/k +e2 )Z! ail? — 2¢vkiw 2ZZd(1)|aj|2|ai]2

—2e*vkiw ZZZd aia_;a* a—26yk2fz aja’;+cc.)+---,
(2.3.3)

where h,(;) and d(t) (¢ = 1,2) are given in Appendlx as (A.6), (A.7), (A.8) and (A.9).

Also, A% = lhm VA7, RS2 = ! lim b}, df} = hm a9, d®, = X tim d® i =1,2).

25 % 2 > %537 9, -1 '
One may then assume the ollowmg form as the dampmg terms in the amplitude

\

equations,

daj

7. = —8a; — ypal; —¢ I/k“Z'yl(J)la Pa; — € I/k4Z’)’,j wa_a’ ;- -, (2.3.4)

where 7,(;) is the cubic damping. Substituting egs. (2.3.3) and (2.3.4) into eq. (2.3.1)
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and comparing the coeflicients, we obtain

1(p ? 2 (3 _ dl(;') @ ¢,
=« 1+§ ; 5 a:21/k', 713 9 _2h’l] (121’2), 'Yf:O,

E hm 'y ) (i =1,2). The relations among fylj ) d9 . and

1y
hz(;,) are simﬂar to those in Milner[6 ], but the values of d,(;), h(t)

values by him and Miles[9]. Moreover, our linear-damping coefﬁcient 6 includes the

) 1 i 1
where 73(.;) 5 lim 'yl(J), 'yJ( )J =5 i

are different from the

fourth-order term %(g)2 caused by forcing, which was neglected by Milner and Miles.
2.4 The amplitude equations including linear and nonlinear damping
Appending the fourth-order damping into the equations yielded by combining egs.
(2.2.1) and (2.2.2), we obtain

da; i3
% + iBa’ ; + ba; + %aj — %a wZTl(l)|al|2aj ZT( Jya_ 1a

) 1) 12 @9
+ -é—k Xl:’}’lj |al| aj+§k ;’7 a)a._ la —j

+ 18K PP aaja; — 1682 Y PP ay’at; —1k* Y PP aja’ ja; = 0.
1 ] 1
(2.4.1)
2.5 Reduction
Following Milner[6] and Umeki[12], we reduce eq. (2.4.1) to simpler amplitude equa-
tions, which have a Lyapunov functional. Linearizing eq. (2.4.1), we find
.32 a,@

da;
—2L + ba;+ifa’ ; +i-—a; — 55"

- ™ = 0. (2.5.1)

Assuming that a; evolves as exp(—AT), (A € C'), we analyze the linear stability of the
null solution i.e. (aj,a”;) = (0,0), in order to find the transformation of the variables
(aj,a* ;) into (Aj, Bj), where A; is neutral or slightly unstable mode and B, is stable
mode. From eq. (2.5.1),

A+6+13ﬂ2 i8 a; \ (0
( i ot A*+5—li>( _])*<o)_ (2.5:2)

From the condition that the determinant of the matrix of eq. (2.5.2) must vanish, we
obtain Rel\ = 6 /(% — A where A = (Im)\ —% ) (ImA —i + aﬂ ) The effect
of A is neglected, because we consider the standing waves. Therefore, we obtain the

eigenvalues

342 a,@
)\i—éﬂ:ﬁ—f—l(% 2(.«.))

After truncating higher-order terms, we obtain the eigenvectors as (aj,a”;) = (1, 1)
for the eigenvalue A, of the stable mode, and (aj,a* ;) = (1,i) for A_ of the neutral or
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slightly unstable mode for the forcing strength 3 just above the threshold §. The neutral
and stable modes may thus be written as

(a;(7),a” (7)) = A;(7)(1,1) + B;(7)(1, —), (2.5.4)

where A; and B; are C'-value functions. It may be expected that Aj; = O(e) and
Bj = O(€?), because A; and B; are amplitudes of the slightly unstable mode and the
stable mode, respectively. Therefore, transforming the variables (a;,a* ;) into (4, B;)
and truncating the terms of O(€°) in eq. (2.4.1) , we obtain

dA; .32 af
F - W A i B g 2
Zfﬂ ) (BiAj — B A)A; + ik?w S TP A B,
>0 >0
iR S T ALE; - Y (mslj + gr,j) APA; =0,  (25.5)
1>0 ) >0 2
dB; 30 o, |
d—TJ + (B4 0) B; + IZ"w‘AJ w 1k2w§ZJ|Al 2A =0, (2.5.6)

where P;; = Pl(jl)+P(1)» B(2 P( +Pl +pP¥ ,J, [y 713)+7(_2l)1+7(2)+7(_2&, T(l TI(.l).;_

), 79 = 19+1%), 1y = T 1P, T, = 5 lin 11mT , Pj; = : 5 im Py, T = ;hm Iy
T 1 Py and T;J are functions of GG and ¢, and are shown in Flgs 1, 2 and 3. Here
G = kg/w?® expresses the ratio of the gravity effect for the gravity-capillary waves, im-
plying capillary waves for G' = 0 and gravity waves for G = 1. And ¢ = ¢; = k; - k
where k is the unit wavevector of the jth wave.

We neglect the time derivative of B; in eq. (2.5.6), since it is of higher order than

other terms. Therefore, we obtain

>0

i 36  ap
B, = a+ﬂ (k2wzz,|A,|2 = Qw) A, | (2.5.7)

after truncating the higher-order terms. Thus, B; = O(e?) and it is consistent with
the assumption. Umeki[12] assumed that the forcing amplitude is O(€?), and that the
stable mode becomes O(€), which is inconsistent with his assumption, although this

does not affect his results. Therefore, we cannot separate A; and B; when forcing

amplitude is O(e?). Substituting (2.5.7) into (2.5.5), and transforming (k4;, 2, g ,WT)
into dimensionless parameters (A;, o, #,7), we obtain the simpler amplitude equations
dA; 9
—= = pd;— Z‘%[Al A5 =203 Vol AP AP 45, (2.5.8)
dr _ n>01>0
where 1 = 3 — (1.+ 132 { ;(zﬁ(ai;))z }), and
o B(38 — 2a) 1
Gy =TIy + ——=Tp; b Vi = ——TuTy;. 2.5.9
I 2Flj+ 2(a+ﬁ) l.7+ﬂ7)l]7 gt a+,3 nl£lj ( J ) .
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®y; is shown as Fig.4. We note that all the nonlinear terms in eq. (2.5.8) are of O(e)
because ®;; = O(e) and ¥ 3, = O(e™!). Now, rewriting dA(T) as (O, + Or,)A(11,72), and
assuming that g = O(e®), we obtain the following balance equations in the third and
fourth order:

OnA;j=0
Or,Aj = pA; — Z Dl APA; — Z E\Ijjln|An|2|All2A (2.5.10)

7>0 150
Therefore, Aj(1,7) = Aj(m). We note that 71 and 7» imply the time scale of the
phase evolution of A; and the amplitude evolution of A;, respectively. The merit of this
reduction is to have a Lyapunov functional. On the other hand, the demerit is that the
phase evolution becomes arbitrary. Rewriting 7 as 7, we obtain the following fourth-
order quintic amplitude equations which can be expressed in a gradient form with the
Lyapunov functional F

d4;  OF
dr 0AY’
uZIA 1% + ZZ‘PJ:IAzIQIA 1%+ }:ZZ‘I’JznlA 1A Ay
>0 J>0 >0 ]>0 1>0n>0

(2.5.11)
§3. The most favorite pattern
In this section, we examine the most favorite pattern in capillary-gravity waves which
minimizes the Lyapunov functional. We note that F decreases monotonically with 7 in
the wider sense. Therefore, it is assumed that the minimum of F is the most favorite[1].
If all the amplitudes are assumed to be equal, i.e. Aj= A for Yj € N, we obtain from
eq.(2.5.11)

- 1 1 - 1. -
F = ——,uNiA!z + —N<I>|A|4 + ,—N\II|A|6, (3.1.1)
N N
where ¢ = Z‘Dlﬂ and ¥ = ZZ\I/]M are independent of j. N is the number of excited
>0 n>01>0

standing waves. The functional has the local minimum

_ 1 - 1_,- 1 -, /= - 1_,-

Flocalmin = ZNN‘I <u + 5@2\11-1) - gNw-H/qﬂ + 4pv (u + Z@?qu) ,  (3.1.2)
—& + /02 + 4T

A2 = =  (3.1.3)

20
We consider only the case with N = 1 (stripes), 2 (squares), 3 (hexagons), 4 (8-fold

for

quasipatterns), 6 (12-fold quasipatterns). We note that Flocalmin 1S negative for these
patterns. The most favorite pattern is examined for capillary-gravity water waves, using
the values v = 0.01cm?/s, p = 1.00g/cm?, o = 73dyn/cm, g = 980cm/s?. The result
is shown in Fig.5. Here (3 is the critical value which satisfies the condition p = 0. The
most favorite pattern changes from squares to hexagons, 8-fold quasipatterns, 12-fold
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quasipatterns, squares and stripes as G increases from 0 to 1. We note that the selected
pattern does not change even for la,rgér B/ L.

The angles nearby the one which causes the second harmonic resonance are disliked
because the Lyapuﬁov functional comes up to 0 for this case. For G between 0 and 2 /3,
this resonance results in the transitions among patterns, as shown in F ig.6. When G
exceeds 2/3, the second harmonic resonance does not occur and the Fig.1 and 4 become
to have large flat region except for near ¢ = 1. Finally, when G comes up to 1, the curves
in Figs.1 ~ 4 become flat. Therefore, stripes may be selected.

The stability of the most favorite pattern cannot be determined in this way. Therefore,
the study of its stability is important. The results will be shown in the near future.

§4. Conclusions

The fourth-order quintic amplitude equations for the F araday waves are derived, which
have a Lyapunov functional. We show that the quintic terms in these equations are com-
parable to the cubic damping and forcing. The coefficients of the cubic damping and cu-
bic forcing between two line modes intersecting at an arbitrary angle, and the coefficients
of fourth-order linear damping caused by the forcing are obtained for capillary-gravity
waves of infinite depth. Moreover, under the criterion of minimizing the Lyapunov func-
tional, the most favorite pattern is obtained. The most favorite pattern changes from
squares to hexagons, 8-fold quasipatterns, 12-fold quasipatterns, squares and stripes as
G implying the ratio of the gravitational effect in capillary-gravity waves increases from
0 to 1.

Christiansen et al.[3] [4] investigated patterns of capillary Faraday waves in a circular
cylinder. They observed transition from disordered stationary state to 8-fold quasipat-
terns, hexagons and squares in the central region of the container as the forcing amplitude
increases. This result is different from ours. However, in contrast to our assumptions, the
symmetry of the container may not be neglected in their experiment, because disordered
stationary state was expressed as the superposition of a few Bessel’s modes.

Secondary instabilities, such as Eckhaus or transverse amplitude instabilities, may

occur if the nonlinear dispersion relation is considered. This is beyond the scope of this

study.
Appendix
1+2¢ 1
Tl(jl):—(—4'#4—2(1—1-6)013'4'62-—36*5
1 —c) My; '
ONVIT TR (1— o Ry + Lm0 (A1)
@_ (1+2)G & 5 (I1+ My (1-c) M, 0
le_S_“‘.l —|-2-+4+ 4 1—|— K4 i p (A.2)
- — . _|_ 14
Pl(jl):1_2+2(1+-C)Qlj+2(1‘"c)Q—lj“( s) y_ L cz) 2

(149G Cu4(l—¢ CZF2c
2 2 )
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—O;lj——22—_—2c+2N;j\/2+2c+2N_lj\/2—2c+ 3, (A.3)

PR = %T,g.” _@+286 (1= Quy+ 2Ry (1—c)+4(1+0)Vy

+(1+C2)M_lj+ C—lj(Q]-_c) + (9_3C)K—U —2V~lj‘/2+2c

4
CivV2—-2 c 9
+——lJ'T‘—c+4N_lj\/2—2C+Z—2C+ g, (A4)
1 142G
BY) = §I}§?’+2(1—c)wj+2(1+c)v_lj—(——16——)———w,-\/2—2c
1 M_y; 1—c¢) My;
—V_zj\/§+—2_c+ (1+0¢) Yo, ( c) My,

4
) 2 7
+R;;(1+¢)+ Ry (1—c)+ T (A.5)

G (3466 — (1—20) Mi)* —4(1+29) K.

2 .
+201j(01j—1)\/2—|—2c—4(1+C)Clj—4Klj
+4(1+C)Klj2—|-(1—C)Mlj2—362+66+§,
G{3(1+2) — (1 —2) M — (1+2c) M_y°} 7

4 ’ 4
3,, 1-9M (1+oM,

_2 A7
5¢ + 5 + 5 ) (A.7)

d® =16 (14+ ) vV2+2¢Ci,2 —8Cy; (1 +¢) (3+¢)

—8C, (1+2c)vV2+2c—2(1—c)(1+c) My

—4 (3+c2) Kij—8(—6c—3)+4 (1+2c2) G, (A.8)
dP =2 (1+2¢2)G—(1+c) (1—c) (My; + M_;;) — 10,
22 +5¢c—1-G(1+e)(1+2¢)

where () = , A.10
Y 24203 —4—-G(1+20V2F2¢ ( )
B—0c)vV2+2c—4(1+¢) ' .

2(2+20*2 —8-2G(1+20v2+2c
My = 1-c | (A.12)

Tal-0-(1-20G"
Sy = (1+2c2)G—2Klj (143¢) —2K_1;(1—3¢)+6C;v/2+ 2¢

+6C_1;v/2 —2c—4 (14+¢)Cy —4C 4 (1 —c) —9—2¢, (A.13)
L (A14)
—8M;j —6c2+13¢c+9(1—c)+3(1-2c)(1—-¢)G
Wj = 3/2 ) (A-15)
32—-8(2—-20)""+8(1—-2¢)v2—-2cCG
—c+ 2K,
Qi 2y (A.16)

T 8+8c—4(1+29G’
(8My; —15—c)v/2—2c+12(1 - ¢)

o , A.17
Y 6416 (2-20%2+16 (1—20)v2—2¢G (A-17)

Here ¢ = ¢;; = k; - ki, G = kg/w?.
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