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Introduction. Let (M, g) be a Riemannian manifold and V the Levi-Civita con-
nection of (M, g). An arc-length parametrized curve ¢(t) in (M, g) is called a circle
if there exist a unit vector field Y (¢) along c(t) and a positive constant k such that

Vime(t) = kY (1), VenY(t) = —ke(t).

The constant k is called the curvature of the circle c(t).

In [AMU] Adachi, Maeda and Udagawa studied the global behaviour of circles in
complex projective space P"(C) and proved that a circle in P*(C) is characterized
by the curvature k and the sectional curvature of the 2-plane spanned by ¢(0) and
Y (0)). Adachi [A] studied the similar problem for quaternion projective space (and
its noncompact dual). It is also known that every circle in the complex projective
space is obtained as an orbit of some one parameter subgroup of the full isometry
group (see Maeda and Ohnita [MO]}).

In this paper we consider similar problems as above for rank one symmetric
spaces. Moreover we characterize homogeneous spaces whose circles are homoge-
neous.

1. Orbits of one parameter subgroups.

Let (M, <,>) = G/K be a homogeneous Riemannian manifold such that K is
a compact subgroup of a Lie group G. We denote by g and £ the Lie algebras of
G and K respectively. Let g = € + p be an Ad(K)-invariant decomposition of g
and identify p with the tangent space T,(g/K) at the origin o = {K}. Let A be
the connection function of (G/K, (,)) (cf. Nomizu [N}]). Then for z,y € p,

A@)®) = 5lo.3ly + V()

where X, is the p-component of the vector X € g and

(U(e,9),2) = 352l v) + (2,2}, 2 €0

Then we have the following.
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Lemma 1. Let X be in g and ¢(t) = exptX - 0. Then for any Y € p,
| VidexptX - (Y) = dexptX - {{Xp, Y]+ AX,)(Y)}.
From Lemma 1 we can easily show the following. -

Theorem 1. Let (G/K,(,)) be a homogeneous Riemannian manifold and g, £
and p be as above. Let {X, Y} be a pair of mutually orthogonal unit vectors in
p and H be an element of €. Then ¢(t) = expt(H + X) - 0 is a circle in (G/K, (,))
of curvature k (> 0) with the initial condition

&(0) =X, Vo c(t) =kY
if and only if the following holds:
| [H, X] + A(X)(X) = kY,
[H, Y]+ AX)(Y) =—-kX.

In particular, for the case when (G, K) is a Riemannian symmetric pair, then c(t)
is a circle with the same initial condition as above if and only if the following holds:

(H,X]=FkY, [HY]=-kX.

2. Results.

Theorem 2. Let (M,g) be a homogeneous Riemannian manifold. Then all the
circles in (M, g) are orbits of one parameter subgroups in the isometry group of
(M, g) if and only if (M, g) is a two point homogeneous space.

At first we show the ‘only if’ part of the theorem.

Suppose that all the circles in (G/K, (,)) are orbits of one parameter subgroups
in G and K is compact. Let {X, Y} be an arbitrary pair of mutually orthogonal
unit vectors in p. Take two circles ¢; and ¢y with initial datas {X,Y} and {X,-Y}
respectively for some £ > 0 (cf. Theorem 1). Then by Theorem 1, there exist
elements H; and H, in € such that '

[Hy, X] + A(X)(X) = kY, [Hy,X]+AX)(X) = kY.

Therefore we get
[H,X]=2kY (H=H,- H,).

Then by the implicit function theorem we can see that Ad(K) - X is open in the
uint hypersphere S of p. Moreover Ad(K) is closed in S because K is compact.
Therefore Ad(K) - X coincides with S, so G/K is two point homogeneous.

Now we prove the ‘if’ part. It is known that a space of constant sectional
curvature and a complex projective space (and a complex hyperbolic space) have
the property stated in the theorem. Thus we may assume that (M, g) is either a
quaternion projective space P*(Q) or a Cayley projective plane P?(€). Let G be
the isometry group of (M, g) and K the isotropy subgroup of G.at a point of M.
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Lemma 2. Let g S p be the canonical decomposition and {X,Y} a pair of
mutually orthogonal unit vectors in p. Then there exists a 4-dimensional Lie triple
system V of p corresponding to P%(C) such that X, Y € V.

Proof of the lemma. '

Case P"(Q)
Put

G=Sp(n+1)={g9 € Mp11(Q): gg* = I},
K = Sp(1) x Sp(n) = {(¢,9) : ¢ € Sp(1), g € Sp(n)},

We denote by g and € the Lie algebras of G and K respectively. We denote by p
the orthogonal complement of € in g. Under the canonical identification

0 - - -4
v e 0o .-
p—Q% . . . .| =l 4
qn O S O

the adjoint representation K on m is as follows;

Ad((avg))[ ST '.' : ZQ;:% o 7
o€ Sp(l),g‘— [gz]] € Sp(n)y%' € Q

Since S’p(n) acts transitively on the unit sphere in Q", we may assume that
X =11,0,---,0]. Similarly by the action of

Sp(n —1) = {g € Sp(n) : gX = X}

on Q" we may assume Y = [u,b,0,---,0] where u + 7w =0 and b € R. For an
element ¢ € Sp(1) we put

k= _ € K.
q

It is easily seen that Ad(k)(X)= X and Ad(k)(Y) = [qug, b,0,-- - ,0]. The group
Sp(1l) acts transmvely on the sphere in R:+Rj+ Rk by £ — ¢xg, we may assume
that. S ,

. X_:[l"()"---,()], :'[aZ’baOa"'aO]v a,bER,a +0b° =1
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Put .
V = {[#1,22,0,--- ,0];2; € C}.

Then it is easy to see that V is a Lie triple system corresponding to PZ(C).
Remark. Set

'0 0 0 0‘
0 ia —b - 0
g—%|0 b —ia - 0
(000 0 - Ol

Then {H, X,Y} satisfy the equations in Theorem 1, so expt(H + X)) 0 is a circle
of curvature k with initial condition

CI(O) = X, VCIC'(O) = kY.

Case P%(C).

In this case G = F, and K = Spin(9). Let X be a unit vector of p. Then K acts
transitively on the unit hypersphere S5 of 3 and the isotropy subgroup of K at X
is isomorphic to Spin(7). Then we can see that under the isotropy representation of
Spin(7) the tangent space Tx S*® is decopmosed into two irreducible components;

TxS™ =W, @ Wy, (dimW; =8, dimW, = 7).

Let Y; be unit vectors of W; (: = 1,2). Then Spin(7) acts transitively on the
unit hypersphere S; of W; and the isotropy subgroup at Y is isomorphic to G4
(51 = Spin(7)/G2). Moreover G, acts transitively on the unit hypersphere S, of
Ws (S2 = G3/SU(3)). In this case there exists a Lie triple system V corresponding
to P2(C) such that V contains X and Y;, so the lemma is proved.

From Lemma 2 and Theorem 1, any circle in (M, g) is expressed as an orbit of
one parameter subgroup of G.

Also, Lemma 2 and Theorem 1 implies the following (cf. [AMU]).

Corollary. Let (M,g) be one of the complex projective space, the quaternion
projective space or the Cayley projective plane. -‘Then there exists a totally geodesi-
cally embedded complex projective plane P?(C) such that for any circle ¢ of (M, g)
we can take an isometry ¢ of (M, g) so that ¢ o c is contained in P?(C). (Similar
result holds for the noncompact dual of M.) '
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