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Introduction

The aim here is to study the asymptotic distribution of discrete eigenvalues near the
bottom of essential spectrum for two and three dimensional Pauli operators perturbed
by electric potentials falling off at infinity. The special emphasis is placed on the case
that the .Pauli operators have nonconstant magnetic fields.

The Pauli operator describes the motion of a particle with spin iri a magnetic field
and it acts on the space $L^{2}(R^{3})\otimes C^{2}$ . The unperturbed Pauli operator is given by

$H_{P}=(-i\nabla-A)2-\sigma\cdot B$

under a suitable normalization of units, where $A:R^{3}arrow R^{3}$ is a magnetic potential,
$\sigma=(\sigma_{1}, \sigma_{2}, \sigma_{3})$ with components

$\sigma_{1}=$ , $\sigma_{2}=$ , $\sigma_{3}=$

is the vector of $2\cross 2$ Pauli matrices and $B=\nabla\cross A$ is a magnetic field. We write
$(x, z)=(x_{1}, x_{2}, z)$ for the coordinates over the three dimensional space $R^{3}=R_{x}^{2}\cross R_{z}$ .
Throughout the entire discussion, we suppose that the magnetic field $B$ has a constant
direction. For notational brevity, the field is assumed to be directed along the positive
$z$ axis, so that $B$ takes the form

$B(x)=(\mathrm{O}, 0, b(X))$ .

Since the magnetic field $B$ is a closed two form, it is easily seen that $B$ is independent
of the $z$ variable. We identify $B(x)$ with the function $b(x)$ . Let $A(x)=(a_{1}(x), a_{2}(x),$ $\mathrm{o})$

with real function $a_{j}\in C^{1}(R_{x}^{2})$ be a magnetic potential associated with $b(x)$ . Then
$b(x)=\partial 1a2-\partial 2a1,$ $\partial_{j}=\partial/\partial x_{j}$ , and the Pauli operator takes the simple form

$H_{P}=$ ,
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where
$H\pm=H_{0}\mp b$, $H_{0}=\Pi^{2}1+\Pi_{2}^{2}$ , $\Pi_{j}=-i\partial_{j}-a_{j}$ . (0.1)

The magnetic field $b$ is represented as the commutator $b=i[\Pi_{2}, \Pi_{1}]$ and hence $H_{\pm}$

can be rewritten as
$H\pm=(\Pi_{1}\pm i\Pi 2)^{*}(\Pi \mathrm{l};\pm i\Pi 2)$ . (0.2)

This implies that $H_{\pm}\geq 0$ is nonnegative. If, in particular, $b(x)>c>0$ is positive,
then $H_{-}\geq c$ becomes strictly positive. On the other hand, it is known ([1, 6]) that
$H_{+}$ has zero as an eigenvalue with infinite multiplicities. We further know (see [3]
for example) that the non-zero spectra of operators $H_{+}$ and $H_{-}$ coincide with each
other. Thus $H_{+}$ has zero as the bottom of its essential spectrum and the bottom is
an isolated eigenvalue with inifinite multiplicities.

We first discuss the two dimensional case. We consider the Pauli operator

$H(V)=H+-V=\Pi_{1}^{2}+\Pi_{2}^{2}-b-V$ (0.3)

perturbed by an electric potential $V(x)$ . As stated above, the unperturbed operator
$H_{+}$ has zero as an isolated eigenvalue with infinite multiplicities. If the perturbation
$V(x)$ falling off at infinity is added to this operator, then the infinite multipicities are
resolved and the above operator $H(V)$ has discrete (positive or negative) eigenvalues
accumulating at the origin. We are concerned with how the inifinite multiplicities of
zero eigenvalue are resolved. The aim is to study the asymptotic distribution near the
origin of such discrete eigenvalues.

We shall formulate the obtained result more precisely. We assume that the magnetic
field $b(x)\in C^{1}(R_{x}^{2})$ fulfills the following assumption: There exists $\beta,$ $0<\beta\leq 1$ , such
that

$(b)$ $1/C\leq b(_{X})\leq \mathit{0}$, $|\nabla b(x)|\leq \mathit{0}\langle_{X}\rangle^{-}\beta$

for some $C>1$ , where $\langle x\rangle=(1+|x|^{2})^{1}/2$ . If $V(x)$ is a real bounded function, then
the operator $H(V)$ formally defined by (0.3) admits a unique self-adjoint realization
in the space $L^{2}=L^{2}(R_{x}^{2})$ with natural domain $\{u\in L^{2} : H(V)u\in L^{2}\}$ . We denote
by the same notation $H(V)$ this self-adjoint realization. We now mention the first
main theorem.

Theorem 1. Let assumption $(b)$ be fulfilled. Assume that a real function $V(x)\in$
$C^{1}(R_{x}^{2})$ satisfies

$|V(_{X})|\leq \mathit{0}\langle_{X}\rangle^{-}m$, $|\nabla V(X)|\leq c\langle x\rangle-m-1$ , $C>0$ ,

for some $m>0$ and that

$\lim_{\lambdaarrow}\sup_{0}\lambda 2/m\int_{1-}(\delta)\lambda<|V(x)|<(1+\delta)\lambda dx=\mathit{0}-(1)$ , $\deltaarrow 0$ .
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Then one has:

(i) Let $N(H(V)<-\lambda),$ $\lambda>0$ , denote the $n$umber of negative eigenvalues less
$than-\lambda$ of operator $H(V)$ . Then

$N(H(V)<- \lambda)=(2\pi)^{-}1\int_{V(x)\lambda}>(b(X)d_{X}+O\lambda^{-}2/m)$ , $\lambdaarrow 0$ .

(ii) Let $0<c<b_{0}/3,$ $b0= \inf b(x)$ , be ffied and let $N(\lambda<H(V)<c),$ $0<\lambda<c$ ,
be the number of positive eigenval$\mathrm{u}es$ lying in the interval $(\lambda, c)$ of operator $H(V)$ .
Then

$N( \lambda<H(V)<c)=(2\pi)^{-}1\int_{V(x)}<-\lambda/b(X)d_{X}+o(\lambda-2m)$ , $\lambdaarrow 0$ .

Next we proceed to the three dimensional case. Let $b(x)\in C^{1}(R_{x}^{2})$ be again the
magnetic field $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}6^{r}\mathrm{i}\mathrm{n}\mathrm{g}$ the assumption $(b)$ . We $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}\dot{\mathrm{d}}$er the three dimensional per-
turbed Pauli operator

$H=H(V)=\Pi^{2}\partial 1^{+\Pi_{2}^{2}-}z2-b-V$,

which acts on the space $L^{2}(R^{3})=L^{2}(R_{x}^{2}\cross R_{z})$ , where $V=V(x, z)$ is a real function
decaying at infinity. The essential spectrum of the unperturbed three dimensional
Pauli operator without potential $V$ begins at the origin and occupies the whole pos-
itive axis. On the other hand, the perturbed operator $H$ has an infinite number of
negative eigenvalues accumulating the origin. The second main theorem is formulated
as follows.

Theorem 2. Let $H=H(V)$ be as above. Suppose that the magnetic field $b(X)$ ffilffils
the assumption $(b)$ . If a real function $V(x, z)\in C^{1}(R^{3})$ satisfies

$\langle_{X,Z}\rangle^{-m}/C\leq V(x, z)\leq C\langle X, z\rangle^{-m}$ , $|\nabla V(x, z)|\leq C\langle X, z\rangle^{-m}-1$ , $C>1$ ,

for some $m>0$ , where $\langle x, z\rangle=(1+|x|^{2}+|z|^{2})^{1}/2$ , then one has :

(i) If $0<m<2$ , then

$N(H<- \lambda)=2(2\pi)-2\int_{V(x,z)>\lambda}b(_{X)(}V(X, z)-\lambda)1/2dxdz(1+o(1)),$ $\lambdaarrow 0$ .

(ii) Assume that $m>2$ . Let $w(x)$ be defined as

$w(x)= \int_{-\infty}^{\infty}V(x, z)dz$ .
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If $w(x)$ fulfills the additional assumption

$\lim_{\lambdaarrow}\sup_{0}\lambda^{2/(m}-1)\int_{()w(}1+\delta\lambda>x)>(1-\delta)\lambda)d_{X}=o(1$ , $\deltaarrow 0$ ,

t.hen
$N(H<- \lambda)=(2\pi)-1\int_{\dot{w}}(x)>2\lambda 1/2(bX)dx(1+o(1))$ , $\lambdaarrow 0$ .

Remark. The above theorem can be extended to a certain class of potentials with
indefinite sign or weak local singularities. Such a class of potentials includes the
negative Coulomb potential as one of typical examples.

The problem on the asymptotic distribution of eigenvalues for Pauli operators per-
turbed by electric potentials has been already studied by $[7, 9]$ when $b(x)=b>0$
is a uniform magnetic field. Both the works make an essential use of the uniformity
of magnetic fields and the methods developed there do not seem to apply directly to
the case of nonconstant magnetic fields. Roughly speaking, the difficulty arises from
the fact that magnetic potentials which actually appear in Pauli operators undergo
nonlocal changes even under local changes of magnetic fields. This makes it difficult
to control nonconstant magnetic fields by a local approximation of uniform magnetic
fields. To prove the two main theorems, some new devices are required in many states
of the proof. We also note that the present method may extend to the case of periodic
magnetic fields for which the second assumption in $(b)$ is in general violated. We will
discuss the matter in detail elsewhere ([12]).

Recently several works have been done on the spectral problems of Pauli operators
with nonconstant magnetic fields. For example, the Lieb-Thirring inequality for neg-
ative eigenvalues has been discussed in $[5, 8]$ and the asymptotic behavior of ground
state densities in the strong field limit has been studied in [4]. The present work is
motivated by these works.

Sketch of proof of Theorem 1

Theorem 2 follows from Theorem 1. We here give only $\mathrm{s}$ sketch for the proof of
the first theorem. The detailed proof of both the theorems can be found in [11] (see
[10] also). For brevity, we assume that $V(x)>0$ is strictrly positive, and we consider
only the number $N(H(V)<-\lambda)$ of negative eigenvalues less that $-\lambda$ of operator
$H(V)$ . The proof is based on the min-max principle and on the perturbation theory
for singular numbers of compact operators.

We start by fixing several notations. For given self-adjoint operator $T$ , we use
the notations $N(T<\lambda)$ and $N(T>\lambda)$ to denote the number of eigenvalues less
and more than $\lambda$ of $T$ , respectively. Let $H_{\pm}$ be as in (0.1). As previously stated,
$H_{+}$ has the remarkable spectral property that $H_{+}$ has zero, bottom of its spectrum,
as an isolated eigenvalue with infinite multiplicities and also the non-zero spectra of
operators $H_{+}$ and $H$-coincide with each other. We denote by $P:L^{2}(R_{x}^{2})arrow L^{2}(R_{x}^{2})$
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the eigenprojection associated with the zero eigenspace $\mathrm{K}\mathrm{e}\mathrm{r}H_{+}$ of $H_{+}$ and we write
$Q$ for Id–P, $Id$ being the identity operator. By assumption $(b),$ $H_{-}\geq b_{0}>0$,
$b_{0=} \inf b(X)$ , is strictly positive and hence we have

$QH_{+}Q\geq b_{0}Q$ (1.1)
in the form sense.

(1) Let $0<c<b_{0}/2$ be fixed. Then we have the form inequalities
$PVQ+QVP_{>}^{\leq}\pm cQ\pm PV^{2}P/C$

and hence it follows that
$N(H(V)<-\lambda)_{>}^{\leq}N(P(\mathrm{t}^{r}\pm V^{2}/c).P>.\lambda)+N(Q(H+-V\mp c)Q<-\lambda)$ .

By (1.1), the quantities $N(Q(H_{+}-V\mp c)Q<-\lambda)$ are seen to be bounded uniformly
in $\lambda>0$ small eough. On the other hand, $V(x)^{2}=O(|x|^{-2}m)$ falls off at infinity faster
than $V(x)$ and hence this is treated as a negligible term by a perturbation method.
Thus we have

$N(H(V)<-\lambda)\sim N(PVP>\lambda)$ , $\lambdaarrow 0$ .
The problem is now reduced to the study on the asymptotic distribution of compact
operator $PVP$. If we denote by $\{e_{j}\}_{j=1}^{\infty}$ an orthonormal system of $\mathrm{K}\mathrm{e}\mathrm{r}H_{+}$ , then this
operator is realized as the infinite matrix with component $(Ve_{j}, e_{k})$ , $( , )$ being the
$L^{2}$ scalar product in $L^{2}(R_{x}^{2})$ . Let $\varphi(x)$ be a solution to

$\Delta\varphi=b$ , (1.2)
so that the magnetic potential $(a_{1}(x), a_{2}(x))$ associated with the field $b(x)$ is chosen
to be divergenceless

$a_{1}(x)=-\partial_{2}\varphi(x)$ , $a_{2}(x)=\partial_{1}\varphi(X)$ .
Hence a simple calculation yields the relation

$\Pi_{1}+i\Pi_{2}=-ie-\varphi(\partial_{1}+i\partial 2)e\varphi$ .
This, together with (0.2), implies that

$u_{l}(x)=(x_{1}+ix_{2})^{l}\exp(-\varphi(x))=r^{l}\exp(il\theta)\exp(-\varphi(X))$ , $l\geq 0$ (integer),
spans the zero eigenspace $\mathrm{K}\mathrm{e}\mathrm{r}H_{+}$ , where $(r, \theta)$ stands for thr polar coordinates over
the plane $R_{x}^{2}$ . If, in particular, $b=b(r)$ is spherically symmetric, then so is $\varphi=\varphi(r)$

and hence $\{u_{l}\}$ forms an orthogonal system of eigenfunctions spanning $\mathrm{K}\mathrm{e}\mathrm{r}H_{+}$ . If,
in addition, $V=V(r)$ is also spherically symmetric, then the operator $PVP$ under
consideration is realized as the diagonal matrix with $\lambda_{l}=p_{l}/q_{l}$ as eigenvalues, where

$p_{l}=2 \pi\int_{0}^{\infty}V(r)r\exp(2l+1-2\varphi(r))dr$ , $q_{l}=2 \pi\int_{0}^{\infty}r^{2l+}\mathrm{e}\mathrm{x}\mathrm{p}1(-2\varphi(r))$ dr.

Thus the theorem is obtained by studying the asymptotic behavior as $larrow\infty$ of $\lambda_{l}$

with aid of the stationary phase method, provided that magnetic fields and electric
potentials are both spherically symmetric.

(2) If $V(x)=O(|x|^{-m})$ falls off very slowly at infinity, then the theorem is estab-
lished through a local approximation of uniform magnetic fields.
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Proposition 1.1. Let $\beta,$ $0<\beta\leq 1$ , be as in assumption $(b)$ . If $m<2\beta/3$ , then

$N(H(V)<- \lambda)=(2\pi)^{-}1\int_{V(x)>\lambda}b(_{X})dx+o(\lambda-2/m)$ , $\lambdaarrow 0$ .

The proof of this proposition uses the min-max principle and it is based on the
following lemma due to [2].

Lemma 1.2. Let $Q_{R}$ be a cube with side R. Let $H_{B}$ be the Schr\"odinger operator
with constant magnetic field $B>0$ . If we consider $H_{B}$ under zero Dirichlet $bo$undary
conditions over the domain $Q_{R}$ and denote by $N_{D}(H_{B}<\lambda;Q_{R}),$ $\lambda>0$ , the $n$umber
of eigenvalues less that $\lambda,$ $t$,hen there exists $c>0$ independent of $\lambda,$ $R$ and $\Lambda,$ $0<\Lambda<$

$R/2$, such that:

(1) $N_{D}(H_{B}<\lambda;QR)\leq(2\pi)^{-1}B|QR|f(\lambda/B)$

(2) $N_{D}(H_{B}<\lambda;QR)\geq(2\pi)^{-1}(1-\Lambda/R)^{2}B|Q_{R}|f((\lambda-C\Lambda^{-}2)/B)$ ,

where $|Q_{R}|=R^{2}$ is the meas$\mathrm{u}re$ of $c\mathrm{u}$be $Q_{R}$ and

$f(\lambda)=\#\{n\in N_{*}=N\cup\{0\} : 2n+1\leq\lambda\}$.

(3) In order to prove the theorem for a wider class of potentials decaying not
necessarily slowly at infinity, we use the following simple commutator relation:

$PVP=PV^{1/2}(P+Q)V^{1/2}P=(PV^{1/2}P)2+P[V^{1/2}, Q]V1/2P$.

Roughly speaking, the second operator on the right side takes the form

$P[V1/2, Q]V1/2P=P\langle x\rangle^{-m}-1BP$

for some bounded operator $B$ . This enables us to deal with it as a negligible operator.
We make repeated use of this procedure to conclude that

$N(PVP>\lambda)\sim N(PV^{1/2}Pk>\lambda^{1/2^{k}})+N(PUP>\lambda)$ , $\lambdaarrow 0$ ,

for some $U(r)\geq 0$ with compact support. If $k\gg 1$ is taken large enough, then we can
apply Proposition 1.1 to the first term on the right side, which $.\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\backslash$es $.\mathrm{t}\backslash$ he l.eading
term of the asymptotic forrmula in the theorem.

(4) It remains to control the error $\dot{\mathrm{t}}\mathrm{e}\mathrm{r}\mathrm{m}N(PUP>\lambda)$ with spherically symmetric
nonnegative function $U(r)$ compactly supported. We can prove the following

200



Lemma 1.3. Let $U(r)$ be as above. Then

$N(PUP>\lambda)=O(\lambda^{-\epsilon})$ , $\lambdaarrow 0$ ,

for any $\epsilon>0$ small $eno\mathrm{u}gh$ .

The lemma above completes the proof of the theorem. We shall briefly explain how
to prove this key lemma. Several new notations are required. Let $A(C)$ be the class of
analytic functions over the complex plane $C$ . For given real function $\psi(x)\in C^{2}(R_{x}^{2})$ ,
we define the subspace $\mathcal{K}_{\psi}(R_{x}^{2})$ of $L^{2}(R_{x}^{2})$ by

$\mathcal{K}_{\psi}(R_{x}^{2})=$ { $u\in L^{2}(R_{x}^{2})$ : $u=he^{-\psi}$ with $h\in A(C)$ }

and we denote by $P_{\psi}$ the orthogonal projection on $\mathcal{K}_{\psi}(R_{x}^{2})$ . Such a subspace is easily
seen to be closed. Let $\varphi(x)$ be as in (1.2). By construction, the zero eigenspace
$\mathrm{K}\mathrm{e}\mathrm{r}H_{+}\mathrm{j}\mathrm{u}\mathrm{S}\mathrm{t}$ coincides with $\mathcal{K}_{\varphi}(R_{x}^{2})$ and hence the eigenprojection $P$ is realized as the
projection $P_{\varphi}$ on $\mathcal{K}_{\varphi}(R_{x}^{2})$ . The lemma below is obtained as a simple application of
the min-max principle.

Lemma 1.4. Let $\psi_{j}(x)\in C^{2}(R_{x}^{2}),$ $1\leq j\leq 2$ , be a real function and let $\chi(x)\geq 0$ be
a $bo$un$ded$ Function with compact support. Write $\mathcal{K}_{j}$ and $P_{j}$ for $\mathcal{K}_{\psi_{j}}(R_{x}^{2})$ and $P_{\psi_{j}}$ ,
respectively. If $\psi_{1}(x)\leq\psi_{2}(x)$ , then one has

$N(P_{1x}P_{1}>\lambda)\leq N(P_{2x}P_{2}>\lambda/\gamma)$ ,

where
$\gamma=\max_{x\in\sup \mathrm{p}\chi}\exp(2\theta(X))$ , $\theta(x)=\psi_{2}(x)-\psi 1(X)\geq 0$ .

This lemma implies the key lemma. We can construct a real solution $\varphi(x)\in C^{2}(R_{x}^{2})$

to equation (1.2) with bound

$\varphi(x)=o(\exp(Cr)2)$ , $r=|x|arrow\infty$ ,

for some $c>0$ . We apply Lemma 1.4 with $\psi_{1}=\varphi$ and $\psi_{2}=\psi=\exp(c(r2+1))$ .
Since $U(r)$ and $\psi(r)$ are spherically symmetric, the operator $P_{\psi}UP_{\psi}$ is realized as a
diagonal matrix. The bound in Lemma 1.3 is obtained by evaluating the eigenvalues
of such an infinite diagonal matrix.
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