0oooo0O0oooo
996 0 1997 0 207-221 207

Towards Cycle Filling as Parallelization

Yukihide Takayama
Department of Computer Science, Ritsumeikan University
1916 Noji-cho, Kusatsu-shi, Shiga 525, Japan
email: takayama@theory.cs.ritsumei.ac.jp

September 24, 1996
Abstract

We give a new formulation of Higher-Dimensional Automata (HDA) called cubical Bar:
notation. It gives an intrinsic definition of hypercubes which are building blocks of HDA.
The gain is an explicit and simple definition of cycle filling map. Also we have an explicit
representation of Hoare traces and Mazurkiewicz traces. The cycle filling map can be used
to realize the idea of cycle filling as parallelization [2, 8]. Combined with the extraction
algorithm of process expressions from HDA [9], the cycle filling map will realize a method of
program transformation in concurrent programming languages as geometric transformation
of higher dimensional spaces.

1 Introduction

In this paper, we will consider a parallelization problem in process algebra. which is stated as
follows: Given a process expression I°, how can we mechanically find a process expression Q
such that I and @ are bisimilar and Q is more parallel than P? For example, Q = (a || b || ¢)
is a parallelization of P =a : (b||c)+b:(a;c+cia)+c:(a;b+b:a) where (— || =) and
(= i —) arc parallel composition and scquential composition. There may be many approaches
to this problem. One candidate is the "decomposition’ method [4]. By decomposition we can
check whether @ is a parallelization of P, but an explicit algorithm to find Q from P is not
given. Another candidate is Mazurkiewicz style trace theory [5]. Let [P] =< Hp,Ip > be the
mterpretation of P. Hp = {abc, ach, bac, bea, cab, cba} is the set of maximal Hoare traces for
P and Ip = {< b,¢ >4} is the sct of prefized independence relation where < b, ¢ >, means
abc = ach. Then we find new sct of relations I = {< a,b >, < b,¢ >,< c.a >.< ¢,a >,
< a,b >.} with some suitable algorithm, and merge I and Ip to obtain the merged relation .
J = {< a,b.c >}, which mecans a, b and ¢ arc pairwise commutative. Then the obtained
interpretation < Hp, J > is equal to [Q]. So we obtain a parallelization of I? at the secmantics
level. However, for comparing the degree of parallelism between P and Q and for extracting the
cxpression () from the semantical parallelization < Hp,J >, we would need a richer structure
in the semantics domain.

The approach we will take in this paper is based on Higher-Dimensional Automata (HDA) [6. 10]
model of true concurrency. HDA model is a geometricly formalized noninterleaving transition
systems. In the model, we interpret the parallel run of n atomic actions by the n-dimensional
hypercube (n-cube) spanned by the arcs corresponding to the atomic actions. On the other
hand, nondeterministic run of n atomic actions is interpreted simply by the tree spanned by

208

the arcs. Hence the degree of parallelism is simply the dimension of the semantics space. For
example, the interpretation of @ above is the 3-cube spanned by arcs a, b and ¢ while the
interpretation of I above is the space (a) in the following figure. We can see that the degree of

parallelism of P is 2 since there is a 2-cube in (a). ‘Also, by identifying some vertices and cdges
in this space, we obtain the space (b). We find five 2-dimensional cycles in the space. Namely,
the two closed paths a, b, a, b, two closed paths a, ¢, a, ¢ and onc closed paths ¢,b, ¢, b. If we fill
these cycles with five 2-cubes, we obtain the space (¢). This space has a higher-dimensional
cycle, namely the 3-dimensional empty space surrounded by the 2-faces of the cube. Finally, we
fill the eycle with a 3-cube and we obtain the interpretation of Q. This is the idea of eycle filling
as parallelization which has been introduced by E. Goubault [2] in a more general sctting and
by the author [8] in a specific process language. Also, the author gave an algorithm to extract
the process expression @ from the obtained space [9].

In this paper, we will refine the idea of cycle filling as parallelization. We give a new formulation
of HDA by introducing new system of notation called cubical Bar-notation. As compared to the
formalization of HDA as scen in [10, 3, 1], our formalization gives a intrinsic definition of n-cubes
and a HDA is defined as a well-labeled cubical complex (WCC), which is roughly a collection of
cubes of various dimensions. Also, for application to process algebra we will introduce reachable
‘well-labeled cubical complexes (RWCC). The advantages of the RWCC are. first of all, we can
formally define the cycle filling map, and secondly, RWCC explicitly contmm Mazur kl(‘Wl(‘Z style
traces. Hence our model is an extension of Ma71uk10w1cz traces.

We will now sketch the configuration of this paper. We will develop the formalization of RWCC
in the next scction. We do not employ a particular process language and its interpretation
by RWCC. Rather, we work in a sctting where processes arc viewed as higher-dimensional
transition systems. So in scction 3 we define similar process constructions to those in CCS-like
process languages in the domain of RWCC. Section 4 formalizes the parallelization problem in
the language of RWCC and defines the parallelization algorithm with cycle filling map. The
concluding remark will be given in the final scction. '

2. Reachable Well-labeled Cubical Complexes:r, RWCC

Intuitively, a HDA is a higher-dimensional space which is a collection of cubes of various dimen-
sions. The cubes are glued to cach other at their boundaries. so that the ‘shape’ of a HDA is
formally described by the boundary operators. Traditionally, the cubes are defined externally.
Namecly, a cube is an clement of a sct satisfying some propertics. We will give here an internal
definition of cubes with cubical Bar- notation and a HDA is formalized as a well-labeled cubi-

cal complex (WCC). For application to process ¢ ’dgobla we w111 also define reachable cubical
('0111ploxo< {RWCC).

209

2.1 n-cubes in cubical Bar-notation

Let A be a denumerable sct of symbols called labelq and let M be a monoid with unit 1
gencrs '\,t(‘d over A. We will view the clements of M as words over A and view 1 as the cmpty
W01d We first define pre n-cubes in cubical Bar-notation over M.

Definition 1: A pre n-cube is a cubical Bar-expression wla; | az | -+ | a,] with w € M and
distinct clements ay....,a, € A. w will be called the base point.
Intuitively, a pre n-cube wa; | as | --- | ay] is a cube spanned by n arcs ay,...,a, whose

common starting point is w. Next we will consider the boundary operators of pre n-cubes. For -
example, the boundary of the pre 2-cube wia | b] is the collection of four line segments which arc
also pre I-cubes. In cubical Bar-notation this collection is described as {w(a], w[b], wa[b], wbla]}.
Also. the base point wa of the pre 1-cube wa[b], for example, is one of the end points of the
pre 1-cube. Another end point is represented by the word wab. This situation is illustrated in
Figure 1. where the term 'commutativity constraint’ will be explained later.

w [b]

Figure 1: (pre) 2-cube wla | b]

Now we define the boundary operators for pre n-cubes.

Definition 2: Let C), be the set of pre n-cubes. Notice that the clements of Cy is in the form
of wl] (w € M). Hence we will identify Cy with M by the bijection w[] <> w. Then, the set
theoretic boundary operator d,, is the map d,, = dO U (1 :C,, — C,,_1 where

(ln(m[al |- U{“’[GI |-~ | anl}s d,ll,(w[a,l |-+ | an)) = U{'u.za..,-[a,| | Y | (1.,,.,]}

i=1 i=1

..

. ") b . A0 — . 1 —
whenn > 2. means omitting a;. d(wle]) = {w} and d}(w[a]) = {wa}.
For algebraic treatment of cubes, it is often convenient to represent the boundary of a pre-cube
as the formal sum of pre-cubes with boolean cocfficients. Hence we also give another definition.

Definition 3: Let S, be the set of formal sums of pre n-cubes with boolcan cocfficients. In
other words, S, is the vector space over Z/(2) generated by pre n-cubes. As in the previous
definition, we will identify Sp with the vector space V(M) over Z/(2) generated by M. Then,
the boundary operator 9, is the lincar map 8, = 99 + d) 8, — S, where

i i
d%((wlay |-+ | a,]) = Ziswlay [+ - | ay], 0] (wlay |-+ | a,]) =Zis wafay |-V | a,)

when n > 2. 8)(w[a]) = w and 9] (w[a]) = wa. We will often call 9, a foml boundary and will
call 3 (5 =0,1) a j-boundary. ;

In the context where fhe dimension 'n’ is understood, we will sometimes denote as d. 0. 9% and
9" by omitting the suffix 'n’. Notice that the operators have the property 99 = 8799 = 0 (=0
or 1), %' = 9'9° and d%d' = d'd°. :

210

An n-cube is a pre n-cube together with commutativity constraint. For example, consider again
the pre 2-cube w(a | b] in Figure 1. The boundary is d(wla | b]) = w[b] + wla] 4+ wa[b] + wb]a].
If we wish w[a |] to be a real cube, w[b], wla], wa[b] and wbla] must meet at the four vertices
of the cube and the vertices must be the boundaries of these pre 1-cubes. Thus wia | b] is a
real cube if and only if wab = wha. This equational relation will be called the commutativity

constraint.

Definition 4: An n-cube is a pre n-cube wla; | a2 | --- | a,] together with the commutativ-
ity constraint < ap,...,a, >, which mecans that, for arbitrary {i1,42,...,%t} C {1,2,....n},
Wai, Gy~ O, = 71’“’«(5,)“0(:‘2) -4, in M for all permutation (o(i1), 0(i2),...,0(2)) of the
sequence (41,42, . ..,1k). We will always denote < ay,...,a, > simply by < a),...,a, >. The
dimension function of cubes is defined by dim(w[ai | a2 | -+ - | a,]) = n. The boundary operators

for n-cubes are the same as those for pre n-cubes:

2.2 Product and Decomposition of Cubes

Now we will define two basic construction and destruction operators for n-cubes. Namely,
product and decomposition.

Definition 5: Let wlay | --+ | an] and w[by | -+ | b,] (m,n > 0) be cubes such that
{a1,....an} N {by.....by} = ¢. Then their product is

wlay |-+ | am] *ulby |-+ | bu] =wulay |-+ | aw | b1 |-+ | by
together with the commutativity constraint: < ar,..., @, b1, ..., by >pu.

Notice that the product is a non-commutative operation because wu and ww are not always
equal. Next we will define the decomposition operation. We can view that an n-cube €' consists
of the interior of C' and its boundary B = d(C). Also, cach clement of B has the similar
structure. This representation is called cellular decomposition. '

Definition 6: For an n-cubc wla; | - -+ | @,], we define the scts By, By, - - -, B, inductively as fol-
lows: B, = {wla; |-] a,]}and, for 0 < k <n, B; = {k-cube C' | C € d(C") for some C' € Byi1}.
Then we define the cellular decomposition by decomp(wla; | -+ - | an]) = Uf=o Bi- Also, for a

set S of cubes we naturally extend the map: decomp(S) = {decomp(c) | ¢ € S}.

The cellular decomposition is characterized as follows.

Lemma 1 For a cube C. (i) decomp(decomp(C)) = decomp(C). (ir) for arbitrary cube D,
D € decomp(C) if and only if D € d"(C) for somen > 0. :

Example 1: decomp(wla | b | ¢]) = By U B U By U B3 where

B w, wa., wh, we, wha(= wab), wac(= wca), web(= wbc),
0 —_—
weba(= wbca = weab = wach = whac = wabc)

B = wla], wlb], w[c], wbla], walb]. wac], wela], we[b], wh|c].
b= webla](= whela]), weabl(= waclb]), wha[c](= wablc])
By = {wla| ()],11)[q, | e],w(b | c], wela | B], whla | c],walb]|]}, Bz ={wla|b]|]}

and the cqualitics between elements in By and By arc due to the commutativity constraint
<a,b.c>,.

211

2.3 Well-labeled Cubical Complexes

Now we define well-labeled cubical complexes.

Definition 7: Let C be a set of cubes with 1 € C and Cyp(C C) be the sct of 0-cubes in C.
Then, a well-labeled cubical complez (WCC) is the tuple S = (Sc¢>, 3%, 9!, F, Const) where
e S.¢ is the vector space over Z/(2) generated by decomp(C). Sc¢~ will often be rep-
resented by the stratified form. Namely, Scos = @,,50 S Where SZ..o is the vector
space over Z/(2) generated by the set C, = {decomp(c) € C | dim(c) = n}. C, will be
also denoted by Base(S,n).

e 9%,0' : S~ — Sc¢s are the j-boundary operators.
e F'is a subset of Cp.

e Const is the collection of commutativity constraints of the cubes in C and other commu-
tativity constraints. The equational reasoning for the clements in' S ¢~ is carried out with
Const and the following Right Extension Rule

wy =wy (wy, w2 € Cp) >wiM=wyM (M€ Aor M =ar|---]|ay].a; € A

and the reflexity, symmetry and transitivity rules.

We will briefly explain 'well-labeledness’ of WCC. Consider the WCC (S<¢s, 9%, 9", {apq}, {<
P.q>q}) with C = {[a]. [0], bla]. a[p | q]} (figure (a) below). We cannot define the space in which

(a) (a] (d) fa] a alp]

[b] a[b]

4)
agp=apq b bla] ba apb =bap =abp
=ab

b d
bla] ba (=aq?)

the labels ba and ag denotes the same point because we cannot represent the equation ba = agq
by a commutativity constraint. However, we can define a space which has the desired shape
by changing the labels. Namely, the complex (S<ps, 3%, 8", {apb}, {< p.b >¢, < a,b >1}) with
D = {[a],[b],b[a],alp | b]} (figurc (b)). Notice that < p.b >, is the commutativity constraint
accompanied with the cube afp | b], but the constraint < a,b > is the additional onc only
to link the. points ba and ab. The cquation ba = ab and apb = abp follow dircctly from the
commutativity constraints, but the cquation bap = abp follows from the constraint < a,b > and
the right cxtension rule. v

The rcason why we do not allow ’left extension rule’, w; = wy = oaw| = aws (o € A), is that
the commutativity constraint is of local nature. Consider the WCC in the following figure.

1 [c] ¢ c[b] cb cbia]

>

“cba[d] cbad

>

\
1
I
1
ca ca[b] 1
1

ab=ba 4

We have < a,b > because of the existence of the 2-cube [a | b]. If we allow left extension, we
obtain < a,b >, namely cab = cha, but this does not hold in this WCC.

212

2.4 Reachable Well-labeled Cubical Complexes"

Now we will define reachable well-labeled cubical complexes (RWCC). By reachable, we mean
that we can arrive at any point in the space by a path from the distinguished point 1. Hence
we will first define the notion of paths in cubical complexcs.

Definition 8: Let S = (_S<(_'>,00,01,F, Const) be a WCC. Then a sequence (¢j, ¢a,..:,¢) of
clements from C; with 8%(¢;) =1 and 8'(¢;) = 3%ciqp1) (G =1,...,t — 1) is called a path of S.

Definition 9: A RWCC S = (©,>05%¢>: 90,0, F,Const) is a WCC such that, for arbitrary
w € Cy, there is a path (¢ so-s€) in S with 0 (c)) = w. A RWCC will be often denoted simply
by Sc¢s or @,,59 S2e~ where other parts are not important. ‘

3 RWCC as Noninterlea\}ing Transition System

HDA formalized as RWCC has nice propertics. Namecly, we can clearly understand relation
between the general notion of HDA model and traditional noninterleaving semantics theories
in RWCC. Because the cubes, which are building blocks of HDA, are defined internally with
cubical Bar-notation, we can describe Hoare traces explicitly in our HDA modecl. Morcover, the
commutativity constraints can be understood as the prefixed independence relations for Hoare
traces cxplained in the introduction. Therefore, RWCC explicitly contains a Mazurkiewicz style
trace theory. Also, the commutativity constraints describe the homotopy relation which is a
central notion of HDA model. In this section, we show the relation with Hoare traces and
Mazurkiewicz style trace theory. Also, we define typical process constructions similar to those
in CCS-like process languages in the domain of RWCC. For the-simplicity, we will assume that
a RWCC Sc¢> is such that decomp(C) = C in the following.

3.1 Hoare TraceS, Homotopy and Mazurkiewicz Traces

We will briefly review the idea of HDA as a noninterleaving transition system. Now we will
reconsider the 2-cube wla | b] in Figure 1. This can be understood as a noninterleaving transition
system when w = 1. We find two paths p; = ([a], a[b]) and py = ([b],b[a]). p; represents the
trace-of action a followed by action b. Also. py represents the trace of action b followed by action
a. Thus the paths in RWCC represent Hoare traces. Then, what does the 2-cube wla | b] mean?
Geometrically, the paths p; and py can be continuously translated to cach other through the
2-cube. We say this situation that the paths py and py arec homotopic. According to the theory
of HDA model, the 2-cube means the higher-dimensional state, or higher-dimensional transition,
in which the actions @ and b may run in parallel. Hence, true concurrency is represented by the
homotopy relation between paths caused by the existence of higher-dimensional spaces between
them. We can also consider higher-dimensional homotopy of higher dimensional paths, but the
following lower-dimensional homotopy suffices to our discussion.

Definition 10: Two paths p = (p1,p2,...,Pm) and ¢ = (1,42, .. .¢n) in a RWCC Sc¢s are
said to be adjacent, p =~ ¢, if n =m, 0" (py,) = 0'(¢,) and there exists 7, 1 <4 < n such that

Lpo=q.foralll<k<iandi4+1<k <n
2. pi+pip1 +qi + gir1 = 9(c) for some ¢ € Cs.

Homotopy is the smallest equivalence relation on the paths containing adjacency.

213

Now we will conqid(‘r Hoarc tr'u'eé in RWC’C Conqidor a RWCC S<c>. We will call the elements

state hbolq and pathq in S<(>. Henco Hoalo tlar(‘q arc. f'uthfully 1(‘p1montod by tho state
labels in a RWCC. Moreover, a commutativity constraint of ’RWCC is an cxplicit description of
homotopy relation. Namely, we have the following. :

Lemma 2 Let p; and p3 be paths in a RWCC corresponding to some state labels. Tlmn p] = P2
iff the state labels are equal with the commutativity constraints of cubes. :

Now we recall the Mazurkiewicz traces.

Definition 11: [11] A Mazurkiewicz trace language consists of (M, L,I) where L is a sct,
I C L x L is a symmetric, irreflexive relation called the independence relation, and M is a
nonempty subsect of strings L™ such that

o prefir closed: sa € M = s € M for all s € L™, a € L,
o [-closed: sabt € M & alb = sbat € M for all s,t € L*,a.b € L,
e coherent: sa € M & sbe M & alb= sabe€ M for all s€ L, a,b € L.

For s,t € M define < to be the smallest cquivalence relation such that sabt < sbat if aIb for
sabt, sbat € M. Call an equivalence class {s}x, for s € M, a Mazurkiewicz trace.

In the Mazurkiewicz trace language, true concurrency is represented by the independence relation
which means the commutativity of the action labels in Hoare traces (I-closedness). Hence
our commutativity constraint is an independence relation and prefixed closedness of the Hoare
traces is assured in RWCC. A Mazurkiewicz trace is an equivalence class of a path via honiotop_y
relation. If a RWCC does not contain a redundant commutativity constraint, namely a constraint
< a,b >, for example, such that wab € Cy or wba & Cp, then we know that coherency is assured.
Notice that the independence relation alb should be of local nature. Namely, if the actions a
and b occur more than once in a whole computation, a and b may run independently in some
part but they may depend on cach other in other part. The locality is not. explicitly represented
in the above trace language. On the other hand, our commutativity constraints do not marcly
specify commutativity relation but have prefix as w in < a,b >,. This prefix can represent the
causality of the actions a and b. This enriched structure of commutativity constraints would
solve the locality problem in the original Mazurkiewicz trace language.

3.2 CCS-like Process Cdnstructors 6f RWCC

We will define CCS-like processes in the domain of RWCC. The process constructors will be
defined with three basic operations, x (product), © (synchronization) and Rest (restriction).
In this subscction, we will assume that all the commutativity constraints arc thosc associated
with cubes. In order to describe synchronous communication, we will set A as follows. Let
A= LULU{7, | a € L} where L is a denumerable sct of symbols called labels, £ = {a | a € £}
is the set of co-labels such that @ = a for all a € LU £. We will understand tlnt the hb(‘lod
T-action 7, is the macro of the word a@. Namely 7, = aa.

Definition 12: Let S| = (S<¢,>, 0%, 0. Fy,Const;) and Sy = (S<cy>.0°, 0", Fy, Constsy) be
RWCCs. Then their product, Sy % 82,18 (S<cyxu>, 9%, 9!, F,Const) where C| x Cy = {c1 *xe2 |
¢ €Ci(1=12)}, F=F *F,={uw |u € Fj,w € F)} and Const is the collection of the
commutativity constraints for the cubes in C; x Cs.

214

on finite scts of clements from A. {cy,...,cm} is obtained from {bi, ..., b,} as follows: If there
is a pair b; and b; (¢ < j) such that b; = bj then replace b; by 7, (if b; € £) or T (if b; € L) and
remove b;j. Carry out the samc procedure for any such pairs in {b1,---. b, }. ©(S) generates new
cubes with labels from {7, | @ € £} by scarching the label, co-label pairs in every cube from S
with the function ¢.

Definition 13: Let S = (Bn>05%c>: 9°.9', F,Const) be a RWCC. Then the synchronization
of S, O(S) = (B,>0 S p>> 3%, 0", F',Const) is thec RWCC such that F' = F Ndecomp(D) and

D= U decomp(®(c))
ceC
dim(c) > 2

where

q’(’m[ﬂ,] | .o I (I,,n,]) = { 1 if (p({(],h - ? an}) _ {al-’.-....., (1'"}

Example 2: Let S = (Sc¢s,8% 8", F,Const) be a RWCC with C = {[a | @.ad[a | @ | b]}.
F = {adaab} and Const = {< a,a >,< a,8,b >qa}. Then, O(S) = (S<p>. Y. 0!, F'.Const) is
a RWCC with D = decomp({[7.]). ad[r, | b]}) and F =F.

Next we define the restriction operation. Rest(S,; L) removes all the cubes involving the labels
from LU L. ‘

Definition 14: Let S = (,,>¢ SZ s 9%, 9, F,Const) bc a RWCC and let L be a finite subset
of L. Then the restriction of S, Rest(S, L) = (D,,>0 5% p>» 9°,9', F',Const) is a RWCC with
F' = F ndecomp(D) and

in w, then @ also occurs in w

D= {w[a] [lan] € C {a1,...,a,}N(LUL) = ¢, and if « € LU L occurs }

Using there basic operations, we define CCS-like process constructors. We first introduce a few
notations. Let S.S, S2 € M. Let V(B) be the vector space over Z/(2) generated by a sct of
cubes B, and let Const be a set of commutativity constraints. Then Sy - S» = {uv | v € S1,v €
S}, S-V(B) =V(S-B) with §- B = {wula; | --- | a,] | w € S.ufa | --- | an] € B} and
S-Const ={< ay,...,a, >pu| w € S,< ay,...,a, >,€ Const}.

Definition 15: A RWCC is called a process if it is constructed inductively as follows:
Atm: o = (1o, [0]), 8% 0", {a},¢) for « € A,
Sum: P+ Q= (S5, + S, 2%, 01, F, U Fy,Const, U Const,),
Par: P||Q=(S+ S5, 00,9, Fy, Const) where (S;,0°, 0", F,Const) = P xQ
and (Sa, 0%, 0", Fy, Const) = O(P x Q),
Seq: P:Q=(S,+F,-S, 9°,0", F, - F,,Const, U F, - Const,),
Res: P\L = Rest(P,L), Var: X = ((1, X, [X]),8° 0", {X}.¢) and
Rec: fiz(X =P)=((1,X,[X])+ X -5, 0%, 9", F, —{X},{X} - Const,) with extra cquations
{X =XwX | Xw[X] € X - S,} where X is guarded and scquential in P

215

where P = (5, 0,0t F,,Const,) and Q = (S, 0,0, F,,Const,) are processcs.

The ideca of defining processes in RWCC is basically the same as the HDA interpretation of
a CCS-like process algebra given in [3]. But we need to give a few words to our definition of
recursive processes. We gave a finite representation of guarded and sequential recursive processes.
The special cubes w[--- | X | ---] (X is a process variable) with the extra equation X = XwX
only describe the loop structure and do not represent any actions. When we extend the language
to that with guarded but not always sequential recursive processes, we need to introduce more
complex relations with regard to X. We will give a few examples of our recursive processes in
Figure 2.

X[a] Xa[X] X1 X Xial Xa[X]
XaX 1 -

[b]

, b[X] bX bX]a] bXa[X] bXaX
(a) fix (X=(a+b);X) (b) fix(X=a;X) + fix(Y=b;Y) (c) fix(X=a;X) Il b =bX

Figure 2: Recursive Processes

We know from the definition that all the commutativity constraints of a process arc those
associated with cubes in the RWCC. Although each element of S in a RWCC (S, 9°,0', F, Const)
is a higher dimensional transition, we can define the transition in the traditional sense.

Definition 16: Let P = So¢s and Q = Scps be RWCCs and o € A. We will say that

r-% Q is a lower dimensional transition if one of the following holds:

Case 1: [o] € C and D(—a)

Case 2: There exists a path ([X], X[a], Xa[X]) in P and D = C[X]U{c € C | ¢ is in the form
of w[---|X|--]} '

Case 3: Thereis a path ([X]. X[a]) in P, Xa[X] € C) and D = C(—Xa)UF(C(-Xa))-C(—-X)

where Clw] = {wulay | -+ | a/](€ C)}, C(—w) = {ufar | --- | a/] | wula; | --- | @] € C} and

F(S) = {0'(») | (p1....,p)) is a maximal path in S}. o o

Lemma 3 The following transition rules hold for processes where o, € A and a € L:

o ! o 1 a a

o p—0p q9—4q p—=p 4—q
a_—)d) : [PN x ' Ta /1t 1
Plo=>0llo @lo=>@Id) @lad3G 1qd)

(674 ' I‘) - . .
pj = ¢ . pSp p3p a¢Lul p[fiz(X =p)/X] Xp
(6 @ [0] . x

Tipi g P a—P g P\L = p'\L fix(X =p) —=p

4 Cycle Filling as Parallelization

In this scction, we will consider how we can parallelize a given RWCC process with the idea of
cycle filling as parallelization. Recall the example in Introduction. The first step is to find which
part of the RWCC should be identified. This step will be called the merging procedure. The

216

merging procedure is essentially equivalent to finding additional prefixed independence relations
as cxplained in Introduction. Next we find cycles to be filled in the RWCC. The cycles in HDA
are found by calculating homology groups. The final step is to fill the cycles with the cycle
filling map.- Because the cyele filling procedure may produce new cycles, the sccond and the
third steps must be.repeated until there is no cycle any more. We first explain homology groups.
Then we define the cycle filling map. Finally we will give a parallelization algorithm. :

4.1 Cycles and Homology Groups

A cycle is a subspace of RWCC with no boundary. The formal definition is as follows.

Definition 17: Let Sccs be.a RWCC. Let Ker™ 8, = {D € 8% | 8,(D) = 0. D doos not
contain;cubes wlay | - -+ | a,] such that {ay,...,a,} contains process variables.}. Then Ker™ 9,
is a sublincar space of S2.., and.its elements will be called n-cycles.

The reason why we pbstulatcd the condition w|--- | X | --+] € D is that we do not want to
regard the loop representing recursion as a cycle to be filled. -

Notice that an n-cycle does not always mecan the hole in the space. For example, consider the
RWCC (S<{[ajt}> 8, 0", {ab}. {< a,b>}). [a] + [b] + a[b] + ba](€ SL) is a l-cycle, but it is
at the same time the total boundary of the 2-cube [a | b]. Hence, the 1-cycle is already filled. If
such a cube does not exist, the cycle means a real 2-dimensional hole. This idea leads us to the
notion of homology groups [7]. '

Definition 18: Let S = (©,,50 SZ¢'>: 9%, 9!, F.Const) be a RWCC. Let Im~ Ont1 = {0u+1(D) |
D ES?{L D does notcontain cubes w[a; | - - - | a,] such that {ai.....a,} contains process variables.}.
Then, the residue class lincar space H,,(S) = Ker™ 0,/Im™ Opq1 over Z/(2) (n > 1) will be

called the n-homology group of S.

The n-cycles representing real (n + 1)-dimensional holes are described by the clements of the
n-homology group.

Example 3: Consider the RWCC S = (S<¢s,8°, 0", F, Const) with C = {[a]. [b]. [c]. b[a]. c[a],
bela), c[b]. blc). alb | €]} and Const = {< a,b>. < b,c>,< ¢,a >, < b.¢c >, < c.a >,}. Figure 3
illustrates the geometric realization of C' = decomp(C). S <’ = @3_,8 2o 1s as follows:

Sg(,:> = (1,a.b,c,ab(= ba), ac(= ca), bc(= cb), abe(= ach = bac = bea = cab = cba)).
S]<(,,> = ([a],[0],[¢c], a[b]. a[c], b[a]. blc], c[a], C[,b]’ ablc], ac[b). bea]) and Si(_,,> = (a[b | c])
where (g1, ..., ¢gn) denotes the vector space over Z/(2) generated by the set {g1.....¢g,}. Then

the homology groups arc

H(S) = (
Hy(S) = 0

[0] + [¢] + blc] + ¢[b]. bla] + blc] + ablc] +'b(;[a.]._ [a] + [b] + a[b] + Dla].
[a] + [¢] + a[c] + c[a]. c[a] + c[b] + ac[b] + bcla)

Notice that the generators of H;(S) represent the obvious 2-dimensional holes in the space.
Other clements of Hi(S) such as ([b] + [¢] + bc] + c[0]) + (ba] + b[c] + ab[c] + be[a]) = [b] + [c] +
c[b] + bla] + ab[c] + bc[a] also represent 2-dimensional holes but they arc obtained by combination

217

ébc=a¢b=bac =bca=cab=cba

ab=ba

Figure 3: Geometric Rea.lization of décomp(c)

of the holes represented by the generators. Also there is no 3-dimensional hole in the space.
This is indicated by the vanishing of H(S).

Of course, the generators of a linear space arc not uniquely determined and- we will: call the
?

generators such as in the above example the minimal generators. A minimal generator is the

boundary of a single cube. The precise definition is as follows,

Definition 19: The sct of generators {gi,...,gx} of the homology group H,(S) is called
mainsmal if cach clement g; is the formal sum of length 2(n + 1).

Lemma 4 For a RWCC S, the set of manimal generators of the n- homoloqz/ group H,(S) always
exists uniquely. o

In the following, Whon we refer gonentow of a homology group, we will always assume tho
minimal ones. The generators of a homology group can be computed by a rather casy algorithm,
such as Gauss mcthod, in linear algebra as demonstrated in [2].

4.2 Cycle Filling Map

Now we will define the cycle filling map s, of RWCC. Consider a RWCC Sc¢'>. Let ¢, € Ker™d,
be the total boundary of an (n+1)-cube ¢,41 € Crti: ¢ = uy1(Cns1). then s, will reconstruct
Cny1 from ¢yt s,(¢,) = cuyt-

Definition 20: Let Sc¢s be a RWCC. Then, the eycle ﬁllinq"map st Stos — S'<'4(']>
(n > 1) is a function such that, for arbitrary M = T;w; [0(7) | (1(7) |-+ a(')] (€ 8%0s), sn(M) is
computed as follows: .
Step 1: Let M = wN where the word w is the longest word such that for all 4, w; = wu; for

some word u..,ﬂ
Step 2: Calculate ¢, (N) where ¢, is the lincar map S2.., — V(A x Pow(A)) such that

on(ufar |-+ | an]) =< w,{ay,...,a,} >.
Step 3: If there is a set {by,....byy1}(€ Pow(A)) such that ¢, (N) is in the form of ¢, (N) =
E"ﬁ] <1, > +E?+1' < b;, P >, where P, = {bh...v...,‘b.,,_+|}, then s, (M) = wb; |

- | bpt1] otherwise s, (M) = 0.

Notice that the cycle filling map s, checks whether M is a minimal gencrator of the n-homology
group H,(C) and construct the suitable (n + 1)-cube to fill the cycle. Hence we can define the
cycle filling algorithm as follows.

218

Cycle Filling Algorithm: Given a RWCC S = S<¢>, then
1. If H,(S) =0 for all n > 1, then goto 4.

2. Let N be the smallest number such that Hy(S) # 0 and let NewCrbes = {sy(C) | C €
Hx(S) is a (minimal) generator}. k

3. Let C := C U NewC'ubes, then goto 1.

4. Return the obtained RWCC.

Notice that the cycle filling map does not increase the 1-cubes nor the commutativity constraints
in the given RWCC. From this fact, we obtain the following.

Lemma 5 For arbitrary RWCC Sc<c~ such that C is a finite set, the cycle filling algorithm
terminates in finite steps and the obtained data is again « RWCC.

Example 4: We will reconsider the RWCC S in Example 3. By applying the cycle filling map
$| to the generators of H) (S) we obtain the new RWCC S = S ¢~ where C'=Ccu{fe]b],|
c.la] ¢, bla | ¢]. cla Ib]} Then Hi(S') =0 and Ha(S') = ([a | b] +[b |] +[a | (]+b[(1 | ¢] + cla |
bl + a[b | ¢]). Thus S’ has a 2-cycle. Now we apply s2 to the g(‘n(‘lat'm of H5(S') to obtain the
3-cube [a | b | ¢]. The constructed RWCC §™ = S_¢» is such that C” = decomp({[a | b | c]}).
Now H,(Scc~s) =0 for all n > 1. Then the algorithm terminates by returning the RWCC S

4.3 Parallelization Algorithm with Cycle Filling Map
Now we will formulate the parallelization problem in the language of RWCC according to the

general idea given by E. Goubault [2]. First of all, we define the degree of parallelism.

Definition 21: Lot P = @Y
parallelism. of P.

n=0

SZ¢s be a RWCC. Then par(P) = N is called the degree of

Lemma 6 For arbitrary processes IP and Q, we have
1. par(a) =1 if @ is an Atm, 2. par(P + Q) = par(P ;: Q) = max{par(P).par(Q)}.
3. par(P || Q) = par(P) x par(Q). and 4. par(fiz(X = P)) = par(P).

This lemma claims that the definition of par is an acceptable definition degree of parallelism of
processes. Although there scems to be no syntactical definition of degree of parallelism for label
restriction P\ L, we can define par(P\L) at the semantics level.

Definition 22: Let S) and S» be RWCC. If there arc maps ¢; : Base(S).1) — Base(S2,1)
(0 < i < par(S))) such that (i) pi(c) = ¢ for all ¢ € Base(S).1), (ii) @o induces a surjection
between maximal Hoare traces of S and Sa., and (iii) ¢g and ¢ are surjections, then we will
say that therc is an embedding ¢ = @; p; : S1 — S».

Example 5: Let P and Q be as in Figure 4. We have surjections g and ¢ such that po(1) = 1,

wola) = a, po(b) = b, po(ad) = ab = ba = pg(ba). po(abc) = abe = bac = py(bac), 1([a]) = [a],
o1([b]) = [b], ei1(ald]) = alb], p1(bla]) = bla] and ¢ (adlc]) = ablc] = ba[c] = ¢i(balc]). The
scts of maximal Hoare traces in P and Q arc {abc, bac} and {abc(= bac)}, so that ¢g induces a
surjection between them.

We will say that a RWCC Ss is a parallelization of a RWCC Sy if there is an cmbedding
@ : S — Sy and par(S)) < par(Sy). Now we will give an parallelization algorithm with the

219

P a p-abc R a
a[b] ab ablc] a[b]
V [a] ,
1 > > > 1 > - »bac
[b] b bla] ba ba[c] bac [b] b bla] ba ba[c]

Not an embedding

EmbeddinN

Q
1

\

2 o—_ablc](=balc])
: ; abc(=bac)
[b] bla] —pa

Figure 4: Embedding of Processes

cycle filling map. Recall the example of parallelization in Introduction. The first step is the
merging procedure: to find which part of the given RWCC should be identified. Such part of
the space is determined with the merging candidate defined below.

Definition 23: Let S be a RWCC. Then a pair of state labels in the form of € waf, wha >
(w €M, a,B€LUL)Iis called the merging candidate of S if Ci(~waf) = Ci(—wfa) (1 =0,1)
where Cij(—w) is as in Definition 16.

Notice that the cycles are generated only by equating the merging candidates because we ha.vo
the following.

Lemma 7 Any process P is cycle free. Namely, H,,(P) =0 for alln > 1.

A merging candidate is a pair of state labels to be equated in the merging procedure. If the
state labels in the merging candidate are equated, some of other cubes in the RWCC are also
cquated with the right extension rule. The reason why we postulate the condition Ci(—wa3) =
Ci(—wpa) is as follows. We cannot equate all the p’til of clements in the form of € waf3, wha >.
For example, consider a process R = a;b+b;a ;¢ (a,b,¢ arc Atms). Then Base(R,0) =
{1.a.b,ab,ba,bac} so that we have a pair << ab, ba >> in Base(R,0). If we postulate ab = ba and
fill the cycle, we obtain the RWCC Q = (S<¢~,3°,0', {abe}, {< a,b >}) with C = {[a | b], ab[c]}
but there is no cmbedding of R into Q (sce Figure 4).

Now we can define our parallelization algorithm.

Parallelization Algorithm: Given a RWCC S = (S, 0%, 0", F, Const), then
1. Find the set of merging candidates MCP from C)
2. Make the set Constg = {< o, f > | K wap. wha > € MCP}
3. Replace Const by Const U Consty
4. Carry out the cycle filling algorithm on S with the new Const.

Example 6: Consider the process P=a; (b||c)+bi(a:c+cia)+c; (a;b+b: a)givenin
Introduction. It is realized as the RWCC P (S<c5, 0%, 0", {abe(= ach), bac, bea, cab, cba}, {<
b,¢ >4}) where Cy = {1, a,b, ¢, ab, ba, be, cb, ca, ac, abe, ach, bac, bea, cab, cha}, Cy = {[a]. [0]. [¢]. alb].
alc], bla]. blc]. c[a], c[b], ad[c], ac[b], balc], belal, calb], cbla]}, Co = {ala | b]}. We find the sct of
merging candidate {K ab,ba >. <K be,cb >, <K ac,ca >, <K cab,cha >, <K abc.ach > K

220

bac, bca >} from which we obtain the additional commutativity ‘constraints {<a,b><bec>

. <a,c><ab>.,<bc >a, < a,c >p}. Notice that with the right extension rule and other
rules we know other equations abc = ach = bac = bca = cab = cba, ablc] = balc],aclb] =
ca[b], be[a] = cb[a]. Then the obtained RWCC is in fact equal to the RWCC in Example 3, and
the cycle filling algorithm is carried out as in Example 4. Thon tho obtained RWCC is in fact
the process Q = (a || b] ¢). ;

Notice that our parallclization algmithm does not always generate a RWCC in the form of
process. For example, by applying the algorithm to P; = a ; b+ b : (a + ¢), we obtain the
RWCC Q = (S<¢>,0°,0', {ab,ba,bc},{< a,b >}) with C = {[a | b], h[¢]}. This does not
denote any process.

ab
[a] a{b]) “
P1=1 ba . , . . Q=1
. (b] b b Parallelization)
;- C L.
b bl _ algorithm

Also, if a process Q is-a parallelization of a process P, our parallclization algorithm cannot
always construct Q. For cxample, consider a process > = pig+q:p+a:b+b:(a+c).
Then Q2 = (p ; q)+a ; b+b; (a+c) is a parallelization of I%, but our parallelization algorithm
construct Q3 = (S<D>,00,01._{a,b., ba,be, pg, qp}. {< a.b >, < p,g >}) with D = {[p | ¢l.[a |
b],b[c]} and this is not a process. This indicates that the merging procedure should be carried
our with more subtle information on the given process.

Parallelization
algorithm

Despite these problems, we have the following.

Theorem 1 (1) For any process P, if the parallelization algorithm outputs a process Q then Q
is a parallelization of P, (2) If the parallelization algorithm does not change the mpuf process
r, fh(w there is no non-trivial pamllehzahon of P.

Whether the parallelized RWCC is a process or not can be checked by the combinatorial geo-
metric analysis called reverse interpretation [9]. :

221

5 Discussion and Conclusion

We presented a new formulation of Pratt-Glabbeck-Goubault-Jensen style Higher-Dimensional
Automata (HDA) model. The idea is to give an intrinsic definition of hypercubes with cubi-
cal Bar-notation. The obtained formulation is called reachable well-labeled cubical complex -
(RWCC) and it makes clear rclation between the general idea of HDA and traditional semantics
theories such as Hoare traces and Mazurkiewicz traces. Using the language of RWCC, we tried
to solve the parallelization problem of CCS-like process algebra, which is a refinement of the
works by E. Goubault [2] and the author [8]. The cycle filling map can be formally defined in
RWCC and we gave a parallclization algorithm using the map. As explained in section 4, our
algorithm docs not always construct parallelized processes from given processes. E. Goubault -
[2] scems to indicate the basic idea to solve this problem. Namely, a parallelized CCS-like pro-
cess is generally a part of a more parallel process in an extended process calculi. This idea has
not been thoroughly investigated in our theory. Also, we did not consider bisimulation issucs
extensively in this paper. More technical detail must be presented to discuss this issue and it
will be reported in other occasion.

References
[1] E. Goubault. Domains of Higher-Dimensional Automata. In 4th International Conference
on Concurrency Theory, LNCS 715. Springer Verlag, 1993.

[2] E. Goubault. Schedulers as Abstract Interpretations of Higher-Dimensional Automata. In
Proc. of PEPM’95. ACM Press. 1995. _

[3] E. Goubault and T. P. Jensen. Homology of Higher Dimensional Automata. In 9rd Inter-
national Conference on Concurrency Theory, LNCS 630. Springer Verlag, 1992.

[4] J. F. Groote and R. Moller. Verification of Parallel Systems via Decomposition. In 9rd
International Conference on Concurrency Theory, LNCS 630. Springer Verlag, 1992.

[5] A. Mazurkiewicz. Trace Theory. In Petri Nets: Applications and Relationships to Other
Models of Concurrency, LNCS 255. Springer Verlag, 1986.

[6] V. Pratt. Modeling Concurrency with Geometry. In 18th Annual ACM Symposium on
Principles of Programmaing Languages. ACM, 1991.

[7] E. H. Spanier. Algebraic Topology. McGraw-Hill, 1966.

[8] Y. Takayama. Parallelization of Concurrent Processes in Higher Dimensional Automata. In
RIMS Workshop on Term Rewriting Systems and its Application. RIMS Kyoto University,
1995. '

[9] Y. Takayama. Extraction of Concurrent Processes from Higher Dimensional Automata. In
CAAP96, LNCS 1059. Springer Verlag, 1996.

[10] R.van Glabeek. Bisimulation semantics for higher dimensional automata. Technical Report,
Stanford University, 1991.

[11] G. Winskel and M. Niclsen. Models for concurrency. In Handbook of Logic in Computer
Science, Vol 4. Oxford Science Publications, 1995.

