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1 Introduction
Shibata and Hashitsume [1] tried to derive the quantum Langevin equation starting from

the microscopic Heisenberg equation by making use of the formula [2] which decomposes

a time-evolution generator into two parts, i.e., one describing the time-evolution of a rele-

vant system and the other describing that of a irrelevant one (a system producing random

forces). In the derivation, they used the formula of differentiation for multiples of ana-

lytic functions or operators even after the operators become stochastic ones. Note that

the operators appearing in the microscopic Heisenberg equation should be represented by
stochastic operators (a kind of the dynamical mapping), before the equation reduces to the

Langevin equation $[3, 4]$ . Since the Stratonovich multiplication [5] of stochastic variables

gives us the same formula of the differentiation for multiples of analytic variables, one may
presume that the Langevin equation derived by Shibata and Hashitsume should be of the

Stratonovich type instead of Ito one [6]. In any case, physicists apt to regard the Langevin

equations derived from some microscopic equations as of the Stratonovich type.

In this paper, we will review the derivation proposed by Shibata and Hashitsume [1] in

terms of Non-Equilibrium Thermo Field Dynamics (NETFD) $[7]-[14]$ which is one of the

canonical operator formalism for dissipative quantum fields, and will claim that, in fact, the

derived Langevin equation is of the Ito type instead of the Stratonovich one by comparing

it with the one derived within NETFD upon some actiomatic consideration.
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2 Shibata-Hashitsume’s Proposal

2.1 Heisenberg Equation

Shibata and Hashitsume [1] started their consideration with the Heisenberg equation which
is written within NETFD in the form

$\frac{d}{dt}A(t)=i[\hat{H}(t), A(t)]$ , (1)

with
$\hat{H}(t)=\mathrm{e}^{i\hat{H}t-i\hat{H}t}\hat{H}\mathrm{e}$ , $\hat{H}=H-\tilde{H}$ . (2)

The Hamiltonian $H$ can be divided into two parts:

$H=H_{0}+H_{1}$ , $H_{0}=H_{S}+H_{R}$ , (3)

where $H_{S}$ and $H_{R}$ are, respectively, the free Hamiltonians of the relevant and of the irrele-
vant sub-systems, and $H_{1}$ represents the interaction Hamiltonian between the relevant and
the irrelevant subsystems.

For later convenience, let us introduce the timeevolution operator $\hat{U}(t, 0)$ through the
relation:

$\mathrm{e}-i\hat{H}t=\mathrm{e}-i\hat{H}\mathrm{o}\mathrm{t}\hat{U}(t, 0)$ . (4)

Then, $\hat{U}(t, s)$ satisfies the differential equation

$\frac{d}{dt}\hat{U}(t, s)=-i\hat{H}_{1}^{I}(t)\hat{U}(t,S)$ , (5)

with the initial condition $\hat{U}(s, s)=1$ .

2.2 Projector Method

Introducing a projector $P$ which satisfies $P^{2}=P$ and $P^{\uparrow}=P$, it is straightforward to get
the formula

$\frac{d}{dt}\hat{U}(t, s)=-i\hat{H}_{1}I(t)P\hat{U}(t, s)$

$- \int_{s}^{t}dt’\hat{H}^{I}$ ($1$ QQt, $\hat{H}_{1}I\prime P\hat{U}(t’,$ $s$t)\^U( $t’),QP(t)$ )

$-i\hat{H}_{1}^{I}(t)\hat{U}QQ(t, s)Q$ , (6)

where $Q$ is defined by $Q=1-P$, and $\hat{U}_{QQ}(t, S)$ is introduced by the differential equation

$\frac{d}{dt}\hat{U}_{QQ}(t,S)=-i\hat{H}I(1,QQ)t\hat{U}_{QQ}(t, S)$ , (7)
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with the initial condition $\hat{U}_{QQ}(s, s)=1$ . Here, we have introduced notations

$\hat{H}_{1,QQ}^{I}(t)=Q\hat{H}_{1}^{I}(t)Q$ , $\hat{H}_{1,QP}^{I}(t)=Q\hat{H}_{1}^{I}(t)P$. (8)

The operator $A(t)$ in the Heisenberg representation is related to the operator $A^{I}(t)$ in
the interaction representation by

$A(t)=\hat{U}^{-1}(t, 0)A^{I}(t)\hat{U}(t, \mathrm{o})$ . (9)

Applying the vacuum, $\langle\langle$ $1|=\langle|\langle 1|$ , to (9) from the right, we have

$\langle\langle 1|A(t)=\langle\langle 1|\hat{U}-1(t, 0)A^{I}(t)\hat{U}(t, 0)$

$=\langle\langle 1|A^{I}(t)\hat{U}(t, 0)$ , (10)

where we used the properties

$\langle\langle$ $1|\hat{H}=0$ , $\langle\langle$ $1|\hat{H}_{0}=0$ , (11)

which guarantee the conservation of provability. $\langle$ $1|$ is the $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum of the relevant
subsystem, and $\langle$ $|$ is the one of the irrelevant sub-system.

Differentiating the vector $\langle\langle$ $1|A(t)$ for observable operator $A(t)$ which consists of non-
tilde operators, we have

$\frac{d}{dt}\langle\langle 1|A(t)=i\langle\langle 1|[\hat{H}_{0}(t), A^{I}(t)]\hat{U}(t,0)+\langle\langle 1|AI(t)\frac{d}{dt}\hat{U}(t, 0)$ , (12)

which reduces to

$\frac{d}{dt}\langle\langle 1|A(t)=-i\langle\langle 1|A^{I}(t)(\hat{H}_{0}+\hat{H}_{1}^{I}(t)P)\hat{U}(t, \mathrm{o})$

$- \int_{0}^{t}dt’\langle\langle 1|A^{I}(t)\hat{H}_{1}I$ (t)\^UQQ(t, $t’$ ) $\hat{H}_{1}I()QPt)/P\hat{U}(t/, 0)$

$-i\langle\langle 1|A^{I}(t)\hat{H}_{1}I(t)\hat{U}QQ(t, \mathrm{o})Q$ , (13)

by the substitution of (6).

2.3 Recipe

In order to put (13) into the Langevin equation, Shibata and Hashitsume [1] made the
following recipe:

1. Adopt $P=|\rangle\langle$ $|$ for the projector.

2. Retain the non-trivial lowest terms with respect to $\hat{H}_{1}^{I}(t)$ in each line in the right-hand
side of (13).

3. In the last term depending on the random force operators, replace the relevant oper-
ators in the interaction representation by those in the Heisenberg representation.
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2.4 Langevin Equation

With the help of the first and the second items of the recipe, we have

$\frac{d}{dt}\langle\langle 1|A(t)=-i\langle\langle 1|A^{I}(t)(\hat{H}_{S}+\langle\hat{H}_{1}^{I}(t)\rangle)\hat{U}(t, 0)$

$- \int_{0}^{t}dt\langle’\langle 1|AI(t)(\hat{H}I(1t)\hat{H}^{I}1,QP(t)’\rangle\hat{U}(t’, 0)$

$-i\langle\langle 1|AI(t)\hat{H}I(1t)$

$=-i\langle\langle 1|A(t)\hat{H}s(t)$

$- \int_{0}^{t}dt’\langle\langle 1|A(t)\hat{U}-1(t, 0)\langle\hat{H}^{I}1(t)\hat{H}^{I}1(t/)\rangle\hat{U}(t’, 0)$

$-i\langle\langle 1|A^{I}(t)\hat{H}^{I}1(t)$ , (14)

where we assumed that
$\langle\hat{H}_{1}^{I}(t)\rangle=0$ . (15)

For convenience, we introduced the abbreviation for the vacuum expectation with respect

to the vacuums of the irrelevant subsystem: $\langle\cdots\rangle=\langle|\cdots|\rangle$ .
Consulting the third item of the recipe and taking the long-time limit (the van Hove

limit), we finally get

$d\langle\langle 1|A(t)=i\langle\langle 1|[Hs(t), A(t)]dt$

$+\kappa\langle\langle 1|\{a\uparrow(t)[A(t), a(t)]+[a^{\dagger}(t), A(t)]a(t)\}dt$

$+2\kappa\overline{n}\langle\langle 1|[a^{\uparrow(t)}, [A(t), a(t)]]dt$

$+\langle\langle 1|[A(t), a^{\uparrow}(t)]\sqrt{2\kappa}dB_{t}+\langle\langle 1|[a(t), A(t)]\sqrt{2\kappa}dB_{t}^{\dagger}$ , (16)

where
$\kappa=\Re \mathrm{e}g^{2}\int_{0}^{\infty}dt\langle b_{t}b\uparrow\rangle \mathrm{e}^{udt}$ , $\overline{n}=(\mathrm{e}^{\omega/\tau_{-}}1)$ , (17)

with $T$ being the temperature of the irrelevant system. In deriving (16), we put

$H_{S}=\omega a^{\dagger}a$ , $H_{1}=g(ab^{\uparrow}+\mathrm{h}.\mathrm{c}.)$ , (18)

for the relevant and the interaction Hamiltonians, respectively. The operators of the relevant

system satisfy the canonical commutation relation:

$[a, a^{\uparrow}]=1$ . (19)

2.5 Quantum Brownian Motion

The operators $dB_{t}$ and $dB_{t}^{\uparrow}$ representing the quantum Brownian Inotion are defined by

$dB_{t}=b_{t}dt$ , $dB_{t}^{\dagger}=b_{t}^{1}dt$ , (20)
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where the operators $b_{t}$ and $b_{t}^{1}$ satisfy the canonical commutation operator

$[b_{t}, b_{t}^{\uparrow}]=1$ , (21)

and are defined in the sense introduced within the white noise analysis $[15]_{-}[17]$ . The

quantum Brownian operators satisfy

$\langle dB_{t}\rangle=\langle dB_{t}^{1}\rangle=0$ , (22)

$\langle dB_{tt}\uparrow dB\rangle=\overline{n}dt$, $\langle dB_{t}dB_{t}\dagger\rangle=(\overline{n}+1)dt$. (23)

2.6 Comment

In the derivation, Shibata and Hashitsume never specified the stochastic calculus nor
the representation space (the Fock space) for the stochastic operators $[18]-[20]$ , but per-

formed the same calculation as the one for $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\dot{\mathrm{t}}$ic function which is compatible with the

Stratonovich calculus.

3 Langevin Equations within NETFD

3.1 Introduction

With the help of NETFD, we succeeded to construct a unified hamework of the canonical
operator formalism for quantum stochastic differential equations where the stochastic Li-

ouville equation and the Langevin equation are, respectively, equivalent to a Schr\"odinger

equation and a Heisenberg equation in quantum mechanics.
In the course of the construction, it is found that there are at least two physically

attractive $\mathrm{f}_{0\Gamma \mathrm{m}\mathrm{u}}1\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}_{\}}$ i.e.,

(P) Based on a Non-Hermitian Martingale
Employed is the characteristics of the classical stochastic Liouville equation where

the stochastic distribution function satisfies the conservation of probability within the

phase space of a relevant system.

(N) Based on a Hermitian Martingale
’

Employed is the characteristics of the Schr\"odinger equation where the norm of the

stochastic wave function $preserve\mathit{8}$ itself in time.

The latter is intimately related to the approach investigated by mathematicians in order to

extend the Ito formula to non-commutative stochastic quantities $[21, 22]$ .
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3.2 Stochastic Liouville Equation

Let us start the consideration with the stochastic Liouville equation of the Ito type:

$d|0_{f}(t)\rangle=-i\hat{\mathcal{H}}_{f,t}dt|0_{f}(t)\rangle$ . (24)

The generator $\hat{V}_{f}(t)$ , defined by $|0_{f}(t)\rangle=\hat{V}_{f}(t)|0\rangle$ satisfies

$d\hat{V}_{f}(t)=-i\hat{\mathcal{H}}f,tdt\hat{V}_{f}(t)$ , (25)

with $\hat{V}_{f}(0)=1$ . The hat-Hamiltonian is a tildian operator satisfying

$(i\hat{\mathcal{H}}_{f},tdt)\sim=i\hat{\mathcal{H}}_{f,t}dt$. (26)

Any $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\Gamma A4$

’

of $\mathrm{N}\dot{\mathrm{E}}\mathrm{T}\mathrm{F}\mathrm{D}\mathrm{i}\dot{\mathrm{s}}$ accompanied by its partner (tilde) operator $\tilde{A}$ , which
enables us treat non-equilibrium and dissipative system by the method similar. to the usual
quantum mechanics.

From the knowledge of the stochastic integral, we know that the required form of the
$\mathrm{h}\mathrm{a}\mathrm{t}- \mathrm{H}\mathrm{a}$.miltonian should be

$\hat{\mathcal{H}}_{f,t}dt=\hat{H}dt+d\hat{M}_{t}$ , (27)

where the martingale $d\hat{M}_{t}$ is the term containing the operators representing th..e quantum
Brownian motion $dB_{t},$ $d\tilde{B}_{t}^{\dagger}$ and their tilde conjugates. $\hat{H}$ is given by

$\hat{H}=\hat{H}_{S}+i\hat{\Pi}$ , (28)

with
$\hat{H}_{S}=H_{s-}\tilde{H}s$ , $\hat{\Pi}=\hat{\Pi}_{R}+\hat{\Pi}_{D}$ , (29)

where $\hat{\Pi}_{R}$ and $\hat{\Pi}_{D}$ are, respectively, the relaxational and the diffusive parts of the damping
operator $\hat{\Pi}$ .

Here, it is assumed that, at $t=0$ , the relevant system starts to contact with the
irrelevant system representing the stochastic process included in the martingale $d\hat{M}_{t^{1}}$.

3.3 Specification of the Martingale

Now, we need something which specifies the structure of the martingale. For the case (P),
it is the conservation of probability within the relevant subsystem:

$\langle$ $1|d\hat{M}_{t}--0$ . (30)

1Within the formalism, the random force operators $dB_{t}$ and $dB_{t}^{\dagger}$ are assumed to commute with any
relevant system operator $A$ in the $\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{r}\ddot{\alpha}$ldinger representation: $[A, dB_{t}]=[A, dB_{t}^{\dagger}]=0$ for $t\geq 0$ .
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On the other hand, for the case (N), it is the conservation of norm:

$d\hat{M}_{t}^{\uparrow}=d\hat{M}_{t}$ . (31)

The Hermitian martingale is intimately related to the approach started with the stochastic
Schr\"odinger equation where the norm of the wave function preserves itself in time.

3.4 Fluctuation-Dissipation Theorem of the Second Kind

In order to specify the martingale, we need another condition which gives us the relation
between multiple of the martingale and the damping operator. For (P), it is

$d\hat{M}_{t}d\hat{M}_{t}=-2\hat{\Pi}_{D}dt$ , (32)

whereas, for (N), it is
$d\hat{M}_{t}d\hat{M}_{t}=-2(\wedge\Pi_{R}+\Pi_{D)dt}\wedge$. (33)

This operator relation for each case may be called a generalized fluctuation dissipation
theorem of the second kind, which should be interpreted within the weak relation.

3.5 Quantum Langevin Equations

The dynamical quantity $A(t)$ is defined by

$A(t)=\hat{V}_{f}^{-1}(t)$ A $\hat{V}_{f}(t)$ , (34)

where $\hat{V}_{f}^{-1}(t)$ satisfies
$d\hat{V}_{f}^{-1}(t)=\hat{V}_{f}^{-1}(t)i\hat{\mathcal{H}}^{-_{dt}}f,t$

’ (35)

with
$\hat{\mathcal{H}}_{f,t}^{-}dt=\hat{\mathcal{H}}_{f,t}dt+id\hat{M}_{t}d\hat{M}_{t}$, (36)

which are given, respectively, by

$\hat{\mathcal{H}}_{f,t}^{-}dt=\hat{H}_{S}dt+i(\wedge\Pi_{R}-\Pi_{D)}\wedge dt+d\hat{M}_{t}$ , (37)

for (P), and by
$\hat{\mathcal{H}}_{f,t}^{-}dt=\hat{H}_{S}dt-i(\wedge\Pi_{R}+\Pi_{D)dt}\wedge+d\hat{M}_{t}$ , (38)

for (N).
In NETFD, the Heisenberg equation for $A(t)$ within the Ito calculus is the quantum

Langevin equation in the form

$dA(t)=d\hat{V}_{f}^{-1}(t)$ A $\hat{V}_{f}(t)+\hat{V}_{f}^{-1}(t)$ A $d\hat{V}_{f}(t)+d\hat{V}_{f}^{-1}(t)$ A $d\hat{V}_{f}(t)$

$=i[\hat{\mathcal{H}}_{f}(t)dt, A(t)]-d\hat{M}(t)[d\hat{M}(t), A(t)]$ , (39)
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with
$\hat{\mathcal{H}}_{J}(t)dt=\hat{V}f-1(t)\hat{\mathcal{H}}f,tdt\hat{V}_{f}(t)$ , $d\hat{M}(t)=\hat{V}_{f}^{-1}(t)d\hat{M}_{t}\hat{V}_{f}(t)$ . (40)

Since $A(t)$ is an arbitrary observable operator in the relevant system, (39) can be the Ito’s

formula generalized to quantum systems.

3.6 Langevin Equation for the Bra-Vector

Applying the $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle\langle$ $1|$ to (39) from the left, we obtain the Langevin equation for

the $\mathrm{b}\mathrm{r}\mathrm{a}$-vector $\langle\langle$ $1|A(t)$ in the form

$d\langle\langle 1|A(t)=i\langle\langle 1|[Hs(t), A(t)]dt+\langle\langle 1|A(t)\hat{\Pi}(t)dt-i\langle\langle 1|A(t)d\hat{M}(t)$ . (41)

In the derivation, use had been made of the properties

$\langle$ $1|\tilde{A}^{\uparrow}(t)=\langle 1|A(t)$ , $\langle$ $|d\tilde{B}^{\uparrow}(t)=\langle|dB(t)$ , $\langle\langle$ $1|d\hat{M}(t)=0$ . (42)

Note that (41) has the same form both for (P) and (N).

3.7 Quantum Master Equation

Taking the random average by applying the $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $|$ of the irrelevant sub-system to
the stochastic Liouville equation (24), we can obtain the quantum master equation as

$\frac{\partial}{\partial t}|0(t)\rangle=-i\hat{H}|\mathrm{o}(t)\rangle$ , (43)

with $\hat{H}dt=\langle|\hat{\mathcal{H}}_{f,t}dt|\rangle$ and $|0(t)\rangle=\langle|0_{f}(t)\rangle$ .

3.8 An Example

We will apply the above formula to the model described by (18). We are now confining
ourselves to the case where the stochastic hat-Hamiltonian $\hat{\mathcal{H}}_{t}$ is $\mathrm{b}\mathrm{i}$-linear in $a,$

$a^{\uparrow},$ $dB_{t},$
$dB_{t}^{\uparrow}$

and their tilde conjugates, and is invariant under the phase transformation $aarrow a\mathrm{e}^{i\theta}$ , and
$dB_{t}arrow dB_{t}\mathrm{e}^{i\theta}$ . Then, we have

$\hat{\Pi}_{R}=-\kappa(\alpha^{*}\alpha+\mathrm{t}.\mathrm{C}.)$ , $\hat{\Pi}_{D}=2\kappa[\overline{n}+\mathcal{U}]\alpha\tilde{\alpha}\#*$, (44)

where we introduced a set of canonical stochastic operators

$\alpha=\mu a+\nu\tilde{a}^{\dagger}$ , $\alpha^{*}=a^{\uparrow}-\tilde{a}$, (45)

with $\mu+\nu=1$ , which satisfy the commutation relation $[\alpha, \alpha^{*}]=1$ . The tilde and non-tilde
operators are related with each other by the relation $\langle 1|a^{\uparrow}=\langle 1|\tilde{a}$.
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The martingale operator for the case (P) is given by

$d\hat{M}_{\ell}=i[\alpha^{\_{dW_{t}}}+\mathrm{t}.\mathrm{c}.]$ , (46)

and the one for the case (N) has the form

$d\hat{M}_{t}=i[\alpha^{\#^{\vee}}dW_{t}+\mathrm{t}.\mathrm{c}.]-i[\alpha dW_{t}^{*}+\mathrm{t}.\mathrm{c}.]$ . (47)

Here, the random force operators $dW_{t}$ and $dW_{t}^{\mathrm{a}_{\mathrm{a}}}\mathrm{r}\mathrm{e}$ defined, respectively, by

$dW_{t}=\sqrt{2\kappa}(\mu dB_{t}+\nu d\tilde{B}_{t}^{\uparrow})$ , $dW_{t}^{*}=\sqrt{2\kappa}(dB_{t}^{\uparrow}-d\tilde{B}_{t)}$ . (48)

The latter annihilates the $\mathrm{b}\mathrm{r}\mathrm{a}$-vacuum $\langle$ $|$ of the irrelevant. $.$

$\mathrm{s}$ystem:

$\langle$ $|dW_{t}^{*}=0$ , $\langle$ $|d\tilde{W}_{t}^{*}=0$ . (49)

The quantum Langevin equation for the case (P) is given by

$dA(t)=i[\hat{H}_{S}(t), A(t)]dt$

$+\kappa\{[\alpha^{\#}(t)\alpha(t), A(t)]+[\tilde{\alpha}^{\Psi}(t)\tilde{\alpha}(t), A(t)]\}dt$

$+2\kappa(\overline{n}+\nu)[\tilde{\alpha}^{*}(t), [\alpha^{*}(t), A(t)]]dt$

$-\{[\alpha^{*}(t), A(t)]dW_{t}+[\tilde{\alpha}^{\#}(t), A(t)]d\tilde{W}_{t\}}$ , (50)

and the one for (N) is given by

$dA(t)=i[\hat{H}_{S}(t), A(t)]dt$

$+\kappa\{[\alpha^{*}(t), A(t)]\alpha(t)-\alpha[*\alpha(t), A(t)]$

$+[\tilde{\alpha}^{*}(t), A(t)]\tilde{\alpha}^{*}(t)-\tilde{\alpha}^{*}(t)[\tilde{\alpha}(t), A(t)]\}dt$

$+2\kappa(\overline{n}+\nu)[\tilde{\alpha}^{*}(t), [\alpha^{*}(t), A(t)]]dt$

$-\{[\alpha^{*}(t), A(t)]dW_{t}+[\tilde{\alpha}^{*}(t), A(t)]d\tilde{W}_{t\}}$

$+\{dW_{t}^{*}[\alpha(t), A(t)]+d\tilde{W}_{t}^{*}[\tilde{\alpha}(t), A(t)]\}$ , (51)

with $\hat{H}_{S}(t)=\hat{V}_{f}^{-1}(t)\hat{H}S\hat{V}_{f}(t)$ .
The Langevin equation for the $\mathrm{b}\mathrm{r}\mathrm{a}$-vector state, $\langle\langle$ $1|A(t)$ , reduces to

$d\langle\langle 1|A(t)=i\langle\langle 1|[H_{S}(t), A(t)]dt$

$+\kappa\{\langle\langle 1|[a(\dagger t), A(t)]a(t)+\langle\langle 1|a^{\dagger}(t)[A(t), a(t)]\}dt$

$+2\kappa\overline{n}\langle\langle 1|[a(t), [A(t), a^{\uparrow}(t)]]dt$

$+\langle\langle 1|[A(t), a^{\uparrow}(t)]\sqrt{2\kappa}dB_{t}+\langle\langle 1|[a(t), A(t)]\sqrt{2\kappa}dB_{t}^{\dagger}$ , (52)

both for the cases (P) and (N).
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3.9 Comment

We showed that both of the two formulations within NETFD, i.e., one is based on the den-

sity operator formalism and the other on the wave function formalism, give the same results

in the weak relation (a relation between matrix elements in certain representation space)

but with different equations in the strong relation (a relation between operators), while

each formulation provides us with a consistent and unified system of quantum stochastic

differential equations.

4 Discussion

We showed that the Langevin equation (16) is, in fact, of the Ito type by comparing it with
(52) derived with the help of the unified formulation of the stochastic differential equations
within NETFD. Some investigation of the Shibata-Hashitsume Langevin equation in its

original formulation will be given elsewhere [23]. There, it is checked for several systems
that the Langevin equations are indeed of the Ito type from the view points of physical
consistencies.

The derivation of stochastic differential equations from a microscopic stage is an old
problem in statistical mechanics. It may be necessary to think it over again after knowing
the unified formulations within NETFD.
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