Surfaces of Finite Total Curvature

Kazuyuki Enomoto
（榎 本 —之）
東京理科大学 基嘅工学部

Introduction

Let M be a connected，oriented，noncompact，complete surface in the 3－dimensional Euclidean space E^{3} ．We denote the second fundamental form of M by B ，the mean curavature by H and Gaussian curavature by K ．
In this paper，we study the geometry of a surface M which satisfies $\int_{M}|B| d M<$ ∞ ，where $d M$ is the area element of M ．For surfaces which satisfy $\int_{M}|B|^{2} d M<$ ∞ ，rather than $\int_{M}|B| d M<\infty$ ，extensive studies have been made．Since $|B|^{2}=$ $4 H^{2}-2 K \geq 2|K|$ ，the condition $\int_{M}|B|^{2} d M<\infty$ implies $\int_{M}|K| d M<\infty$ ．A theorem by Huber（ $[\mathrm{H}]$ ）says that an abstract noncompact complete 2－dimensional Riemannian manifold satisfying $\int_{M}|K| d M<\infty$ is conformally equivalent to a compact Riemann surface \bar{M} punctured at a finite number of points p_{1}, \cdots, p_{k} ．If M is a minimal surface with $\int_{M}|B|^{2} d M<\infty$（or equivalently，$\left|\int_{M} K d M\right|<\infty$ ）， Osserman showed that the Gauss map $G: M \rightarrow S^{2}$ is continuously extended to a map from \bar{M} to S^{2}（［O］）．White（［W］）extended Osserman＇s theorem to surfaces with $\int_{M}|B|^{2} d M<\infty$ and $K \leq 0$ ．The continuous extendability of the Gauss map cannot be derived without the condition $K \leq 0$ ，but Müller－Šverák（［ $\mathrm{M}-\mathrm{S}]$ ） showed that if M satisfies $\int_{M}|B|^{2} d M<\infty$ ，then M is properly immersed．
Let M be a connected，oriented，noncompact，complete，properly immersed surface which satisfies a pointwise condition $|B(x)| \leq C|x|^{-1-\varepsilon}$ for x in M ， where $|x|$ is the Euclidean distance from the origin and C and ε are positive constants．In $[E]$ ，the author showed that for M satisfying this condition we have $\int_{M}|B|^{2} d M<\infty$ and the Gauss map is continuously extended to a map from \bar{M} ． Basic tools to study those surfaces are given by Kasue and Sugahara in $[\mathrm{K}]$ and $[\mathrm{K}-\mathrm{S}]$ ．In this paper we will study a surface M which satisfies a stronger condition $|B(x)| \leq C|x|^{-2-\varepsilon}$ and show that we have $\int_{M}|B| d M<\infty$（Theorem 1）．We will also show that such a surface has a property that each end has an asymptotic plane（Theorem 2）．

In general, of course, the condition $\int_{M}|B| d M<\infty$ does not give any pointwise estimate for $|B|$. Moreover, since $\int_{M}|B| d M<\infty$ does not necessarily imply $\int_{M}|K| d M<\infty$, Huber's theorem cannot be applied for these surfaces and the geometry or the topology of M near infinity can be very complicated in general. But if M is a surface of revolution, we can say something about the geometry of the ends. In Theorem 3, we will show that if M is a surface of revolution and satisfies $\int_{M}|B| d M<\infty$, then each end of M has an asymptotic plane. We note that even when M is a surface of revolution, $\int_{M}|B| d M<\infty$ does not imply that $|B|$ is uniformly bounded.

1. Surfaces whose second fundamantal forms decay uniformly

Let M be a connected, oriented, noncompact, complete, properly immersed surface in E^{3}. For x in $M,|x|$ will denote the Euclidean distance to x from the origin.

Theorem 1. If there exist positive constants C and ε such that $|B(x)| \leq$ $C|x|^{-2-\varepsilon}$ for all x in M, then we have $\int_{M}|B| d M<\infty$.

Proof. Since M is properly immersed and the second fundamental form satisfies $|B(x)| \leq C|x|^{-2-\varepsilon}, M(t)=\{x \in M:|x| \geq t\}$ is a union of a finite number of surfaces $M_{1}(t), \cdots, M_{q}(t)$, and for $\lambda=1, \cdots, q$ and sufficiently large $t, M_{\lambda}(t)$ is diffeomorphic to $\partial M_{\lambda}(t) \times[t, \infty)([\mathrm{K}]$ Lemma 2$) . \partial M_{\lambda}(t)$ is a closed curve whose length is less than $C_{1} t$, where C_{1} is a constant which does not depend on $t([\mathrm{~K}-\mathrm{S}]$ Lemma 6). Let $r: M \rightarrow \mathbf{R}$ be a function on M which is defined by $r(x)=|x|$ for x in M. Then there exists a positive constant C_{2} such that $|\nabla r| \geq C_{2}$ if r is sufficiently large ([K] Lemma 2). Hence, denoting the line element of $\partial M_{\lambda}(t)$ by $d s$, we have $d M \leq C_{3} d r d s$ for some positive constant C_{3}. Now, if R is sufficiently large, we have

$$
\begin{aligned}
\int_{M_{\lambda}(R)}|B| d M & \leq C_{3} \int_{R}^{\infty}\left(\int_{\partial M_{\lambda}(r)}|B| d s\right) d r \\
& \leq C_{3} \int_{R}^{\infty}\left(C r^{-2-\varepsilon} \operatorname{Length}\left(\partial M_{\lambda}(r)\right)\right) d r \\
& \leq C_{3} \int_{R}^{\infty} C C_{1} r^{-1-\varepsilon} d r \\
& <\infty
\end{aligned}
$$

This proves the theorem.

Theorem 2 If there exist positive constants C and ε such that $|B(x)| \leq$ $C|x|^{-2-\varepsilon}$ for all x in M, then each end of M has an asymptotic plane, i.e., for each $\lambda=1, \cdots, q$ there exists a plane P_{λ} such that $\sup _{x \in M_{\lambda}(t)} \inf _{y \in P_{\lambda}}|x-y|$ tends to 0 as $t \rightarrow \infty$.

Proof. By Lemma 1.4 in [E], our assumption implies that the normal component of the position vector on each end of M tends to a constant vector. To make it more precise, let x be a point in $M_{\lambda}(t)$ and $N=N(x)$ be a unit normal vector of M at x. Then, as $|x| \rightarrow \infty, N(x)$ converges to a constant unit vector E_{λ} and $\langle x, N(x)\rangle$ converges to a constant a_{λ}. Let P_{λ} be the plane defined by $\left\{y \in E^{3}:\left\langle y, E_{\lambda}\right\rangle=a_{\lambda}\right\}$. First we note that $\inf _{y \in P_{\lambda}}|x-y|=\left\langle x, E_{\lambda}\right\rangle-a_{\lambda}$ for x in M_{λ}. By moving the origin of E^{3} if necassary, we may assume that $a_{\lambda} \neq 0$. Since

$$
\begin{aligned}
\lim _{|x| \rightarrow \infty}\left\langle x, a_{\lambda} E_{\lambda}\right\rangle & =\lim _{|x| \rightarrow \infty}\langle x,\langle x, N\rangle N\rangle \\
& =\lim _{|x| \rightarrow \infty}\langle x, N\rangle^{2} \\
& =a_{\lambda}^{2}
\end{aligned}
$$

we see that $\left\langle x, E_{\lambda}\right\rangle-a_{\lambda}$ tends to 0 as $|x| \rightarrow \infty$. This shows that each end of M has an asymptotic plane.

2. Surfaces of revolution

In this section, M will be a surface of revolution in E^{3} which is defined by $M=\left\{(x, y, z)=(r \cos \theta, r \sin \theta, f(r)): r_{0} \leq r<\infty, 0 \leq \theta<2 \pi\right\}$. The norm of the second fundamental form and the area element of M are given as

$$
\begin{gathered}
|B|=r^{-1}\left(1+f^{\prime 2}\right)^{-3 / 2}\left(r^{2} f^{\prime \prime 2}+f^{\prime 2}\left(1+f^{\prime 2}\right)^{2}\right)^{1 / 2} \\
d M=r\left(1+f^{\prime 2}\right)^{1 / 2} d r d \theta .
\end{gathered}
$$

Theorem 3. Let M be a surface of revolution given above. If $\int_{M}|B| d M<\infty$, then $\lim _{r \rightarrow \infty} f(r)=C$ for some constant C, i.e., each end of M has an asymptotic plane.

Proof. Since

$$
\int_{M}|B| d M=\int_{r_{0}}^{\infty} d r \int_{0}^{2 \pi} \frac{\left(r^{2} f^{\prime \prime 2}+f^{\prime 2}\left(1+f^{\prime 2}\right)^{2}\right)^{1 / 2}}{1+f^{\prime 2}} d \theta
$$

$$
\begin{aligned}
& =2 \pi \int_{r_{0}}^{\infty} \frac{\left(r^{2} f^{\prime 2}+f^{\prime 2}\left(1+f^{\prime 2}\right)^{2}\right)^{1 / 2}}{1+f^{\prime 2}} d r \\
& \geq 2 \pi \int_{r_{0}}^{\infty}\left|f^{\prime}\right| d r
\end{aligned}
$$

the condition $\int_{M}|B| d M<\infty$ implies that $\lim _{r \rightarrow \infty} f(r)=C$ for some constant C.

The following example shows that $|B|$ may not be bounded on a surface of revolution with $\int_{M}|B| d M<\infty$.

Example. Let $f(r)$ be a function which has the following property;

$$
f^{\prime \prime}(r)=\left\{\begin{array}{lll}
n & \text { for } \quad n+\frac{1}{n^{4}} \leq r \leq n+\frac{2}{n^{4}} \\
0 & \text { for } \quad n+\frac{3}{n^{4}} \leq r \leq n+1 \\
<n & \text { for } n+\frac{2}{n^{4}}<r<n+\frac{3}{n^{4}} \\
\geq 0 & \text { for all } r
\end{array}\right.
$$

Then for $n \leq r<n+1$, we have

$$
\sum_{k=1}^{n-1} \frac{1}{k^{3}}<f^{\prime}(r)-f^{\prime}(0)<\sum_{k=1}^{n} \frac{2}{k^{3}} .
$$

Hence, by a suitable choice for $f^{\prime}(0)$, we can have $f^{\prime}(r)=O\left(r^{-2}\right)$. If M is a surface of revolution obtained from $f(r)$, we have

$$
\begin{aligned}
\int_{M}|B| d M & =2 \pi \int_{0}^{\infty} \frac{\left(r^{2} f^{\prime \prime 2}+f^{\prime 2}\left(1+f^{\prime 2}\right)^{2}\right)^{1 / 2}}{1+f^{\prime 2}} d r \\
& \leq 2 \pi \int_{0}^{\infty} r\left|f^{\prime \prime}\right| d r+2 \pi \int_{0}^{\infty}\left|f^{\prime}\right| d r \\
& <\infty .
\end{aligned}
$$

But $|B|$ is not bounded, since $|B| \approx n$ if $n+\frac{1}{n^{4}} \leq r \leq n+\frac{2}{n^{4}}$.

References

[E] Compactification of submanifolds in Euclidean space by the inversion, Advanced Studies in Pure Mathematics, Vol. 22 (K.Shiohama, eds.). Kinokuniya Company, 1993, 1-11.
$[\mathrm{H}]$ On subharmonic functions and differential geometry in the large, Comment.

Math. Helv. 32 (1957) 13-72.
[K] A. Kasue, Gap theorems for minimal submanifolds of Euclidean space, J. Math. Soc. Japan 38 (1086) 473-492.
[K-S] A. Kasue and K. Sugahara, Gap theorems for certain submanifolds of Euclidean spaces and hyperbolic space forms, Osaka J. Math. 24 (1987) 679-704.
[M-S] S. Müller and V. Šverák, On surfaces of finite total curvature, J. Differential Geom. 42 (1995) 229-258.
[O] R. Osserman, Global properties of minimal surfaces in E^{3} and E^{n}, Ann. of Math. (2) 80 (1964) 340-364.
[W] B. White, Complete surfaces of finite total curvature, J. Differential Geom. 26 (1987) 315-326.

Faculty of Industrial Science and Technology
Science Univerity of Tokyo
Oshamambe, Hokkaido
049-35 Japan
e-mail: enomoto@it.osha.sut.ac.jp

