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Summary. There is an objective $.\mathrm{m}$eaning of the $\log$ utility if we consider
that one continues betting $\mathrm{a}$

. constant per cent of one’s money. We point
this out in a general case, and consider mathematically and numerically
what happens if one continues betting in the paradox of Petersburg.

1. Introduction

A meaning to use the $\log$ utility of th$\mathrm{e}$

-

amount of money is usually explained

by subjective satisfaction. Today this is often explained i.n textbooks on
decision theory and Bayesian statistics. Bernoulli [1] proposed the $\log$ utility
to sol..ve the. problem $\mathrm{b}\mathrm{y}.\mathrm{M}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{t}\backslash [2]\vee \mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{d}$ the paradox of Petersburg
today. It is often believed that Bernoulli [1] is the original of this paradox,

but Bernoulli [1] quotes Montmort [2], though the author has not got the
original of Montmort [2]. There is, however, an objective meaning of the $\log$

utility. This is an easy fact, but the author has not found it in literature.
In Section 2, we shall make a setup and point out this fact in a general

case when we continue betting, also note its limitations. In Section 3, we
shall consider mathematically what happens if we continue betting in the

paradox of Petersburg. In Section 4, we shall consider it numerically by

giving graphs. In Section 5, we shall give some remarks.
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2. The $\log$ utility in a general case when we continue betting

We shall ma.ke a following setup and point out an objective meaning of the
$\log$ utility in a general case when we continue betting.

Assume that Peter has $y$ ducats $(y>0)$ first, though the value of

$y$ is not essential as will be seen. He agrees to Paul that when he pays

Paul $b$ ducats, Paul will give him $bX$ ducats, where $X$ is an unknown

nonnegative random variable. Let $0\leq p\leq 1$ and assume that $b=py$ , that

is, Paul uses $100p$ per cent of his money to bet. The meaning of $p\leq 1$ is

that he keeps out of debt to bet. On speculation in stocks, it essentially

means that he does not make credit transaction. After this bet, he has

$y-py+pyX=y(1-p+pX)$ ducats. Then the increment of his $\log$ utility

in this bet is given by $U:=\log y(1-p+pX)-\log y=\log(1-p+pX)$ ,

which is independent of $y$ , where we define $\log 0=-\infty$ . A radix of $\mathrm{l}\mathrm{o}\mathrm{g}$ , say
$c(>1)$ , is not essential. We assume that $\log$ means natural logarithm (i.e.,

$c=e)$ for convenience of a mathematical approach. lts merit in practice

is that $U\approx-p+pX$ holds when $X\approx 1$ . If we change $c$ , then the new
$U$ is a constant and positive multiple of the old $U$ . When $X$ is very large,

there is a merit to choose $c=10$ in practice because if we do so, he has
$10^{U}y$ ducats after this bet. Let $\mu$ be the increment of his mean utility

(moral expectation) of this bet, that is, $\mu:=E[U]$ , assuming its existence
$(\mathrm{p}_{\mathrm{o}\mathrm{S}\mathrm{S}}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{y}\pm\infty)$ . $\mathrm{T}\acute{\mathrm{h}}$ose who agree to $\mathrm{t}\acute{\mathrm{h}}\mathrm{e}\log$ utility consider that this bet is

favorable if $\mu>0$ and unfavorable if $\mu<0$ . If he continues betting $100p$

per cent of his money, where $p$ is a constant, it is really so. If we explain

this fact precisely, it is as follows:

Let $X_{1},$ $X_{2,3}x,$ $\ldots$ be independent random variables with the same
distribution of $X$ . First, Peter has $y$ ducats. He pays Paul $py$ ducats and

Paul gives him $pyX_{1}$ ducats. Then he has $\mathrm{Y}_{1}:=y(1-p+pX_{1})$ ducats.
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Second, he pays Paul $p\mathrm{Y}_{1}$ ducats and Paul gives him $p\mathrm{Y}_{1}X_{2}$ ducats. Then
he has $\mathrm{Y}_{2}:=\mathrm{Y}_{1}(1-p+pX_{2})=y(1-p+pX_{1})(1-p+pX_{2})$ ducats, and so
on. After betting $n$ times, he has $\mathrm{Y}_{n}:=y(1-p+px1)(1-p+px2)\cdots(1-$

$p+pX_{n})$ ducats. Since $\log \mathrm{Y}_{n}=\log y+\log(1-p+px1)+\log(1-p+px2)+$

$+\log(1-p+pX_{n})$ , applying the strong law of large numbers, we get
the following results. If $\mu>0$ , then $\lim_{narrow\infty}\mathrm{Y}_{n}=\infty$ with probability 1.
If $\mu<0$ , then $\lim_{narrow\infty}\mathrm{Y}_{n}=0$ with probability 1. Moreover, assume that
$\sigma^{2}=\mathrm{v}_{\mathrm{a}\mathrm{r}}[U]$ exists and $0<\sigma<\infty$ . For $t>0$ , by Chebyshev’s inequality,
we get

$P[ \exp(\mu n-t\sigma\sqrt{n})<\frac{\mathrm{Y}_{n}}{y}<\exp(\mu n+t\sigma\sqrt{n})]\geq 1-\frac{1}{t^{2}}$ for any given $n$ .

Its right-hand side is, for example, 0.96 for $t=5$ . In addition, for any $t$ , by
the central limit theorem, we get

$P[ \frac{\mathrm{Y}_{n}}{y}>\exp(\mu n-t\sigma\sqrt{n})]\approx 1-\frac{1}{\sqrt{2\pi}}\int_{t}^{\infty}\exp(-\frac{x^{2}}{2})dx$

for a sufficiently large $n$ ,

where we can get the value of its right-hand side by a table of the normal
distribution. For example, it is approximately 0.98 for $t=2$ .

We should also recognize limitations to use the $\log$ utility. When $n$ is
given, rather than to consider $\mu$ , it is better to consider $\nu:=\mu n-t\sigma\sqrt{n}$ or
$\lambda:=\max\{\iota \text{ノ}, n\xi\}$ , where $\xi$ is the maximum value $\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{p}_{\mathrm{i}\mathrm{n}}\mathrm{g}$ $\log(1-p+pX)\geq$

$\xi$ with probability 1, and $t>0$ is taken appropriately to consider safety.

3. Paradox of Petersburg–a mathematical approach

We shall consider mathematically what happens if Peter continues betting
in the paradox of Petersburg.
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Assume that $J=j$ with probability $2^{-j}$ for $j=1,2,3,$ $\ldots$ , and
$X=k2^{J}$ , where $k$ is a positive constant. (Originally, Montmort [2] and

Bernoulli [1] consider the case that Paul gives Peter $2^{j-1}$ ducats with prob-

ability $2^{-j}$ . ) It is well known that $E[X]=\infty$ . However,

$\mu=E[U]=\sum_{=j1}2^{-}j\log(1-p+kp2^{j})-\infty$ ,

and we see that this is finite, but ge.nerally difficult to calculate its exact

value. On the following theorems, see Appendix A for proofs.

Theorem 1. For $p=1$ , the following assertions hold.

(i) $\mu^{=\mathrm{l}}\mathrm{o}\mathrm{g}4k$ .
(ii) If $k>1/4$ , continuing this bet, he increases his money to infinity with

probability 1.
(iii) If $k<1/4$ , continuing this bet, he decreases his money to zero with

probability 1.

Note that $\mathrm{T}\mathrm{h}\backslash$eorem 1 (i) is essentially obtained by Bernoulli [1]. Next,

denote $q:=1-p$, and for $p\in[0,1)$ , let $r:=kp/q$ and $\eta:=E[\log(1+r2^{J})]$ .
We use $\eta$ to evaluate not only $\mu$ but also $\sigma$ . To evaluate $\mu$ , we get the

following theorem.

Theorem 2. For $p\in[0,1)$ , the following assertions hold.

$\mu=\eta+\log q$ ,

$\eta=\log 4+\sum_{j=1}^{j_{0}}2^{-j}..\log(r+2-j)+pj\mathrm{o}\geq 0$ ,

where ...
$2^{-j_{0}} \max${ $\log r,$ $-(j0+2)$ log2} $\leq\rho_{j_{0}}<2^{-j\mathrm{o}}\log(r+2-j\mathrm{o}^{-1})$ .

94



Next, we shall consider maximizing $\mu=\mu(p;k)$ by moving $p$ .

Theorem 3. The following assertions hold.

(i) There exists $\mu_{1}(p, k):=(\partial/\partial p)\mu(p, k)$ for $p\in(0,1]$ and it strictly de-
creases with respect to $p\in(\mathrm{O}, 1]$ .
(ii) $\mu_{1}(0+, k):=\lim_{p\downarrow 0^{\mu_{1}(}}p,$

$k)=\infty$ .
(iii) The function $\mu(p, k)$ is continuous and strictly concave with respect to
$p\in[0,1]$ .
(iv) For each $k\in(0, \infty)$ , there exists a unique $p=p_{0}=p_{0}(k)$ that maxi-
mizes $\mu(p, k)$ .
(v) $p_{0}(k)=1$ for $k\in[1/3, \infty)$ .
(vi) $0<p_{0}(k)<\underline{1}<1$ for $k\in(\mathrm{O}, 1/3)$ .

$3(1-2k)$
(vii) The function $p_{0}(k)$ is continuous and strictly increases with respect to
$k\in(0,1/3]$ .
(viii) $p_{0}(0+):= \lim_{k\downarrow 0}p_{0(k)}=0$ .

Next we shall examine $\sigma^{2}$ .

Theorem 4. The following assertions hold.
(i) If $p=1$ , then $\sigma^{2}=2\log^{2}2$ , which is independent of $k$ .
(ii) If $p\in[0,1)$ , then $\sigma^{2}=\sigma^{2}(r)=\mathrm{V}\mathrm{a}\mathrm{r}[\log(1+r2^{J})]$ , which is a function
of $r=kp/q$ .
(iii) $\sigma^{2}(\infty):=\lim_{rarrow\infty}\sigma^{2}(r)=2\log^{2}2$ , which coincides with the value in (i).

(iv) There exists $\sigma^{2/}(r)$ for $r\in(\mathrm{O}, \infty)$ and it is positive.

(v) The function $\sigma^{2}(r)$ is continuous and strictly increases with respect to
$r\in[0, \infty)$ .
(vi) The function $\sigma^{2}(kp/q)$ is continuous and strictly increases with respect
to $p\in[0,1]$ .
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At the last part of Section 2, we noted limitations to use the $\log$

utility. Here, $\xi=\xi(p)=\log(q+2kp)$ holds. We shall consider max-
imizing $\nu=\nu(p, k, n, t)=\mu(p)n-t\sigma(kp/q)\sqrt{n}$ and $\lambda=\lambda(p, k, n, t)=$

$\max\{\nu(p, k, n, t), n\log(q+2kp)\}$ . On this point, we obtain the following

theorem. For further details, we shall consider numerically in the next

section.

Theorem 5. For any fixed $k>0,$ $n=1,2,3,$ $\ldots$ , and $t>0$ , the

function $\nu(p, k, n, t)$ with respect to $p\in[0,1]$ takes its maximum value at
$p=p_{1}=p_{1}(k, n, t)$ (say), and it satisfies $p_{1}\leq p_{0}$ . In particular, if $p_{0}<1$ ,

then the strict inequality $p_{1}<p_{0}$ holds. If $k<1/2$ , then the function
$\lambda(p, k, n, t)$ with respect to $p\in[0,1]$ takes its maximum value at the same
point $p=p_{1}$ .

To evaluate $\sigma^{2}$ , we get the following theorem.

Theorem 6. For $r\in[0, \infty)$ , the following assertion holds.

$\sigma^{2}=\zeta-\eta^{2}$ ,

where $\eta=\eta(r):=E[\log(1+r2^{J})]$ is evaluated in Theorem 2 and

$\zeta=\zeta(r):=E[\log^{2}(1+r2^{J})]$

$=6 \log^{2}2+\sum^{j_{0}}2^{-j}\{j\log 4+\log(r+2^{-}j)\}\log(r+2-j)j=1+\tilde{\rho}_{j}0\geq 0$,

$2^{-j\mathrm{o}} \max\{(j\mathrm{o}+2)\log r, -(j_{0}^{2}+4j_{0}+6)\log 2\}\log 4\leq\tilde{\rho}_{j_{0}}$$<$
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4. Paradox of Petersburg–a numerical approach

We shall give numerical results. Figures 1 to 14 are $\log$-linear plots of
$\varphi=\varphi(p, k, n, t):=\exp\lambda(p, k, n, t)$ with respect to $p\in[0,1]$ . The axes
origin is $(0,1)$ in each figure because it is important whether $\varphi(p, k, n, t)>1$

or not. We denote 10 A $m:=10^{m}$ in figures. For each $t=0,1,2,3,4,5$ ,
the curve of $\varphi(p, k, n, t)$ is the $(t+1)\mathrm{t}\mathrm{h}\hat{\mathrm{h}}$ighest. For example, in Figure 2,
there are only three curves because the cases $t=2,3,4,5$ coincide in this
figure. If we do not truncate the curves under $\varphi(p, k, n, t)=0.5$ , then they
do not coincide. Note that $k=1/3$ is the case that $k$ is the smallest value
that satisfies $p_{0}(k)=1$ , and $k=1/4$ is the case $\mu(1, k)=0$ . There is not
a special meaning for $k=1/8$ . See Appendix $\mathrm{B}$ for the way to obtain the
figures. We see that, to maximize $\varphi(p, k, n, t)$ (or $\lambda(p,$ $k,$ $n,$ $t)$ ) with respect
to $p\in[0,1]$ , for $t=1,2,3,4,5$ , we should take much smaller $p$ than $p_{0}$ ,
in particular, if $n$ is not so large. It is danger to bet in the paradox of
Petersburg not so large times. For safety, Peter has to continue betting
hundreds or thousands of times. We should, however, recognize that, if he
really does so, then $\varphi(p, k, n, \mathrm{o})=\exp\mu n$ for an appropriate $p$ is extremely
large. If he really owns such a huge amount of money like $y\exp\mu n$ ducats, it
worries him about the great confusion of economy and that even he cannot
live on. This is also a limitation of the $\log$ utility. In practice, however, Paul
will go bankrupt before Peter owns such a huge amount of money. Peter
will have $y+M$ ducats with probability 1 where $M$ is the largest amount
of money that Paul can pay, if he continues betting $100p$ per cent of his
money satisfying $\mu(p, k)>0$ .
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$\underline{\mathrm{F}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{l}-2}$

$p$

$p$
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Figures 3-4

$phi$ Fiaure 3: $\mathrm{k}^{-}=1/3$ . $\mathrm{n}=$]
$\mathrm{o}\mathrm{o}\backslash$

$pl_{l}i$ Fiqure 4: $\mathrm{k}=1/3$ . $\mathrm{n}=1.\mathrm{o}\mathrm{o}0$
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$\underline{\mathrm{F}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{s}5-6}$

$p$

100



$\underline{\mathrm{F}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{S}}..7-8$
. ... ... . . . $\vee$

$\cdot$ . .. .. .-

$p$

$p$
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$- \mathrm{F}\mathrm{i},\mathrm{g}\mathrm{u}\mathrm{r}_{\vee.\epsilon}\mathrm{e}\mathrm{s}..9-,10\mathrm{v}arrow-......\mathrm{r}.\cdot$

. $”\cdot.‘...\backslash \cdot.$ . ....... $-\sim\cdot*\cdot$ . ..-\sim $.,..$
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$\underline{\mathrm{F}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{s}}$11-12..
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$\underline{\mathrm{F}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{s}}$13-14
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5. Some remarks

We shall give some remarks. When Peter continues betting a constant
amount of money, he increases his money to infinity with probability 1 if
he can borrow any large amount of money. If he cannot, however, he may
go bankrupt before increasing his money. When Peter continues betting a
constant per cent of his money, there is no $\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{s}\mathrm{i}\dot{\mathrm{b}}$ility of Peter’s bankruptcy.
There is, however, a problem that how they manage a smaller amount than
the smallest unit of money. If they manage each time of their bet, Peter may
decrease his money and $100p$ per cent of his money may become smaller
than the smallest unit of money. In particular, if $k$ is small, then he should
take a small $p$ , so this problem is important. To avoid this problem, they
should manage as follows: He continues this bet for a long time without
paying or receiving money in practice. After stopping it, he pays or receives
money in practice, with managing only at last a smaller amount than the
smallest unit of money. Then there is no problem.

Next, assume that $X=k2^{2^{J}}$ instead of $X=k2^{J}$ . Then $\mu=E[U]=\infty$

for $p\in(0,1]$ . Therefore, continuing this bet, he increases his money to
infinity with probability 1, and we cannot determine $p$ by the $\log$ utility.

Appendix A

Proof of Theorem 1. Since $U=\log k+J\log 2$ , we have $E[J]=$

$\sum_{j=1}^{\infty-j}2j=2$ , hence (i) holds, so (ii) and (iii) follow. $\square$

Proof of Theorem 2. Clearly $\eta\geq 0$ by definition. We have

$\mu=E[\log q(1+r2^{J})]$

$=\log q+E[\log(1+r2^{J})]$

$=\eta+\log q$
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$\eta=\sum_{j=1}^{\infty}2-j\log(1+r2^{j})$

’.
$\cdot$

.. $= \sum_{j=1}^{\infty}2-j\log 2j(r+2-j)$

$= \log 4...+\sum_{j=1}^{\infty}..2^{-}..j\log(r+2-j)$

$= \log 4^{\cdot}.+\sum_{j=1}2^{-j}\log(rj\mathrm{o}+2^{-j})+\rho j\mathrm{o}$ (say).

We can evaluate $\rho_{j_{0}}$ as follows:

$\rho_{j_{0}}=2^{-j_{0}}\sum_{j=1}^{\infty}2^{-}j\log(r+2-j\mathrm{o}^{-}j)=2-j\mathrm{o}\log(r+\theta 2-j\mathrm{o}-1).\sim$

where $0<\theta<1$ ,

hence
$2^{-j_{0}}\log r<_{\beta_{j}0}<2^{-j_{0}}\log(r+2^{-j_{0}}-1)$ ,

and

$\rho_{j\mathrm{o}}\geq 2^{-j_{0}}\sum_{=j1}^{\infty}2^{-j}\log 2^{-j\mathrm{o}}-j$

$=-2^{-j_{0}}$ (log2) $\sum_{j=1}^{\infty}2^{-j}(j\mathrm{o}+j)$

$=-\cdot 2^{-j_{0}}$ (log2) $(j_{0} \sum_{j=1}2-j+\sum^{\infty}2-jj)\infty j=1$

$=-2^{-j\mathrm{o}}(j0+2)\log 2$ .

From the two inequalities above, we have

$2^{-j_{0}} \max\{\log r, -(j0+2)\log 2\}\leq\rho_{j\mathrm{o}}<2^{-j_{0}}\log(r+2^{-j1}0-)$ . $\square$
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Proof of Theorem 3. We have

$\mu_{1}(p, k)=\sum_{j=1}2^{-j}\frac{k2^{j}-1}{1+(k2^{j}-1)p}\infty$

$= \frac{1}{p}\sum_{1j=}^{\infty}2-j\{1-\frac{1}{1+(k2^{j}-1)p}\}$

$= \frac{1}{p}(1-\sum_{j=1}^{\infty}\frac{1}{kp4^{j}+q2^{j}})$

for $p\in(0,1]$ , where the first line of the equation above can be justified by

its locally uniform convergence. We get (i) from the first line. Regarding

the summation as the integration by the counting measure and using the
monotone convergence theorem, we get (ii). We shall show (iii). To prove
the continuity, it is enough to show that $\mu(p, k)$ is continuous at $p=0$ . We
get this by Lebesgue’s dominant conversion theorem, because if $k2^{j}-1>0$ ,

then $2^{-j}\log(1-p+kp2^{j})$ is positive and increases with respect to $p$ . The

strict concaveness follows from (ii) and the continuity. We get (iv) from
(iii). By calculation, we get $\mu_{1}(1, k)=1-1/3k$ , so (v) follows. Assume
that $k\in(0,1/3)$ . We have $p_{0}>0$ by (ii) and (iii). We get $\mu_{1}(1, k)<0$ by
calculation, so $p_{0}<1$ . Hence $p_{0}$ satisfies $\mu_{1}(p_{0}, k)=0$ by (i), and

$1= \sum_{j=1}^{\infty}.\frac{1}{kp_{0}4^{j}+q0^{2^{j}}}>\sum_{j=1}^{\infty}\frac{1}{(kp_{0}+q\mathrm{o}/2)4j}=\frac{1}{3(kp0+q0/2)}$

where $q_{0}:=1-p_{0}$ . Solving this inequality with respect to $p_{0}$ , we get $p_{0}(k)<$

$1/\{3(1-2k)\}$ , and $1/\{3(1-2k)\}<1$ is straightforwardly shown. Hence
we have (vi). We shall show (vii). If $k<k’\leq 1/3$ , then $\mu_{1}(p_{0}(k), k’)>$

$\mu_{1}(p0(k), k)=0$ , so we get $p_{0}(k’)>p_{0}(k)$ by (i), hence $p_{0}(k)$ strictly in-

creases with respect to $k\in(0,1/3]$ . We shall show its continuity. For

any sequence $\{k_{m}\}$ in $(0,1/3]$ that converges to $k\in(0,1/3]$ , we have
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$\sum_{j=1}^{\infty}1/\{k_{m}p0(k_{m})4j+q0(k_{m})2j\}=1$ , and there exists a subsequence
$\{k_{i_{m}}\}$ such that $\{p0(k_{i}m)\}$ converges (to $p,$ $q:=1-p$, say). lf $p=0$,
then, since $p_{0}(k)$ is positive and strictly increases with respect to $k$ , we get
$k=0$, which is a contradiction. Hence $p\neq 0$ , and we may assume that
$p_{0}(k_{i_{m}})>p/2$ and $k_{i_{m}}>k/2$ . Therefore, $k_{i_{m}}p0(k_{i_{m}})4^{j}+q_{0}(k_{i_{m}})2^{j}\}>$

$(k/2)(p/2)4^{j}$ . Hence we can use Lebesgue’s dominant conversion theorem
and get $\sum_{j=1}^{\infty}1/\{kp4^{j}+q2^{j}\}=1$ , so $p=p_{0}(k)$ , that is, $\lim_{marrow\infty}p0(k_{i_{m}})=$

$p_{0}(k)$ . Hence we have (vii). We shall show (viii). Assume that $1/3>k_{1}>$

$k_{2}>..\cdot$
. and $\lim_{marrow\infty}k_{m}=0$ . Then, $\sum_{j=1}^{\infty}1/\{..k_{m}p0(k_{m})4^{j}+q_{0}(k_{m})2j\}=$

$1$ , and {$p_{0}$ (km)} decreases with respect to $n$ , so it converges (to $p,$ $q:=1-p$,
say). Since $k_{m}p_{0}(k_{m})4^{j}+q0(k_{m})2^{j}\geq q_{0}(k_{m})2^{j}\geq q_{0}(k_{1})2^{j}$ , by Lebesgue’s
dominant conversion theorem, we get $\sum_{j=1}^{\infty}1/q2^{j}=1$ , so $q=1$ and $p=0$ .
Hence we have (viii). $\square$

Proof of Theorem 4. If $p=1$ , then $U=\log k+J\log 2,$ $E[J^{2}]=$

$\sum_{j=1}^{\infty}2^{-}jj^{2}=6$ , so $\sigma^{2}=(6-2^{2})\log^{2}2=2\log^{2}2$ , and we get (i). If
$0\leq p<1$ , then $U=\log q+\log(1+r2^{J})$ , so we get (ii). We have $\sigma^{2}(\infty)$ $:=$

$\lim_{rarrow\infty}\sigma^{2}(r)=\lim_{p\mathrm{t}1}\{E[\log 2\{1+p(2^{J}-1)\}]-\mu 2(p, 1)\}=E[\log^{2}2^{J}]-$

$\mu^{2}(1,1)=2\log^{2}2$ , where the third equality is justified by the monotone
convergence theorem, so we have (iii). Denoting $\eta:=E[\log(1+r2^{J})]$ , we
have $\sigma^{2}(r)=\sum_{j=1}^{\infty}2^{-j}\log(21+r2^{j})-\eta^{2}(r)$ , hence

$\frac{\sigma^{2;}(r)}{2}=\sum_{j=1}^{\infty}2^{-}.j\frac{1}{r+2^{-j}}\log(1+r2^{j})-\eta(r)j\sum_{=1}^{\infty}2^{-j}\frac{1}{r+2^{-j}}$

$= \sum_{j=1}^{\infty}2^{-}j\frac{1}{r+2^{-j}}\{\log(1+r2j)-\eta(r)\}$

for $r\in(\mathrm{O}, \infty)$ , where the first line of the equation above can be justified by
locally uniform convergence of the sums. Since we can take $j_{1}=j_{1}(r)\in$
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$[1, \infty)$ satisfying $\eta(r)=\log(1+r2^{j_{1}})$ , we get

$\frac{\sigma^{2\prime}(r)}{2}=\sum_{j=1}2^{-}\infty j(\frac{1}{r+2^{-j}}-\frac{1}{r+2^{-j_{1}}})\{\log(1+r2j)-\eta(r)\}$

$+ \frac{1}{r+2^{-j_{1}}}\sum_{j=1}^{\infty}2^{-}j\{\log(1+r2j)-\eta(r)\}$ .

The second sum is $0$ by the definition of $\eta$ . In the first sum, we have

$( \frac{1}{r+2^{-j}}-\frac{1}{r+2^{-j_{1}}})\{\log(1+r2^{j})-\eta(r)\}\geq 0$,

where the equality holds if and only if $j=j_{1}$ . Hence $\sigma^{2\prime}(r)>0$ holds for
$r\in(0, \infty)$ , so we have (iv). It is easy to show that $\sigma^{2}(r)$ is continuous with
respect to $r$ by Lebesgue’s dominant conversion theorem and the continuity
of $\eta(r)$ . From this and (iv), we get (v). By (v) and using (iii) at $p=1$ , we
have (vi). $\square$

Proof of Theorem 5. By Theorem 3 (iii) and Theorem 4 (vi), the function
$\nu(p, k, n, t)$ is continuous with respect to $p$ on the compact set $[0,1]$ , so
it takes its maximum value. We see $p_{1}\leq p_{0}$ by Theorem 4 (vi). We
shall show that the strict inequality holds if $p_{0}<1$ . By Theorem 3 (v)
and (vi), $0<p_{0}<1$ holds. We may assume $p_{1}>0$ . Then, denoting
$\nu_{1}(p, k, n, t):=(\partial/\partial p)\nu(p, k, n, t)$ , we get $\nu_{1}(p_{1}, k, n, t)=0$ . If $p_{0}=p_{1}$ ,
then, denoting $r_{0}=kp\mathrm{o}/q_{0}$ , we have $0=\nu_{1}(p_{1}, k, n, t)=\nu_{1}(p_{0}, k, n, t)=$

$\mu_{1}(P0, k)n-kt\sigma J(r_{0})\sqrt{n}/q\mathrm{o}=-2kt\sigma’(r_{0)}\sqrt{n}/q^{2}$ , so $\sigma’(r\mathrm{o})=0$ and $\sigma^{2;}(r_{0})=$

$2\sigma(r_{0)\sigma’(r}\mathrm{o})=0$ , which contradicts Theorem 4 (iv). We shall show the
last part. It is enough to prove $\lambda(p_{1}, k, n, t)\geq\lambda(p, k, n, t)$ for $p\in[0,1]$ .
lf $\lambda(p_{1}, k, n, t)\neq\nu(p_{1}, k, n, t)$ , then, we get $\nu(p_{1}, k, n, t)<\lambda(p_{1}, k, n, t)=$

$n\log(q_{1}+2kp_{1})<0=\lambda(0, k, n, t)=\nu(\mathrm{o}, k, n, t)$ , where the first inequality
follows by the assumption and the definition of $\nu$ and the second one follows
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by $k<1/2$ . This is a contradiction because $\lambda(p, k, n, t)$ takes its maximum

value at $p=p_{1}$ . Hence $\lambda(p_{1}, k, n,t)=\nu(p_{1}, k, n, t)$ holds. If $\lambda(p, k, n, t)=$

$\nu(p, k, n, t)$ , then $\lambda(p_{1}, k, n, t)=\nu(p_{1}, k, n, t)\geq\nu(p, k, n, t)=\lambda(p, k, n, t)$ If

$\lambda(p, k, n, t)\neq\nu(p, k, n, t)$ , then $\lambda(p_{1}, k, n, t)=\nu(p_{1}, k, n, t)\geq\nu(0, k, n, t)=$

$\lambda(0, k, n, t)=0>n\log(q+2kp)=\lambda(p, k, n, t)$ . Hence $\lambda(p_{1}, k, n, t)\geq$

$\lambda(p, k, n, t)$ holds anyhow. Therefore, we have completed the proof. $\square$

Proof of Theorem 6. By Theorem 4 (ii), we get $\sigma^{2}=\zeta-\eta^{2}$ . Clearly $\zeta\geq 0$

by definition. We have

$\zeta=\sum_{j=1}^{\infty}2-j\log 2(1+r2j)$

$..=.. \sum_{j=1}^{\infty}2-j\{j\log 2+\log(r+2^{-j})\}2$

$–$

$=6 \log^{2}2+(\log 4)\sum 2^{-}jj\log(r+2-j)+$$\sum_{=,j=1j1}2-j\mathrm{l}\infty\infty \mathrm{o}\mathrm{g}(22^{-j}r+)$

$=6 \log^{2}2+(\log 4)\{_{j=1}\sum^{j\mathrm{o}}2^{-}jj\log(r+2-j)+\rho_{j_{0}}(1)\}$

$+ \{_{j=1}\sum^{j\mathrm{o}}2^{-j}\log^{2}(r+2^{-}j)+\rho j\mathrm{o})(2\}$ (say)

$=6 \mathrm{l}\mathrm{o}.\mathrm{g}^{2}2+\sum 2-j\{j\log 4+\log j=1j\mathrm{o}(r+2^{-j})\}\log(r+2-j)+\tilde{\rho}_{j_{0}}$ (say).

We can evaluate $\rho_{j\mathrm{o}}^{()}1$ as follows:

$\rho_{j\mathrm{o}}^{()}=2-j_{0}\sum_{1}^{\infty}1j\mathrm{l}\mathrm{o}j=2^{-}(j\mathrm{o}+j)\mathrm{g}(r+2^{-j\mathrm{o}^{-}j})$

$=j \mathrm{o}\rho_{j_{0}}+2-j\mathrm{o}\sum_{j=1}2^{-jj_{0}j}j\mathrm{l}\infty \mathrm{o}\mathrm{g}(r+2^{-}-)$
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$=j_{0\rho_{j_{0}}}+2^{-j}0.2\log(r+\theta^{(}1)2^{-}j_{0}-1)$ where $0<\theta^{(1)}<1$ ,

hence

$2^{-j_{0}}(j0+2)\log r<\rho_{j_{0}}^{()}1<2^{-j_{0}}(j\mathrm{o}+2)\log(r+2^{-j\mathrm{o}-1})$,

and

$\rho_{j_{0}}^{()}1\geq j_{0}p_{j\mathrm{o}}+2-j\mathrm{o}j=\sum_{1}\infty 2^{-j}j\log 2^{-}j_{0}-j$

$=j_{0\rho_{j_{0^{-}}}}2-j0$ (log2) $\sum_{j=1}^{\infty}2-jj(j\mathrm{o}+j)$

$=j_{0\rho_{j_{0^{-}}}}2-j\mathrm{o}$ (log2) $(j_{\sigma} \sum_{1j=}^{\infty}2-jj+\sum_{j=1}2-jj2\mathrm{I}\infty$

$\geq-2^{-j0}j_{0}(j0+2)\log 2-2^{-}j\mathrm{o}(2j0+6)\log 2$

$=-2^{-j_{0}}(j^{2}\mathrm{o}+4j\mathrm{o}+6)\log 2$ .

Hkom the two inequalities above, we have

$2^{-j_{0}} \max${ $(j\mathrm{o}+2)\log r,$ $-(j_{0}^{2}+4j_{0}+6)$ log2}
$\leq\rho_{j_{0}}^{()}1<2^{-j_{0}}(j_{0}+2)\log(r+2^{-}j\mathrm{o}-1)$ .

We can evaluate $\rho_{j_{0}}^{(2)}$ as follows:

$\rho_{j_{0}}^{(2)}=2^{-j\mathrm{o}}\sum_{j=1}^{\infty}2-j\log^{22}(r+2-j_{0}-j)=2-j\mathrm{o}\log(r+\theta^{(}2)2^{-}j\mathrm{o}-1)$

where $0<\theta^{(2)}<1$ ,

hence
$0 \leq\rho_{j_{0}}^{(2)}<2^{-j_{0}}\max\{\log^{22}r, \log(r+2^{-j_{0}-}1)\}$ ,
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and if $r+2^{-j1}0-\leq 1$ , we get

$\rho_{j_{0}}^{(2)}\leq 2^{-j_{0}}\sum_{=j1}^{\infty}2-j\log^{2}2^{-}j\mathrm{o}^{-j}$

$=2^{-j0}( \log 22)\sum_{j=1}\infty 2-j(j_{0}+j)^{2}$

$=2^{-j_{0}}( \log^{2}2)(j_{0}^{2}\sum_{j=1}2^{-}j+2j\mathrm{o}\sum_{1j=}^{\infty}2-jj+\sum^{\infty}2^{-}jj\infty j=1)2$

$=2^{-j_{0}}(j_{0}24+j_{0}+6)\log^{2}2$ .

bom the two inequalities above, we have

$0\leq p_{j\mathrm{o}}^{(2)}\leq$

Since $\tilde{\rho}_{j_{0}}=\rho_{j_{0}}^{()}\log 41+\rho_{j_{0}}^{(2)}$ , we can get the inequality on $\tilde{\rho}_{j_{0}}$ , so we have

completed the proof. $\square$

Appendix $\mathrm{B}$

We shall explain the wa.y to obtain the figures. The author has used

Mathematica for Macintosh. Let

$q$ $:=1-p$,

$r$ $:= \frac{kp}{q}$ if $p\neq 1$ ,

$\overline{\eta}$ $:= \log 4+\sum_{j=1}2^{-j}\log(r+2^{-}j)+2^{-j0}\log(r+2^{-j1}0-)j\mathrm{o}$ ,

$\underline{\eta}:=\max\{0$ ,

$\log 4+\sum_{j=1}2-j\log j\mathrm{o}(r+2-j)+2-j\mathrm{o}\max\{\log r, -(j_{0}+2)\log 2\}\}$ ,
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$\overline{\mu}$$:=$
$\underline{\mu}:=$

$\overline{\zeta}:=6\log 2+2j=1\sum 2^{-j}\{j\log 4+\log(r+2^{-j})\}\mathrm{l}j_{0}\mathrm{o}\mathrm{g}(r+2-j)$$+$$\underline{\zeta}:=\max\{0,6\log^{2}2+\sum_{j=1}^{j_{0}}2^{-j}\{j\log 4+\log(r+2^{-j})\}\log(r+2-j)$

$+2^{-j_{0}} \max\{(j\mathrm{o}+2)\log r, -(j^{2}\mathrm{o}+4j_{0}+6)\log 2\}\log 4\}$ ,

$\overline{\sigma}:=\{_{\sqrt{\frac{2}{\zeta}-\underline{\eta}^{2}}}^{\sqrt\log 2}$ $\mathrm{i}\mathrm{f}p\neq 1\mathrm{i}\mathrm{f}p=1,$

’

$\underline{\sigma}:=\{_{\sqrt{\max\{0,\underline{\zeta}-\overline{\eta}^{2}\}}}^{\sqrt{2}\mathrm{l}\mathrm{o}}\mathrm{g}2$ $\mathrm{i}\mathrm{f}p\neq 1\mathrm{i}\mathrm{f}p=1,$

’

$\overline{\lambda}:=\max\{\overline{\mu}n..-t\underline{\sigma}\sqrt{n}, n\log(q+2kp)\}$ ,
$\underline{\lambda}$ $:= \max\{\underline{\mu}n-t\overline{\sigma}\sqrt{n}, n\log(q+2kp)\}$ .

Then $\underline{\eta}\leq\eta\leq\overline{\eta},$ $\underline{\mu}\leq\mu\leq\overline{\mu},$ $\underline{\zeta}\leq\zeta\leq\overline{\zeta},$ $\underline{\sigma}\leq$ a $\leq\overline{\sigma},$ and $\underline{\lambda}\leq\lambda\leq\overline{\lambda}$

follow by Section 3. The author has made Mathematica draw curves $\mathrm{o}\mathrm{f}\overline{\lambda}’ \mathrm{s}$

and $\underline{\lambda}’ \mathrm{s}$ with respect to $p$ , letting $j_{0}=20$ in Figures 1 to 10, and $j_{0}=30$

in Figures 11 to 14. Then, for each $k,$ $n$ , and $t$ , the curves of them look
coincident, so we can regard them as the curve of $\lambda$ . Mathematica can
compute infinite sums numerically but the author has avoided it because
Wolfram [3] (p. 832, see also pp. 689-690) notes, “You should realize that
with sufficiently pathological summands, the algorithms used by NSum (a
numerical sum) can give wrong answers.”
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$\ln$ this way, we get graphs of $\lambda’ \mathrm{s}$ . By making adequate ticks, they

become $\log$-linear plots of $\varphi’ \mathrm{s}$ . For this purpose, the author has selected

adequate values for the vertical coordinate, not Mathematica automatically

selected. For each of them, say $(\varphi=)\varphi 0$ , the author has made a tick of $g$ to

the place of $(\lambda=)\log\varphi 0$ on the vertical coordinate. In some figures, curves
are truncated. For example, in Figure 2, the curves under $\varphi(p, k, n, t)=0.5$

are truncated. This is also done by the author, not automatically. The

author has made ticks and truncation considering that the reader can easily
$\tau$

see important parts of graphs, in particular, whether $\varphi>1$ or not, and

avoiding misunderstanding.
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