
Time-Action Alternating Model for Verifying Symbolic
Bisimulation Equivalence of Timed Processes

Akio NAKATA Teruo HIGASHINO Kenichi TANIGUCHI
中田明夫 東野輝夫 谷口健

Dept. of Information and Computer Sciences, Osaka University
Machikaneyamacho 1-3, Toyonaka, Osaka 560, Japan

$\mathrm{E}- \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{l}:$ { $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{t}\mathrm{a}$, higashino, $\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{i}$} $\copyright \mathrm{i}\mathrm{c}\mathrm{s}$. es. osaka-u. $\mathrm{a}\mathrm{c}$. jp

Abstract

Verification of timed bisimulation equivalence is generally difficult because of state
explosion caused by concrete time values. In this paper, we propose a verification
method to verify timed bisimulation equivalence of two timed processes using a sym-
bolic technique similar to [1]. We first propose a new model of timed processes, Al-
ternating Timed Symbolic Labelled rbansition System(A-TSLTS). In A-TSLTS, each
state has some parameter variables and those values determine its behaviour. Each
transition in an A-TSLTS has a guard predicate. The transition is executable if and
only if its guard predicate is true under specified parameter values. In the proposed
method, we can obtain the weakest condition for a state-pair in a finite A-TSLTS to
make the state-pair be timed bisimulation equivalent. We also extend the method to
$\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{i}\Phi$ untimed bisimulation equivalence [2, 3, 4].

Keywords: timed process, symbolic bisimulations, A -TSLTS, most general boolean,
untimed bisimulation equivalence

1 Introduction
Verification of timed bisimulation equivalence for timed processes is generally difficult be-
cause of state explosion. There are some proposals to solve this $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}[5,6,7,4]$. But
they all have some restrictions in describing time constraints of actions. On the other hand,
for data-passing processes, a verification method of bisimulation equivalence is $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{S}\mathrm{e}\mathrm{d}[1]$.
This method has some advantages: (1). Its verification cost does not depend on data domain
nor absolute values of constants which we use in data constraints, and (2). the method does
not depend on predicates which we choose for describing data constraints (although they
should be decidable in order to verify the equivalence). It is desirable that there exists a
method to verify timed bisimulation equivalence which has the same advantages as above.

数理解析研究所講究録
996巻 1997年 98-110 98

In this paper, first, we propose a new model for describing timed processes, and then
we propose a method to verify timed bisimulation equivalence of two timed processes in the
proposed model using the technique so-called ‘symbolic $\mathrm{b}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}’[1]$.

A new model, Alternating Timed Symbolic Labelled Transition System(A-TSLTS, for
short), is introduced to describe time-constrained processes. Each state in an A-TSLTS
may have some parameter variables $(\mathrm{e}\mathrm{g}. x, y)$. Each transition in an A-TSLTS has a guard
predicate such as ‘execute the transition a between $x+5$ and y seconds from now.’ The
guard predicate of a transition may contain any parameter variables associated to its source
state, any numerical operations on time domain, and any atomic predicates. We can use any
logic. The logic only needs to be decidable in order to verify the equivalence in the proposed
method. In this paper, only timed transitions are

$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{d}e(d)$

(data-passing is ignored).
We model a time transition by a delay transition $arrow \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}$ a delay variable d , which

stands for an amount of the delay (duration). This is the same as [5]. This modeling has an
advantage that we can treat durations equally as $\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ data. So, although we only
handle time here, we can easily

$\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{t}\mathrm{h}\mathrm{e}e(d)$

result to the model which handles both time and
data-passing. Each delay transition $arrow \mathrm{a}\mathrm{n}\mathrm{d}$ action transition $-^{a}$ have guard predicates
which may contain the delay variables and the parameter variables at their source states
(they possibly include some delay variables in former delay transitions). We refer to such a
model as “Timed Symbolic Labelled Transition System(TSLTS).”

It is difficult to
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}e(d)\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}$

symbolic $\mathrm{b}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}.[1]$ on a TSLTS. The reason is as follows.
A delay transition $arrow \mathrm{w}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{e}$ amount of delay is d , is equivalent to a sequence of delay
transitions $e(d_{1})arrow e(-^{d}2).e\mathrm{r}\cdot-^{d_{n}}()$ where $d_{1}+d_{2}+\cdots+d_{n}=d$. Also, in a TSLTS, it is possible that
after

$\frac{e(d_{1})}{}$

, is executed, both $\underline{e(d_{2})}’$ and $-^{a}$ may be executable. So, in general, the sequence
$e(d_{1})e(d)arrow-^{2}$ is not easily reduced to one transition. In order to make a matching between two
transitions which form a bisimulation, we must make a (possibly infinitely many) sequence-
to-sequence matching, which makes the problem difficult. Therefore, in this paper, we assume
our model to have altemating property. Each state of a TSLTS must belong to one of the
two kinds of sets of states, the one is a set of idle states, and the other is a set of active states.
From an idle state, only a delay transition is possible and then it moves to an active state.
From an active state, some action transitions are possible. After one of them is executed, it
comes back to an idle state. We call such a restricted TSLTS as an Alternating TSLTS (A-
TSLTS). In the A-TSLTS model, we can make the bisimulation matching of delay transitions
to $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$. Consecutive execution of actions (without delay) can be expressed in an A-
TSLTS by inserting a delay transition of zero duration between two action transitions.

Using a similar algorithm as [1], from a given state-pair we obtain the weakest condition
(similar to [1], we refer to the condition as most general boolean, mgb for short) to make the
two states be timed bisimulation equivalent. For example, let us consider the following two
processes, P and Q . The process P may execute the action a between $x+5$ and y seconds
from now, or execute the action b between y and $x+10$ seconds from now. The process Q

may execute the action a between 10 and z seconds from now. In order to make P and Q

bisimilar, the condition “$(x+5=10)\wedge(y=z)\wedge(y>x+10)$” must hold (if $(y>x+10)$,
then P cannot execute the action b). On the other hand, the condition is also a sufficient
condition to make P and Q bisimilar. Such a condition is the $\mathrm{m}\mathrm{g}\mathrm{b}$. In the proposed method,

99

even if P and Q are infinite processes, if the corresponding A-TSLTS has finite states and
finite variables, we can obtain the mgb for any two states. Once we obtain the $\mathrm{m}\mathrm{g}\mathrm{b}$, we can
verify whether the two states are timed bisimulation equivalent w.r.t. specified parameter
values by checking whether the values satisfy the $\mathrm{m}\mathrm{g}\mathrm{b}$.

The proposed algorithm takes an A-TSLTS and its state-pair as an input, and it outputs
the mgb for the state-pair. We also show that the algorithm can easily be extended to verify
untimed bisimulation $equivalence[2]$, which is a bisimulation equivalence where we allow
the executed time of actions does not have to be precisely equal. The notion of untimed
bisimulation equivalence is essentially identical to time abstracted bisimulation in $[3, 4]$.

This paper is organized as follows. In Section 2, the model of timed processes, A-TSLTS,
is defined. In Section 3, timed bisimulation equivalence of states in an A-TSLTS is defined. In
Section 4, an algorithm is presented to construct the mgb for two states in an A-TSLTS w.r.t.
timed bisimulation equivalence. In Section 5, untimed bisimulation equivalence of states in
an A-TSLTS is defined and an extension of the algorithm to verify untimed bisimulation
equivalence is presented. Finally, in Section 6, we conclude this paper.

2 TSLTS model
A TSLTS is an LTS where each state s has a set of parameter variables DVar (S) , and
each transition is either an action transition, represented as $sarrow a,Ps’$ or a delay transition
represented as $s^{e(d),P}arrow s’.$

a is an action name. d is a variable which stands for a duration.
Each P is a transition condition. The transition condition P is a formula of a (decidable)
lst-order arithmetics on any (dense or discrete) time domain. P may contain any variables

in DVar (s) (s is a source state of the transition). In a delay transition $se(d),Parrow s’,$ P may
also contain the variable d .

Intuitively, a delay transition $se(d),Parrow s’\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}}$ a state-transition only by delay. Its
duration is d and d must satisfy P under a current assignment for other parameter variables
in DVar (s) . The delay is possible up to the maximum value of $d’ \mathrm{s}$ which satisfy P . The
delay over the maximum value of d is not allowed $(\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}- \mathrm{d}\mathrm{e}\mathrm{a}\mathrm{d}\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k}[8],\mathrm{u}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{y}[9])$. When the
transition is completed, the actual duration (which satisfies P) is assigned to the variable
d . $DVar(S’)$ may contain the variable d . So the value of d may be used in conditions of
any succeeding transitions. An action transition $sarrow a,Ps’\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}}$ an execution of an
action a when P holds under a current assignment for parameter variables in DVar (s) .
The execution of an action is considered instantaneous, since we take interleaving semantics
to express $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{C}\mathrm{u}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{y}[10,7]$. The state s may have multiple outgoing action transitions.
In that case, one of executable action transitions is nondeterministically chosen and then
executed.

Example 1 We show an example of a TSLTS in Fig. 1. In Fig. 1, for convenience, the
names $s_{1},$ $s_{2},$ \ldots are assigned for states and $t_{1},$ $t_{s},$

\ldots for transitions. The set associated to
each state s_{i} represents DVar (S_{i}) . $a[P]$ (or $e(d)[P]$) associated to each transition represents
an action name a (or a delay with its duration of d , respectively) with a transition condition
P . When a value v is assigned to the parameter variable x at state s_{1} , the TSLTS in Fig. 1

100

Figure 1: Example of TSLTS

behaves as follows. First, $x=v$ units of time is elapsed (the value v is assigned to $d_{t_{1}}$)
and then the action a is executed. Next, before 4 units of time elapse, the action b or c is
executed. The action b is executable when the duration is within 3 units of time. The action
c is also executable when the duration is more than or equal to 2 units of time. In the case
that c is executed, the TSLTS moves its state to s_{1} and then repeats the behaviour from

$\mathrm{t}\mathrm{h}\mathrm{e}\square$

beginning.

In order to make it easier to consider symbolic bisimulation, we restrict a TSLTS so that
its states fall into two categories of states, idle states and active states. Each idle state has
only a delay transition as an outgoing transition and the destination is an active state. An
active state has only action transitions as outgoing transitions and all the destinations are
idle states. We call this restricted TSLTS as an Alternating TSLTS (A -TSLTS). The notion
of A-TSLTS is inspired by [11].

In the rest of this paper, we assume that each TSLTS is an A-TSLTS, and it is time-
deterministic, i.e., every state has at most one outgoing delay transition. Time-determinacy
is a reasonable assumption when we consider processes of real-world. Many other studies
also assume $\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}- \mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{c}\mathrm{y}[8,10,7]$.

Example 2 The TSLTS of Example 1 is an A-TSLTS because a division into $\{S_{1}, S_{3,5}S\}$

(idle states) and $\{S_{2}, s_{4}\}$ (active states) is possible. It is also time-deterministic.

3 . Timed Bisimulation Equivalence
In this section, we define timed bisimulation equivalence for A-TSLTS. Before all, we need
some preliminary definitions.

Definition 1 \bullet We denote assignments of values to variables by $\rho,$
$\rho’,$

\ldots .

\bullet For a predicate P and an assignment ρ , we denote $\rho\models P$ iff P is true under an
assignment ρ .

\bullet We denote $\rho[x=e]$ is the same assignment as ρ except that the value of the expression
e is assigned to the variable x .

101

\bullet We denote a tuple (s, ρ) of a state s in a TSLTS and an assignment ρ , as $\rho(s)$. $\rho(s)$

stands for a state with some parameter values($\mathrm{n}\mathrm{o}\mathrm{t}$ variables) associated to s . We
$\mathrm{c}\mathrm{a}11\square$

it an instance of s w.r.t. ρ .

The actual moves of a TSLTS are formally defined by considering the corresponding (tra-
ditional) LTS, whose states are all instances of TSLTS states, and whose transitions are
labelled by either an action name or a concrete value of a duration.

Definition 2 For a TSLTS M , its corresponding semantic $LTSM’$ is defined as follows:

\bullet The set of states in $M’$ are the set of all instances of M , i.e. { $\rho(s)|\rho:\mathrm{a}\mathrm{n}$ assignment, $s:\mathrm{a}$

state of M}.
\bullet Each transition in $M’$ is labelled by either an action name a of M , or any non-negative

time value t .

\bullet For each transition $sarrow sa,P$, in M and each assignment $\rho,$
$M’$ has a transition $\rho(s)-^{a}$

$\rho(s’)$ iff $\rho\models P$.

\bullet For each transition $s^{e(d),P}arrow s^{J}$ in M , each assignment ρ , and any non-negative time value
$t,$ $M’$ has a transition $\rho(s)arrow\rho[t]d=t(S’)$ iff $\rho[d=t]\models\exists d’[d\leq d’\wedge P\{d’/d\}](P\{d’/d\}$

denotes P whose any occurrence of a free variable d is replaced by $d’$). Moreover, for any

non-negative time value $t’$ which satisfies $t’\leq t,$ $M’$ has a transition $\rho[d--t/](s^{J})arrow t-t’$

$\rho[d=t](S’)$. \square

Remark: The predicate “ $\exists d’[d\leq d’\wedge P\{d’/d\}]$
” means that P holds at some duration $d’$

where $d\leq d’$. In such a case, a delay of the duration d (as well as $d’$) is allowed.
The method for modeling real-time processes by consider.ing a delay transition with an

associated time value is similar to [10, 5, 7].
For a given TSLTS, timed bisimulation equivalence of its two instances of states is defined

by considering a traditional bisimulation equivalence on its semantic LTS.

Definition 3 A timed bisimulation relation R is a binary relation on a set of instances of
TSLTS states { $\rho(S)|s:\mathrm{a}$ TSLTS state, $\rho:\mathrm{a}\mathrm{n}$ assignment}, which satisfies the following condi-
tions:

\bullet R is a symmetric relation, and

\bullet if $(\rho_{i}(S_{i}), \rho j(S_{j}))\in R$, then all of the following conditions hold:

-For any time value t , if $\rho_{i}(s_{i})-^{t}\rho_{i}’(S_{i}^{J})$, then there exist some $s_{j}’$ and $\rho_{j}’$ such

that $\rho_{j}(s_{j})tarrow\rho_{j}’(S_{j}’)$ and $(\rho_{i}’(s_{i}’), \rho_{j}’(S_{j}’))\in R$,

-For any action name a in the TSLTS, if $\rho_{i}(s_{i})-^{a}\rho_{i}’(S_{i}^{J})$, then there exist some
$s_{j}’$ and $\rho_{j}’$ such that $\rho_{j}(Sj)-^{a}\rho_{j}(/S^{J})j$ and $(\rho_{i}’(s_{i}’), \rho_{j}’(S_{j}’))\in R$.

If there exists some timed bisimulation equivalence R such that $(\rho_{i}(S_{i}), \rho j(S_{j}))\in R$, the
two instances $\rho_{i}(s_{i})$ and $\rho_{j}(s_{j})$ are called timed bisimulation equivalent, which is denoted by
$\rho_{i}(s_{i})\sim_{t}\rho_{j}(Sj)$. Especially, if $\rho(s_{i})\sim_{t}\rho(s_{j})$, then the two states s_{i} and s_{j} are called

$timed\square$

bisimulation equivalent $w.r.t$. an assignment ρ .

102

$mgb(s_{i}, s_{j})=^{f}mgbde1(_{\mathit{8}_{ij}}, s, \emptyset)$..

$mgb1(S_{i,j}s, W)=def$ if $(s_{i}, S_{j})\in W$ then return true
else if (s_{i}, s_{j}) is a pair of idle states, then return $match-delay(si, S_{j}, W)$

else if (s_{i}, S_{j}) is a pair of active states, then return $match-acti_{on()}..s_{i,j}sW\vee$’

else return false

match-delay $(s_{i}, s_{j}, W)=def$ if $s_{i}-^{i}e(d),P_{i}si’$ and $sj\rangle sj’e(\underline{d_{\mathrm{j}}),}P_{j}$

then let $\{d=new(DVar(si)\cup DVar(s_{j}))$,
$M_{i’,j’}=mgb1(s_{i’}[d_{i}arrow d], s_{j^{l}[}d_{j}arrow d], W\cup\{(s_{i}, s_{j})\})\}$ in

return $\forall d[P_{i}\{d/d_{i}\}\Rightarrow[P_{j}\{d/d_{j}\}\wedge M_{i’,j’}]]\wedge\forall d[P_{j\{}d/d_{j}\}\Rightarrow[P_{i}\{d/d_{i}\}.\wedge M_{ij},,’]]$

$e(d_{i}),P_{i}$. $e\langle d_{\mathrm{j}}),P_{j}$.
else if s_{i} \neqarrow and s_{j}

\neqarrow then return true else return false
$matCh-action(S_{i}, S_{j}, W)^{d}= \mathrm{t}\mathrm{u}\mathrm{r}ef_{\mathrm{r}\mathrm{e}\mathrm{n}}\bigwedge_{a\in Act}$ { $matc_{P}ha,k$

-action$1(a,$ $s_{i},$ $s_{j},$ $W)$ }
match-action$1(a, s_{i}, S_{j}, W)=def$ let $\{K=\{k|s_{i}arrow s_{i_{k}}\},$ $L=\{l|s_{j}arrow S_{j_{l}}a,Q_{l}\}$,

$M_{k,l}=mgb1(\mathit{8}ik’ Sj\iota’ W\cup\{(_{SS}i,j)\})\}$ in
return $\bigwedge_{k\in K}\{P_{k}\Rightarrow \mathrm{V}_{l\in L}\{Q_{l}\wedge M_{k,l}\}\}\wedge\bigwedge_{l\in L}\{Ql\Rightarrow _{k\in K}\{P_{k}\wedge M_{k,l}\}\}$

where, for a set V of variables, new(V) denotes a function which returns an appropriate
new variable x such that $x\not\in V$.

Figure 2: Algorithm to compute $mgb(S_{i}, s_{j})$.

4 Verification of Timed Bisimulation Equivalence
For any state-pair (s_{i}, s_{j}) in an A-TSLTS, we call the weakest condition P such that if
$\rho\models P$ then s_{i} and s_{j} are timed bisimulation equivalent w.r.t. ρ , as the mgb of (s_{i}, s_{j}) . If we
can obtain the mgb P for any state-pair (s_{i}, s_{j}) , then the verification of timed bisimulation
equivalence of $\rho(s_{i})$ and $\rho(s_{j})$ is reduced to the verification to check whether $\rho\models P$.

To keep track of the correspondences between variables during matching, it is useful to
replace some different variables of two states with some common name, standing for their
matched common value which equates the two states. In order to do so, we consider the mgb
for a pair of terms instead of states in A-TSLTS. This is similar to [1]. A term is a tuple of a
state and a substitution. A substitution is a mapping from variables to variables. We denote
a term (s, σ) as $s\sigma$, where s is a state of A-TSLTS and σ is a substitution. We also denote
a substitution which maps the variable d to $d’$ as $[darrow d’]$. If σ is an identity substitution,
we abbreviate $s\sigma$ to s and we do not distinguish between the term $s\sigma$ and the state s . Note
that if the set of variables is a finite set, then the set of all possible substitutions are finite.
A transition between terms is defined as $s\sigma^{e(\sigma}arrow S\sigma(d)),P\sigma/(s\sigma^{a,P\sigma}arrow S\sigma)/$ iff $s^{e(d),P}arrow S’(sarrow sa,P’$,
respectively) in an A-TSLTS. We denote the mgb of a term-pair (S_{i}, s_{j}) as $mgb(si, Sj)$. If the
A-TSLTS has only finite states and finite variables, $mgb(S_{i}, s_{j})$ is obtained by the algorithm
in Fig. 2.

The function $mgb(S_{i}, s_{j})$ takes two arguments s_{i} and s_{j} , any two states in an A-TSLTS,
ari d returns the mgb for (s_{i}, s_{j}) . The function $mgb1(Si, s_{j}, W)$ takes three arguments $s_{i},$ s_{j}

and a set W of state-pairs. W is a set of already $vi_{\mathit{8}}ited$ pairs, introduced to make sure
the algorithm eventually terminates. For $(s_{i}, s_{j})\in W$, it simply returns true. Otherwise,

103

it returns $match-delay(s_{i}, s_{j}, W)$ if (S_{i}, s_{j}) is a pair of idle states, or $match-action(Si, s_{j}, W)$

if (s_{i}, s_{j}) is a pair of active states. $match-delay(S_{i,j}s, W)(matCh_{-}aCti_{\mathit{0}}n(S_{i}, sj, W))$ is a
function which recursively computes the mgb for (s_{i}, s_{j}) , where we assume (s_{i}, s_{j}) is a pair
of idle (active, respectively) states.

The function $match-delay(s_{i}, s_{j}, W)$ computes the mgb for two idle states s_{i} and s_{j} as
follows. Firstly, from the definition of A-TSLTS and time-determinacy, delay transitions
from s_{i} and s_{j} correspond to $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$, including duration values. So we unifies the delay
variables in the two transitions into one. We introduce a new variable d representing the
common duration of delay. We choose $d=new(DVar(s_{i})\cup DVar(S_{j}))$. W.r.t. a given
assignment ρ , if s_{i} and s_{j} are timed bisimulation equivalent, and if any delay transition
of duration v from s_{i} is possible, then there must exist a delay transition of the same
duration v from s_{j} , and the destinations $s_{i}’$ and $s_{j}’$ must be timed bisimulation equivalent

w.r.t. $\rho[d=v]$. For example, if $s_{i}e(d_{i}),-^{i}d\leq xs_{i}’$ and $s_{j}e(d_{j}),dj\leq yarrow s_{j}$, then $\forall d[d\leq x\Rightarrow[d\leq$

$y\wedge$ (the mgb for $(s_{i}’[d_{i}arrow d],$ $S_{j}’[djarrow d])$) $]$ holds. Here, in general, the mgb for $(S_{i}, S_{j}//)$ contains
the variables d_{i} or d_{j} . To preserve the information that d_{i} and d_{j} are equal, we consider the
mgb for $(s_{i}’[d_{i}arrow d], S_{j}’[djarrow d])$ instead. In general, the mgb for $(s_{i}’[d_{i}arrow d], S_{j}’[djarrow d])$

contains the variable d as a free variable. It represents the mgb for $(S_{i}, S_{j}//)$ in the case
$d_{i}=d_{j}=d$ is assumed.

The above discussions must also be applied when s_{i} and s_{j} are exchanged. Thus, ρ must
satisfy the following condition if s_{i} and s_{j} are timed bisimulation equivalent w.r.t. ρ .

$\forall d[P_{i}\{d/d_{i}\}\Rightarrow[P_{j}\{d/d_{j}\}\wedge M_{ij^{\prime]]}}’,\wedge\forall d[P_{j}\{d/d_{j}\}\Rightarrow[P_{i}\{d/d_{i}\}\wedge M_{i,j^{\prime]]}}l$. (1)

where $M_{i’,j’}=mgb(S_{i}’[d_{i}arrow d], s_{j}’[d_{j}arrow d])$. On the other hand, if s_{i} and s_{j} are not timed
bisimulation equivalent w.r.t. ρ , then, for example, a delay transition of some duration $v’$ is
possible from s_{i} , which is impossible on s_{j} , or otherwise $s_{i}’$ and $s_{j}’$ are not equivalent w.r.t.
$\rho[d=v’’]$ for some value $v^{\prime/}$. In any case, Expression (1) does not hold. Therefore, Expres-
sion (1) is the weakest condition such that ρ must satisfy in order to make $\rho(s_{i})$ and $\rho(s_{j})$ be
timed bisimulation equivalent, i.e., the mgb for (S_{i}, s_{j}) . The function $match-delay(s_{i}, s_{j}, W)$

computes $M_{i’,j’}=mgb1(s_{i}’[d_{i}arrow d], s_{j}’[d_{j}arrow d], \{(s_{i,j}s)\})$ recursively (where (s_{i}, s_{j}) is treated
as a already visited pair) and then returns Expression (1) as the mgb for (s_{i}, s_{j}) .

The function $match-acti_{on(}s_{i},$ $s_{j},$
W) returns the mgb for active states s_{i} and s_{j} , which

is computed as follows. Firstly, if s_{i} and s_{j} are timed bisimulation equivalent w.r.t. an
assignment ρ , for any action a in a set Act of all actions, the following condition holds. For
any possible transition $s_{i^{arrow}}sa,P_{k}i_{k}$ whose transition condition P_{k} satisfies $\rho\models P_{k}$, if the action
a is executable, there must exist some transition $s_{j}\underline{a,Q_{(}},$

$s_{j_{l}}$ whose transition condition Q_{l}

also satisfies $\rho\models Q_{l}$ and the destinations $s_{i_{k}}$ and $s_{j_{1}}$ must be timed bisimulation equivalent
w.r.t. ρ (ρ must satisfy the mgb for $(s_{i_{k},j_{1}}s)$). The above discussions must be

$\mathrm{t}\mathrm{r}\mathfrak{U}\mathrm{e}a,Q\iota$

when s_{i}

and s_{j} are exchanged. Therefore, when we let $K=\{k|s_{i}arrow a,P_{k}s_{i_{k}}\},$ $L=\{l|s_{j}arrow s_{j_{l}}\}$ and
$M_{k,l}=mgb(s_{i}k’ S_{j_{\mathrm{t}}}),$ ρ must satisfy

$\bigwedge_{k\in K}\{..P_{k}\Rightarrow l\in \mathrm{v}_{L}\{Ql\wedge Mk,l\}\}\wedge\bigwedge_{\in lL}\{Q_{l}\Rightarrow k\in K\vee\{P_{k}\wedge Mk,l\}\}$. (2)

A conjunction of Expression (2) over all actions $a\in Act$ is a condition such that ρ must satisfy
if s_{i} and s_{j} are timed bisimulation equivalent for any action w.r.t. ρ . On the other hand, if ρ

104

Figure 3: Example of A-TSLTS

does not make s_{i} and s_{j} be timed bisimulation equivalent, there must exist some action $a’$ such
that, for example, $s_{i}arrow sa’,P_{k}i_{k}$ is executable and for any l , either $s_{j}a’,-Q_{l}Sj1$ is not executable
or $s_{i_{k}}$ and $s_{j_{1}}$ are not timed bisimulation equivalent w.r.t. ρ . In any case, Expression (2)
does not hold. Therefore, a conjunction of Expression (2) over all actions $a\in Act$ is the
weakest condition that ρ must satisfy to make s_{i} and s_{j} be timed bisimulation equivalent
w.r.t. ρ , i.e. the mgb for (S_{i}, s_{j}) . The function $match-acti_{on1}$ ($a,$ si, $sj,$ W) computes each
$M_{i_{k},j_{l}}$ recursively (with $(s_{i},$ $s_{j})$ as an already visited pair), and then returns Expression (2).
The function $match_{-}action(s_{i}, s_{j}, W)$ composes a conjunction of match-action$1(a, s_{i}, s_{j}, W)$

over all $a\in Act$ and returns it as the mgb for (s_{i}, s_{j}) .
The algorithm $mgb(si, Sj)$ terminates if the considered A-TSLTS has only a finite number

of states and variables (thus it has only a finite number of pair of terms).
Formally, we obtain the correctness result by the following theorem.

Theorem 1 [Soundness] If $\rho\models mgb(si, Sj)$, then $\rho(s_{i})\sim_{t}\rho(S_{j})$. \square

Theorem 2 [Completeness] If $\rho(s_{i})\sim_{t}\rho(s_{j})$, then $\rho\models mgb(Si, Sj)$. \square

The formal proof of the correctness for this algorithm is similar to Appendix B. in [1]. We
omit the detail due to the space restriction.

Example 3 For a pair (S_{1}, s_{3}) of the A-TSLTS in Fig. 3, $mgb(S1, S3)$ is obtained as follows.

$mgb(s1, S3)$ $=\forall d_{1}[d_{1}=X\Rightarrow[d_{1}=y\wedge M_{2}4]]\wedge\forall d_{1}[d1=y\Rightarrow[d_{1}--x\wedge M_{24}]]$

where,

M_{24} $=$ $mgb(s_{2}[d_{t_{1}}arrow d_{1}], s_{4}[d_{t_{3}}arrow d_{1}], \{(s_{1,3}S)\})$

$=$ $[d_{1}\leq 3\Rightarrow[d_{1}\leq 2\wedge M_{13}\mathrm{v}(d_{1}<1\vee 2<d_{1}\leq 3)\wedge M_{1}5]]\wedge$

$[d_{1}\leq 2\Rightarrow[d_{1}\leq 3\wedge M_{13}]]\wedge[(d1<1\vee 2<d_{1}\leq 3)\Rightarrow[d_{1}\leq 3\wedge M_{15}]]$,
M_{13} $=$ $mgb1(_{S}1, s_{3}, \{(S_{1}, s_{3}), (s_{2}, S4)\})$,
M_{15} $=$ $mgb1(S1, s5, \{(s_{1}, s_{3}), (s2, S4)\})=falSe$.

Since $mgb1(s1, s_{3}, \{(s_{1,3}s), (S_{2}, s_{4})\})=true$, the mgb after simplification is
$mgb(s_{1}, S_{3})\equiv[x=y]\wedge[1\leq X\leq 2\mathrm{v}_{X>}3]$. \square

105

5Untimed Bisimulation Equivalence and its Verifica-
tion

Definition 4 An untimed bisimulation relation R is a binary relation on a set of instances
of TSLTS states { $\rho(S)|s:\mathrm{a}$ TSLTS state, $\rho:\mathrm{a}\mathrm{n}$ assignment}, which satisfies the following con-
ditions:

\bullet R is a symmetric relation, and

\bullet if $(\rho_{i}(s_{i}), \rho j(s_{j}))\in R$, then all of the following conditions hold:

-For any time value t , if $\rho_{i}(s_{i})-^{t}\rho_{i}’(S_{i}^{J})$, then there exist some $s_{j}’,$ $\rho_{j}’$ and some

time value $t’$ such that $\rho_{j}(s_{j})-^{t}/\rho’j(s_{j}’)$ and $(\rho_{i}’(S_{i}’), \rho’j(S_{j}’))\in R$,

-For any action name a in the TSLTS, if $\rho_{i}(s_{i})\Rightarrow\rho’i(as)/i$
’ then there exist some $s_{j}’$

and $\rho_{j}’$ such that $\rho_{j}(s_{j})\Rightarrow^{a}\rho j/(S_{j}’)$ and $(\rho_{i}’(s_{i}’), \rho_{j}’(S_{j}’))\in R$. $\mathrm{H}\mathrm{e}\mathrm{r}\mathrm{e}\Rightarrow=adeftarrow^{1}a-$ $t_{2,arrow}$

for some time values t_{1} and t_{2} .

If there exists some untimed bisimulation equivalence R such that $(\rho_{i}(S_{i}), \rho j(s_{j}))\in R$, the
two instances $\rho_{i}(s_{i})$ and $\rho_{j}(Sj)$ are called untimed bisimulation equivalent, which is

$\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{d}\square$

by $\rho_{i}(_{S_{i}})\sim_{u}\rho_{j}(s_{j})$.

The result of the previous section can be extended to untimed bisimulation equivalence.
To do this, we modify a part of the algorithm in Section 4 as Fig. 6 to make durations not
necessarily be equal when we match delay transitions.

The mgb of idle states is easily expressed by the following formula:

$\forall d[P_{i}\{d/d_{i}\}\Rightarrow\exists d’[P_{j\{d’}/d_{j}\}\wedge M_{i’,j}’]]\wedge\forall d’[P_{j}\{d’/d_{j}\}\Rightarrow\exists d[P_{i}\{d/d_{i}\}\wedge M_{i’,j’}]]$

where $M_{i’,j^{l}}$ is the mgb of the next pair of active states.
On the other hand, in order to consider the mgb of the active states for untimed bisimu-

lation equivalence, we must solve the following problem. For the timed bisimulation equiv-
alence, we have only to consider the executable actions at the specified time instant (for
example, the action a is executable at time 2, the action b is executable at time 3,. ..).
However, it is not the case for the untimed bisimulation equivalence. Consider the two
A-TSLTSs in Fig. 4. If we consider the executability of actions at time d only, the states
s_{1} and s_{3} should be untimed equivalent, because for duration $d_{1}=2$ after which only a is
executable, there exists a duration $d_{2}=3$ after which only a is also executable, and vice
versa. However, for the above example, s_{1} and s_{3} are not untimed equivalent in the sense of
Definition 4, because after the delay of 2.5 units of time, s_{1} is in the state such that only b

is executable (after more 0.5 units of time elapsed), whereas s_{3} is in the state such that only
a is executable. So, instead of the executability at the given time instant, we consider the
executability at some time after the given time instant. For the above example, when the
system is at state s_{1} and 2 units of time have elapsed, a is executable now and b is executable
after more $3-2=1$ unit of time elapses. In this case, s_{1} is in the state such that both a

and b are executable at some time in the future (see Fig. $5-(\mathrm{b})$). In general, when d units of

106

Figure 4: Example of A-TSLTS where s_{1} and s_{3} are not untimed bisimulation equivalent.

Figure 5: Illustration of (a) timed semantics and (b) untimed semantics of Fig. $4-(\mathrm{A})$.

time have elapsed and a is executable after more $d’-d$ units of time elapse, i.e., $d’$ satisfies
both $d\leq d’$ and the transition condition of $a,$ a is executable at some time in the future.

Because of the reasons above, we must loose the executability condition of actions in
order to define the mgb of the untimed bisimulation equivalence. So we define that for a
given duration d , an action is executable if and only if there exists some duration $d’$ such
that $d\leq d’$ and $d’$ satisfies the transition condition of the action. Note that $d’$, as well
as d , must also satisfy the transition condition of the delay transition. Formally, let P

denote the transition condition of an action a . Then we say that the action a is untimedly
executable after duration d , if and only if $\exists d’[d\leq d’\wedge P\{d’/d\}]$. We refer to the condition
as the untimed transition condition. Since we frequently consider the predicate of the form
$\exists d’[d\leq d’\wedge P\{d’/d\}]$ w.r.t. P and the variable d , we abbreviate it as $\mathcal{F}_{d}P$. Note that if the
transition condition of the most recent delay transition is D , then d ranges over the solutions
of D . However, $\mathcal{F}_{d}P$ may have a solution $d’$ which does not satisfy D , which is incorrect.
(Consider the untimed transition condition of b in the sequence $S_{0}arrow S1arrow Se(d),d\leq 2b,d_{-}-32\cdot$) In this
case, the untimed transition condition becomes $\mathcal{F}_{d}\{P\wedge D\}$.

Using the untimed transition conditions, the mgb of the active states (S_{i}, s_{j}) for untimed
case is given as follows. Firstly, if s_{i} and s_{j} are untimed bisimulation equivalent w.r.t. an
assignment ρ , for any action a in a set Act of all actions, the following condition holds.

$e(d_{i}),D_{i}$

Suppose that the most recent delay transitions of s_{i} and s_{j} are $s_{i_{0}}$ $arrow$ s_{i} for some $s_{i_{0}}$,
$e(d_{j}),D_{\mathrm{j}}$

and $s_{j_{0}}$ $arrow$ s_{j} for some $s_{j_{0}}$, respectively. Note that the delay variable
$d_{i}(d_{j})\mathrm{r}\mathrm{a}\mathrm{n}a,P_{k}\mathrm{g}\mathrm{e}\mathrm{s}$

over solutions of the predicate D_{i} (D_{j} , respectively). For any possible transition $s_{i}arrow s_{i_{k}}$

whose untimed transition condition $\mathcal{F}_{d}\dot{.}[P_{k}\wedge D_{i}]$ satisfies
$\rho\models a,Q\mathrm{t}\mathcal{F}_{d_{i}}[P_{k}\wedge D_{i}]$

, if the action a is
untimedly executable, there must exist some transition $s_{j}arrow s_{j_{l}}$ whose untimed transition
condition $\mathcal{F}_{d_{j}}[Q_{l}\wedge D_{j}]$ also satisfies $\rho\models \mathcal{F}_{d_{j}}[Q_{l}\wedge D_{j}]$ and the destinations $s_{i_{k}}$ and $s_{j_{l}}$ must be
untimed bisimulation equivalent w.r.t. $\rho[d_{i}arrow d_{i}’, d_{j}arrow d_{j}’](\rho[d_{i}arrow d_{i}’, d_{j}arrow d_{j}’]$ must satisfy
the mgb for $(s_{i_{k},j_{\iota}}s))$. Here $\rho[d_{i}arrow d_{i}’, d_{j}arrow d_{j}’]$ denotes the same assignment as ρ except the
names of variables d_{i} and d_{j} are replaced with $d_{i}’$ and $d_{j}’$, respectively. Note that since it is

107

assumed that a is untimedly executed, the executed time of a at the state s_{i} is not d_{i} but $d_{i}’$.
So the destinations $s_{i_{k}}$ and $s_{j_{\iota}}$ can be reached with the values of not d_{i} and d_{j} but $d_{i}’$ and $d_{j}’$.
That is why $s_{i_{k}}$ and $s_{j_{l}}$ must be untimed equivalent w.r.t. $\rho[d_{i}arrow d_{i}’, d_{j}arrow d_{j}’]$. The above
discussions must be true when s_{i} and s_{j} are exchanged. Therefore, similar to the timed case,
we obtain the mgb of active states s_{i} and s_{j} for untimed bisimulation equivalence as:

$\bigwedge_{k\in K}\{\mathcal{F}_{d_{i}}[Pk\wedge D_{i}\Rightarrow _{l\in L}\{\mathcal{F}d_{j}[Q_{l^{\wedge D\wedge}}jM_{k},l]\}]\}$

$\wedge\bigwedge_{l\in L}\{\mathcal{F}_{d_{j}}[Q_{l}\wedge D_{j}\Rightarrow _{k\in K}\{\mathcal{F}_{d}i[P_{k}\wedge D_{i}\wedge Mk,l]\}]\}$

where, $K=\{k|s_{i}arrow a,P_{k}s_{i_{k}}\},$ $L=\{l|s_{j}arrow a,Q_{l}s_{j_{1}}\},$ $M_{k,l}=mgb(si_{k}, Sj\iota),$ $s_{i_{0}}e(d_{i}),D_{i}arrow s_{i}$ for some
$e(d_{j}),D_{\mathrm{j}}$

$s_{i_{0}}$, and $s_{j_{0}}$ $arrow$ s_{j} for some $s_{j_{0}}$.
The functions $match_{-}delay()$ and $match-action()$ can be modified properly for untimed

bisimulation equivalence according to the mgb obtained above. Although, we omit the
detailed definition for lack of space.

Example 4 Consider the two A-TSLTSs in Fig 4. The mgb of (S_{1}, s_{3}) for the untimed
bisimulation equivalence can be obtained as follows:

$mgb(S1, S3)$ $=\forall d_{1}[d_{1}\leq 3\Rightarrow\exists d_{2}[d_{2}\leq 3\wedge M_{24}]]\wedge\forall d_{2}[d_{2}\leq 3\Rightarrow\exists d_{1}[d_{1}\leq 3\wedge M_{24}]]$,

where,
M_{24} $=$ $\exists d_{1}’[d_{1}\leq d_{1}’\wedge d_{1}’\leq 3\wedge d_{1}’=2\Rightarrow\exists d_{2}’[d_{2}\leq d_{2}’\wedge d_{2}’\leq 3\wedge d_{2}’=3\wedge M_{00}]]$

$\wedge\exists d_{2}’$ [$d_{2}\leq d_{2}’\wedge d_{2}’\leq 3\wedge d_{2}’=3\Rightarrow\exists d_{1}’[d_{1}\leq d_{1}’$ A $d_{1}’\leq 3$ A $d_{1}’=2\wedge M_{00}]$]
$\wedge\exists d_{1}’[d_{1}\leq d_{1}’\wedge d_{1}’\leq 3\wedge d_{1}’=3\Rightarrow\exists d_{2}’[d_{2}\leq d_{2}’\wedge d_{2}’\leq 3\wedge d_{2}’=2$ A $M_{00]]}$

$\wedge\exists d_{2}’[d_{2}\leq d_{2}’\wedge d_{2}’\leq 3\Lambda d_{2}’=2\Rightarrow\exists d_{1}’[d_{1}\leq d_{1}’\Lambda d_{1}/\leq 3\wedge d_{1}’=3\wedge M_{00}]]$,
M_{00} $=$ true.

After simplifying the above formula, we obtain $M_{24}\equiv(d_{1}\leq 2\wedge d_{2}\leq 2)(d_{1}>3\wedge d_{2}>3)$.
So we get $mgb(s1, S3)\equiv$ false, that is, s_{1} and s_{3} are not untimed bisimulation

$\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}\square$

.

6 Conclusions
In this paper, we proposed a model A-TSLTS which can describe timed processes, and a
verification method of timed verification equivalence for an A-TSLTS using a similar method
as [1].

In contrast to other $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}_{\mathrm{o}\mathrm{S}}\mathrm{a}\mathrm{l}\mathrm{s}$ for timed processes, our model allows arbitrary decidable
lst-order logic on any time domain for describing time constraints. In the model we can
describe time constraints in a very flexible way and still we can verify timed bisimulation
equivalence whose cost is independent of the absolute value of constants used in the time
constraints. Although we do not handle value-passing in this paper, our model can easily be
extended to the model with both time and $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}-.\mathrm{p}\mathrm{a}\mathrm{S}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}$ by extending action transitions to
have $\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ values.

108

$match-delay(s_{i}, sj, W)=def$ if si $-^{i}i$ si’
$e(d),P$

and $s_{j}>s_{j’}e(\underline{d_{j}),}P_{\mathrm{j}}$

then let $d=new(DVar(s_{i})\cup DVar(s_{j})),$ $d’=new(DVar(si)\cup DVar(s_{j})\cup\{d\})$,
$M_{i’,j’}=match_{-}adion(si’[d_{i}arrow d],$ $s_{j}’[d_{j}arrow d’],$ $W\cup\{(s_{i}, s_{j})\}$,

$d,P_{i}\{d/d_{i}\},$ $d’,P_{j\{d}’/d_{j}\})$ in
return $\forall d[P_{i}\{d/d_{i}\}\Rightarrow\exists d’[P_{j}\{d^{J}/d_{j}\}\wedge M_{ij},,’]]$

$\wedge\forall d’[P_{j}\{d’/d_{j}\}\Rightarrow\exists d[P_{i}\{d/d_{i}\}\wedge M_{i’,j};]]$

$e(d_{i}),P_{i}$ $e(d_{j}),P_{j}$

else if s_{i} \neqarrow and s_{j}
\neqarrow then return true else return false

$match-action(si, Sj, W, di, D_{i}, d_{j},Dj)=^{f}de$

return $\bigwedge_{a\in Act}$ {mat_{Ch}-action$1(a,$ $s_{i},$ $Sj,$ $W,$ $di,$ $D_{i},$ $dj,$
$Dj)a,P_{k}$}

match-action$1(a, s_{i}, S_{j,i}W, d_{i}, D, dj, D_{j})=^{f}de$ let $\{K=\{k|s_{i}arrow s_{i_{k}}\},$ $L=\{l|s_{j}a,Q_{l}arrow_{S}j\iota\}$,
$M_{k,l}=mgb1(s_{i_{k’ j}}S, W\cup l\{(_{S_{i},S_{j}})\})\}$ in

return $\bigwedge_{k\in K}\{\mathcal{F}_{d}\dot{.}[P_{k}\wedge D_{i}\Rightarrow _{l\in L}\{\tau_{d_{j}}[Q_{l}\wedge D_{j}\wedge M_{k,1}]\}]\}$

$\wedge\bigwedge_{l\in L}\{\tau_{d_{\mathrm{j}}}[Ql^{\wedge}D_{j}\Rightarrow \mathrm{V}k\in K\{\tau d_{\mathrm{i}}[Pk\wedge D_{i}\wedge M_{k},l]\}]\}$

where $F_{d}P^{def}=\exists d/[d\leq d’\wedge P\{d’/d\}]$.

Figure 6: Definition of $match_{-}delay()$ and $match_{-}acti_{\mathit{0}}n()$ for untimed bisimulation equiva-
lence

Our method can be applicable to structural description languages of timed processes such
as $\mathrm{L}\mathrm{O}\mathrm{T}\mathrm{o}\mathrm{s}/\mathrm{T}[2]$. To do that, we have only to provide a transformation from a description
of a process to an A-TSLTS.

Our model has an expressive power of describing timing constraints by lst-order formulas
which contain some quantifiers. This might be too powerful for some applications. However,
in [12], we have proposed a protocol synthesis method for $\mathrm{L}\mathrm{O}\mathrm{T}\mathrm{o}\mathrm{S}/\mathrm{T}$ service specifications.
In the method, derived protocol entity specifications generally contain existential quantifiers
to express complicated timing dependencies among actions executed at different nodes. In
such an application, our method becomes useful.

Our method is only applicable to the finite state A-TSLTS. For proving equivalence of
non-finite-state timed processes, some axiomatic approaches such as [13] have been pro-
posed. However, since untimed bisimulation equivalence is not congruence and the weakest
congruence stronger than untimed bisimulation equivalence is equivalent to timed bisimula-
tion $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{e}[3,4]$, an axiomatic approach for proving untimed bisimulation equivalence
is unlikely. In this case, our method is still useful.

The question whether (time deterministic) A-TSLTSs are as expressive as (time deter-
ministic) TSLTSs (modulo timed bisimulation equivalence) is left open.

The future works are to extend the result to the verification of timed weak bisimulation
equivalence (internal actions are considered), and to implement the algorithm and evaluate
the cost of the verification for practically large processes.

References
[1] Hennessy, M. and Lin, H.: “Symbolic bisimulations”, Theoret. Comput. Sci., 138, pp. 353-389 (1995).

109

[2] Nakata, A., Higashino, T. and Taniguchi, K.: “LOTOS enhancement to specify time constraints among
nonadjacent actions using first order logic”, Formal Description Techniques, VI (FORTE’93) (Eds. by
Tenney, R. L., Amer, P. D. and Uyar, M. \"U.), IFIP, Elsevier Science Publishers B.V. (North-Holland),
pp. 451-466 (1994).

[3] Larsen, K. G. and Wang, Y.: “Time abstracted bisimulation: Implicit specifications and decidability”,
Proc. of 9th Int’l Conf. on Mathematical Foundations of Programming Semantics (MFPs’93) (Eds. by
Brookes, S., Main, M., Melton, A., Mislove, M. and Schmidt, D.), Vol. 802 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 160-175 (1993).

[4] Alur, R., Courcoubetis, C. and Henzinger, T. A.: “The observational power of clocks”, Proc. of CON-
CUR’94, Vol. 836 of Lecture Notes in Computer Science, Springer-Verlag, pp. 162-177 (1994).

[5] Holmer, U., Larsen, K. and Wang, Y.: “Deciding properties of regular timed processes”, Proc. of 3rd
CAV, Vol. 575 of Lecture Notes in Computer Science, Springer-Verlag, pp. 443-453 (1991).

[6] $\acute{\mathrm{C}}\mathrm{e}\mathrm{r}\tilde{\mathrm{a}}\mathrm{n}\mathrm{S}$, K.: “Decidability of bisimulation equivalence for parallel timer processes”, Proc. of 4th CAV,
Vol. 663 of Lecture Notes in Computer Science, Springer-Verlag, pp. 302-315 (1992).

[7] Chen, L.: “An interleaving model for real-time systems”, Proc. of 2nd Int’l Symp. on Logical Founda-
tions of Computer Science (LFCs’92) (Eds. by Nerode, A. and Taitslin, M.), Vol. 620 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 81-92 (1992).

[8] Moller, F. and Tofts, C.: “A temporal calculus of communicating systems”, Proc. of CONCUR ’90 (Eds.
by Baeten, J. C. M. and Klop, J. W.), Vol. 458 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 401-415 (1990).

[9] Bolognesi, T. and Lucidi, F.: “LOTOS-like process algebras with urgent or timed interactions”, Formal
Description Techniques, IV (Eds. by Parker, K. R. and Rose, G. A.), IFIP, Elsevier Science Publishers
B.V.($\mathrm{N}_{\mathrm{o}\mathrm{r}}\mathrm{t}\mathrm{h}$-Holland), pp. 249-264 (1992).

[10] Wang, Y.: “CCS $+\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}=$ an interleaVin,g model for real time systems”, Proc. of ICALP ’91 (Eds.
by Leach Albert, J., Monien, B. and Rodriguez Artalejo, M.), Vol. 510 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 217-228 (1991).

$[11]$ Hansson, H. A.: “Time and Probability in Formal Design of $\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{e}\grave{\mathrm{d}}$ Systems”, Ph.D thesis DoCS
91/27, Dept. of Computer Systems, Uppsala University (1991).

[12] Nakata, A., Higashino, T. and Taniguchi, K.: “Protocol synthesis from timed and structured specifica-
tions”, Proc. of Int’l Conf. on Network Protocols (ICNP-95), IEEE, IEEE Computer Society Press, pp.
74-81 (1995).

[13] Fokkink, W. and Klusener, A.: “An effective axiomatization for real time ACP”, Report CS-R9542,
CWI, Amsterdam (1995). To appear in Information and Computation.

110

