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1 Introduction

If $M_{1}$ and $M_{2}$ are compact differentiable manifolds, a contact diffeomorphism $\phi$ between

their cosphere bundles gives rise to a class $C(\phi)$ of Fredholm operators, called Fourier

integral operators or quantized contact transformations between the Hilbert spaces of $L^{2}$

functions (or, more invariantly, half densities) on $M_{1}$ and $M_{2}$ . The question of whether

there is a unitary operator in this class was raised in [20], where such operators were used

to approximately intertwine the laplacians on riemannian manifolds with symplectically

equivalent geodesic flows. It was shown there that the existence of the unitary operator

was equivalent to the vanishing of the index of operators in $C(\phi)$ , and the problem of

finding a topological formula for the index of the operators in $C(\phi)$ was posed. A con-

jecture for such a formula was made by M. Atiyah in a conversation with the author at

some time in the mid-1970’s. Little progress has been made since then, partly because it
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is hard to produce examples where the index even has a chance of being non-zero.

Recent developments in analysis and symplectic ge..ometry have suggested generaliza-

tions of this index problem to settings where non-zero indices are known to exist, and

technical advances in analysis seem to $\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}.\sim$ brought a solution within reach. This talk

will give an overview of the problem and describe prospects for its solution in the context

of Epstein’s relative index for CR structures [7]. Work of Guillemin [11] using analysis on

Grauert tubes implies that our original index problem can be set in this context.

Much of this paper is speculative in nature. It is in part a report on ongoing discussions

(in person and by electronic mail) with David Borthwick, Ana Cannas da Silva, Charles

Epstein, Victor Guillemin, and Steven Zelditch. I would like to thank all of them for their

contributions to this project. In addition, I have received helpful advice from Michael

Christ, Peter Gilkey, Ian Grojnowski, Janos Kollar, Richard Melrose, Gregory Sankaran,

Bernard Shiffman, and Sidney Webster.

2 Polarizations of contact manifolds

In this section, we will see how the index problem for Fourier integral operators can be

considered as a version of the question “how does the quantum Hilbert space depend

on the polarization?” which is central to the theory of geometric quantization. First of

all, we will recall how the notions of geometric quantization are transplanted to contact

manifolds from their usual symplectic setting. This discussion is very much inspired by

the work of Boutet de Monvel and Guillemin [5].

Let $\mathrm{Y}$ be a contact manifold, $C\subset T\mathrm{Y}$ the contact distribution. The bracket of sections

of $C$ determines a natural nondegenerate 2-form $\Omega$ on $C$ with values in the normal line

bundle $T\mathrm{Y}/C$ . A polarization of $\mathrm{Y}$ is defined to be a complex subbundle $J$ of the

complexification $C_{\mathbb{C}}$ such that:

$\bullet$ (the natural complex extension of) $\Omega$ is zero on $J$ ;

$\bullet$ $\dim J=\frac{1}{2}\dim C_{\mathbb{C}}$ ;

$\bullet[\Gamma(J),\Gamma(J)]\subseteq \mathrm{r}(J)$ .
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One should add a further condition relating $J$ and $\overline{J}$ , analogous to that in the sym-

plectic case, but it will be automatically satisfied in the two extreme cases which will

interest us in this paper.

The “quantum Hilbert space” associated to the polarization $J$ is obtained by taking

the space of smooth functions on $\mathrm{Y}$ which are annihilated by all sections of $J$ , and then

taking its closure $H_{J}$ in $L^{2}(\mathrm{Y})$ (defined with the aid of a chosen volume element on Y).

A fundamental problem in geometric quantization theory is to relate the Hilbert spaces

arising from different polarizations of the same contact manifold. In our setting, these

spaces are infinite-dimensional, but we can define the “difference between the dimensions”

of two such spaces as the index of the orthogonal projection operator (in $L^{2}(\mathrm{Y})$ ) from one

space to the other. We will call this index the relative index of the two polarizations.

We will see that, in many cases, the projection operator is Fredholm, so that the relative

index is finite , and we will propose a topological formula for computing it.

Our basic idea is to associate to each polarization $J_{i}$ of a compact contact manifold
$\mathrm{Y}$ some “filling” of $\mathrm{Y}$ , i.e. some compact manifold $X_{i}$ having $\mathrm{Y}$ as its boundary. The

relative index of two polarizations, defined provisionally as the index of the orthogonal

projection from one quantum Hilbert space to the other, should then be the index of a

Dirac operator on the manifold obtained by gluing the two fillings along Y. This is our

gluing conjecture.

3 Complex polarizations

A polarization $J$ is called a complex polarization if $J$ and $\overline{J}$ are complementary sub-

bundles. Such polarizations are also known as (nondegenerate) CR (or Cauchy-Riemann)

structures.1 These complex polarizations almost complex structures $J$ on the vector bun-

dle $C$ by the rule $J=\{x-\dot{i}Jx|X\in C\}$ . The condition $[\Gamma(J), \Gamma(J)]\subseteq\Gamma(J)$ is the usual

integrability condition for CR structures.

For a complex polarization of CR type, the smooth functions annihilated by the sec-

tions of $J$ are generally known as CR functions. Their closure $H_{J}$ in $L^{2}(Y)$ is essentially

1For the most general CR structures, $C\subset T\mathrm{Y}$ may be any distribution of codimension 1, not neces-

sarily contact.
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independent of the choice of volume element on $Y$ and is called the Hardy space of the

CR structure. The orthogonal projection onto this quantum Hilbert space does depend

on the volume element and is known as the Szego projector.

An important supplementary condition on complex polarizations is strict pseudocon-

vexity, which is definiteness of the $TY/C$-valued Levi form on $C$ defined by $(x, y)\mapsto$

$\Omega(Jx, y)$ . As in the symplectic case, the vanishing of $\Omega$ on $J$ means that this form is

symmetric and $J$-invariant. It is usual to suppose further that the normal bundle $T\mathrm{Y}/C$

has a prescribed orientation, in which case it makes sense to require that the Levi form

be positive definite; in the negative case, we speak of strict pseudoconcavity. Following

standard terminology in the symplectic case, we will call a strictly pseudoconvex complex

polarization a positive polarization.

We note that the space of adapted complex structures on a symplectic vector space,

i.e. those for which the form $(x, y)\mapsto\Omega(Jx, y)$ is positive definite and symmetric, is

contractible. Any two such almost complex structures are related by a transformation

which preserves $\Omega$ (which is therefore unitary); furthermore, this transformation can be

chosen in a “natural” way if one uses the riemannian geometry of the symmetric space

$Sp(2n-2)/U(n-1)$ to select the geodesic connecting the two structures and then lift it

to the symplectic group.

A CR structure is called embeddable if there are enough CR functions to realize $\mathrm{Y}$

as the pseudoconvex boundary of a compact normal (possibly singular) Stein domain $X_{J}$

(which is then uniquely determined by $J$). In dimension at least 5, all strictly pseudocon-

vex CR structures are embeddable [3] , but in dimension 3 this is a real restriction. The

importance of $X_{J}$ is that the smooth CR functions on $\mathrm{Y}$ are precisely the boundary values

of holomorphic functions on $X_{J}$ . We refer to [12] for a general treatment of geometry and

analysis on CR manifolds.

Epstein [7] has shown that, if $J_{1}$ and $J_{2}$ are embeddable CR structures on $Y$ , then the

orthogonal projection from $H_{J_{1}}$ to $H_{J_{2}}$ is a Fredholm operator whose homotopy class is

independent of the choice of smooth measure on $\mathrm{Y}^{2}$. The relative index of $J_{1}$ and $J_{2}$

is thus finite in this situation. Surprisingly, perhaps, the index is not always conserved

2Actually, the cited papers only prove this statement when $\mathrm{Y}$ is 3-dimensional, but the methods should

extend to the general case.
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under deformations of $J_{1}$ and $J_{2}$ .

For a positive polarization, the filling used for computing relative indices will be taken
to be the Stein domain mentioned above. If the Stein domains $X_{J_{1}}$ and $X_{J_{2}}$ determined by

a pair of embeddable CR structures $J_{1}$ and $J_{2}$ on $\mathrm{Y}$ are nonsingular, these manifolds can
be glued together along their common boundary to form a closed manifold $X$ . Although
the complex structures on $X_{J_{1}}$ and $X_{J_{2}}$ do not match along $\mathrm{Y}$ , it is possible, using the

natural isomorphism between the vector bundle complex structures mentioned above, to
endow $X$ with a natural (up to homotopy) stable almost complex structure and hence
with a Dirac operator $D^{+}$ which restricts away from a neighborhood of $\mathrm{Y}$ to the “rolled-up

Dolbeault complexes” (see [9]) on $X_{J_{1}}$ and $X_{J_{2}}$ . Our gluing conjecture then states that
the relative index of $J_{1}$ and $J_{2}$ is equal to index of $D_{+}$ . We will see in Section 7 we will

see how to extend the conjecture to the singular case.

4 Real polarizations

$J$ is a real polarization if $J=\overline{J}$. This means that $J$ is the complexification of

the tangent distribution of a foliation of $\mathrm{Y}$ by legendrian submanifolds. Fibrating real

polarizations are those for which this foliation is a fibration. Cosphere bundles foliated
by their fibres are examples of this type. In fact, Pang [16] proves that these are the only

examples with compact, simply connected leaves. The quantum Hilbert space associated

to $S^{*}M$ with its polarization by fibres is just $L^{2}(M)$ . A filling in this special case is

constructed as follows. Choose a riemannian (or finslerian) metric on $M$ , let $D^{*}M$ be

the unit disc bundle in the cotangent bundle, and $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\Phi$ the cosphere bundle with its

boundary, so that the cotangent disc bundle becomes the filling.

Given a contact transformation $\phi$ between cosphere bundles $S^{*}M_{1}$ and $S^{*}M_{2}$ , we may

use it to identify both bundles with a single contact manifold $Y$ , which then inherits a

pair of real polarizations. The quantum Hilbert spaces for these polarizations are $L^{2}(M_{1})$

and $L^{2}(M_{2})$ , but the operator between then obtained by orthogonal projection in $L^{2}(\mathrm{Y})$

is not in the class of Fourier integral operators $C(\phi)$ associated with $\phi$ but is rather a

Radon integral operator associated with the double fibration $M_{1}arrow Yarrow M_{2}$ . This

operator, defined by pulling back by one fibration followed by integration over the fibres
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of the other, is indeed a Fourier integral operator, but its associated canonical relation

is too big: it contains at least the “unoriented” version of $\phi$ consisting of the graph of $\phi$

together with that of $\xi\mapsto-\phi(-\xi)$ , and is even larger except in “clean” cases.

We should not, therefore, define the relative index of two real polarizations to be the

index of the orthogonal projection between their quantum Hilbert spaces. Instead, we

must use an indirect method, such as that described in the next section.

5 The Guillemin transform

In order to realize Fourier integral operators as intertwining operators between real polar-

izations, we follow an idea of Zelditch and relate them through polarizations of CR type.

The groundwork for this argument has been laid by Guillemin [11] in the following way.

If $M$ is a compact manifold of dimension $n$ , we choose a real analytic structure on $M$

(which is essentially unique). According to Grauert [10], $M$ can be embedded as a totally

real submanifold of a complex $n$-manifold $M_{\mathrm{C}}$ with strictly pseudoconvex boundary $Y$ .

Like any hypersurface in a complex manifold, $\mathrm{Y}$ inherits a CR structure which in this

pseudoconvex case determines a contact structure on $Y$ . The analysis of Guillemin shows

that the Grauert tube $M_{\mathbb{C}}$ can be identified with a cotangent disc bundle $D^{*}M$ for some

riemannian metric on $M$ in such a way that the contact structure $Y$ arising from $M_{\mathrm{C}}$

agrees with the one arising from the identification of $Y$ with $S^{*}M$ .
$\mathrm{Y}$ thus has two polarizations, one positive and one real. We will call these polarizations

affiliated with one another. The corresponding fillings are diffeomorphic, but one carries

the structure of a Stein manifold while the other is symplectic. Guillemin shows that

the projection operator between the quantum Hilbert spaces for these two polarizations

(holomorphic functions on $M_{C}$ in one case, and all functions on $M$ in the other) is an

elliptic Fourier integral operator with complex phase and hence a Fredholm operator.

We will call this operator a Guillemin transform for $M$ and denote its index by $\dot{i}_{M}$ .

Guillemin shows that this index is independent of all the choices made in its construction

and is therefore an invariant of the differentiable manifold $M$ . Recently, Epstein and

Melrose [8] have shown that this index is always zero. In fact, they show that the transform

is an isomorphism for sufficiently small tubes. (This result can also be seen as verifying
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a special case of our gluing conjecture, since the two fillings are topologically equivalent.)

Now for the idea of Zelditch [21]. If $\phi$ is a contact transformation between $S^{*}M_{1}$ and

$S^{*}M_{2}$ , we use it to identify these two cosphere bundles with a common manifold $\mathrm{Y}$ as

before, but now we consider four polarizations on Y. In order, these are:

$\bullet$ $\mathcal{L}_{1}=\mathrm{t}\mathrm{h}\mathrm{e}$ real polarization by fibres over $M_{1}$ ;

$\bullet$ $J_{1}=\mathrm{t}\mathrm{h}\mathrm{e}$ positive polarization as the boundary of $M_{1,\mathbb{C}}$ ;

$\bullet$ $J_{2}=\mathrm{t}\mathrm{h}\mathrm{e}$ positive polarization as the boundary of $M_{2,\mathbb{C}}$ ;

$\bullet$ $\mathcal{L}_{2}=\mathrm{t}\mathrm{h}\mathrm{e}$ real polarization by fibres over $M_{2}$ .

Zelditch observes that the successive composition of the orthogonal projections operators

between the quantum Hilbert spaces of these polarizations $\dot{i}S$ a Fourier integral operator

in the class $C(\phi)$ , so that its relative index can be computed as a relative index of Epstein

type between the two complex polarizations plus the difference of Guillemin indices $i_{M_{1}}$

and $i_{M_{2}}$ . As we noted above, the Guillemin indices are zero. Thus, the index problem for

Fourier integral operators is reduced to the relative index problem for CR structures.

In general, to define the relative index between two polarizations, we replace any which

are real by affiliated positive polarizations.

6 Extension to vector bundles

The standard index theorems for pseudodifferential and Toeplitz operators are most inter-

esting when applied to operators on sections of vector bundles rather than just on scalar

functions. The same should be true for Fourier integral operators and their variants. In

this section, we will propose a setup for an extension of our conjectures to vector bundles,

and we will see that the conjecture reduces to known theorems in the pseudodifferential

case.

Our starting data will now be a vector bundle $F$ over the contact manifold $\mathrm{Y}$ , together

with polarizations $J_{j}$ of $\mathrm{Y}$ corresponding to fillings $X_{j}$ . In order to extend the vector

bundle over the fillings in an appropriate way, we need a condition of compatibility with
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the polarizations. In both the real and complex cases, the condition will be “constancy

of the fibres along the leaves.”

In the real case, where $X_{j}$ is a cotangent disc bundle $D^{*}M_{j}$ and $J_{j}$ is the polarization

by fibres of the cosphere bundle, the fibres of $F$ should be identical over all the points of

each fibre, which means that $\mathrm{Y}$ should be the pullback to $S^{*}M_{j}$ of a vector bundle $V_{j}$ over

$M_{j}$ . In this case, we can also pull back $V_{j}$ to the filling $X_{j}$ to give an extension of $F$ to

a bundle whose fibres are constant along the leaves of the polarization of the symplectic

manifold $X_{j}$ by fibres of the cotangent bundle.

In the complex case, we interpret “constancy along the leaves of a polarization” as

the existence of a flat connection along the corresponding distribution. When $J_{j}$ is a

CR structure on $\mathrm{Y}$ , this leads directly to the condition that the bundle $F$ should be a

holomorphic vector bundle in the sense of Tanaka [18] (called an almost CR vector

bundle by Webster [19] $)$ . In this situation, we will further assume that $F$ extends to a

holomorphic vector bundle $E_{j}$ over the Stein filling $X_{j}$ , and that the CR sections of $F$ are

the boundary values of holomorphic sections of $E_{j^{3}}$. The simplest example of this setup

occurs when $F$ is a trivial bundle, in which case we are simply dealing with $\mathbb{C}^{N}$-valued

functions which are CR on $\mathrm{Y}$ and holomorphic on $X_{j}$ .

Once we have lifted the polarizations $J_{j}$ on $Y$ to the vector bundle $F$ as described

above, we can identify a space of smooth sections which are “parallel in the direction of

the polarization,” and then form their $L^{2}$ closure, using a volume element on $Y$ and a

hermitian structure on $F$ , obtaining a space which we will again call $H_{j}$ . The index of the

orthogonal projection from one space to the other is again well defined in many cases and

could be called the relative index of the two lifted polarizations. (When a polarization is

real, we replace it by an affiliated positive one before computing the index.) As before,

we conjecture that this relative index is equal to the index of a Dirac operator on the

glued manifold $X$ . This time, the operator is a twisted Dirac operator, obtained by

tensoring with the vector bundle over $X$ obtained by gluing the bundles $E_{j}$ by using their

identifications with $F$ over the common boundary Y.

We recover standard index theorems for Toeplitz and pseudodifferential operators by

3It would be interesting to have verifiable hypotheses guaranteeing the existence of such extensions.
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choosing the polarizations $J_{J}$ (and hence the fillings $X_{j}$ ) to be equal to one another, but

by allowing two different lifts of the polarizations to $F$ . For instance, if we are given a

bundle automorphism $\sigma$ of $F$ , we can define one lift to be the pullback of the second by
$\sigma$ . In this case, if $\pi$ denotes the orthogonal projection onto $H$ (which does not depend

on $j$ in this case), the operator which gives the relative index $\pi\sigma\pi$ : $H\mapsto H$ . When $J$ is

positive, this operator is just the Toeplitz operator whose symbol is $\sigma$ , and our conjecture

for the index reduces to the index formula of Boutet de Monvel [4].

When the polarizations are both real, with $X_{j}=D^{*}M_{j},$ $\sigma$ is the symbol of a pseudod-

ifferential operator $P$ between sections of vector bundles $V_{1}$ and $V_{2}$ over $M$ , The index of

our glued twisted Dirac operator is now the Atiyah-Singer topological index of $P$ , but the

operator obtained from $\sigma$ by the projection process described above is not $P$ ; rather, it is

simply the multiplication operator by the bundle map from $V_{1}$ to $V_{2}$ given by integrating
$\sigma$ over the fibres of the cosphere bundle Y. To get the operator $P$ , we must use affiliated

polarizations as described in Section 5 and use the results of [11].

7 Singular fillings

There are several ways to approach the problem of singular fillings. One is to resolve the

singularities and then add a correction term to account for the nontrivial pseudoconvex

(but no longer Stein) filling. We will present here an alternative approach which appears

to be more conceptual in nature. It still uses resolution of singularities, for the moment,

but only to show that a certain index is well defined, not to define it.

As usual, we consider polarized contact manifolds $\mathrm{Y}$ of either of two types-cosphere

bundles and embeddable CR manifolds. In the first case, the filling will be the corre-

sponding disk bundle in a cotangent bundle; in the second, the filling will be the (possibly

singular) Stein domain having $\mathrm{Y}$ as its strictly pseudoconvex boundary.

Let $X_{1}$ and $X_{2}$ be fillings of $\mathrm{Y}$ corresponding to polarizations $J_{1}=\mathrm{a}\mathrm{n}\mathrm{d}J_{2}=$ . We may

glue $X_{1}$ to $X_{2}$ along $Y$ to get a new object $X$ , but the nature of $X$ depends on the nature

of $X_{1}$ and $X_{2}$ . If $X_{1}$ and $X_{2}$ are both either symplectic or are nonsingular Stein varieties,

they can be considered as almost complex manifolds and hence $X$ becomes a stable almost

complex manifold. The index of the corresponding Dirac operator is therefore well defined.
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If either $X_{1}$ and $X_{2}$ is possibly singular, we will resort to the following construction.

According to Theorem 8.1 of [14] (see [6] for related results), each $X_{j}$ can be completed

by adding a nonsingular complex manifold $Q_{j}$ with strictly pseudoconcave boundary $\mathrm{Y}$ to

make a (possibly singular) projective variety $Z_{j^{4}}$. For such a variety, we define the “index

of its Dirac operator”, denoted simply by index$(z_{j})$ to be the Euler characteristic of its

cohomology with values in the sheaf $\mathcal{O}$ of germs of holomorphic functions. This is a good

definition because, if $Z_{j}$ happens to be singular, this Euler characteristic equals the Euler

characteristic for the Dolbeault cohomology on forms of type $(0, q)$ , which is in turn equal

to the index of the Dirac operator given by the rolled-up Dolbeault complex.

If $Q_{1}$ and $Q_{2}$ were isomorphic, it would be reasonable to define the relative index of $X_{1}$

and $X_{2}$ to be the difference of the indices of the $Z_{j}$ . In general, account for the difference

between $Q_{1}$ and $Q_{2}$ in the following way. Glue $Q_{1}$ and $Q_{2}$ along their common boundary
$\mathrm{Y}$ to form a smooth manifold $Q$ . The complex structures on the pieces glue to give a

stable almost complex structure on $\mathrm{Y}$ for which the natural orientation agrees with that

on $Q_{2}$ but is opposite to the orientation of $Q_{1}$ . We now define the topological relative

index of $X_{1}$ and $X_{2}$ to be index$(Z_{2})-\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}(z_{1})-\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}(Q)$ , where the last index is the

index of the Dirac operator on $Q$ associated with its almost complex structure.

Since the “caps” $Q_{1}$ and $Q_{2}$ are not unique, we have to check that our relative index

is well-defined. This can be done $\dot{\mathrm{b}}\mathrm{y}$ an argument which we will not give here. It uses
the cobordism invariance of the index and resolution of singularities. (We hope that the

latter may be replaced by a localization argument for the index of a singular variety.)

Our conjecture is that this expression index$(Z_{2})-\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}(z_{1})-\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}(Q)$ plays the role

of the index of the object $X$ obtained by gluing $X_{1}$ and $X_{2}$ along $\mathrm{Y}$ , and hence is equal

to the relative index of $X_{1}$ and $X_{2}$ . Using Riemann-Roch theory, it is not hard to $\mathrm{v}\mathrm{e}\mathrm{I}‘ \mathrm{i}\mathrm{f}\mathrm{y}$

that the conjecture gives the correct relative index for the pairs of $CR$ structures on a

circle bundle over a Riemann surface of genus 2 as considered in [7].

Remark It would interesting to define the index of $X$ directly. As a geometric object,
$X$ can be thought of as consisting of two ends which are (possibly singular) complex

varieties, joined by a band on which there is a stable almost complex structure. The

4I learned about this result in a talk by G. Mati\v{c} on the paper [15], where I also learned about gluing

complex and symplectic manifolds along contact boundaries!
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Dirac operator of the band agrees on the overlap with the rolled up Dolbeault complex

on the smooth parts of the ends.

It is tempting to try to define the index of the glued object as the Euler characteristic

of an object in a derived category of sheaves on $X$ , obtained by gluing the sheaf $\mathcal{O}$ on

the holomorphic ends to the (very short) complex of sheaves given by the Dirac operator

on the band, using the techniques in [13]. Unfortunately, these sheaves are not quite

quasi-isomorphic on the overlap of the two regions–it is only the alternating sums of

their cohomologies which agree in some sense there. Perhaps suitable holomorphic vector

fields near $\mathrm{Y}$ could be used, in the spirit of [1], to surmount this problem.

8 Holomorphic $\mathrm{v}\mathrm{s}$ . Dirac indices: a proof strategy

Our strategy for proving the gluing conjecture for the relative index of CR structures

is to reduce the problem to related known results about Dirac operators. If $D^{+}$ is a

Dirac operator between sections of Clifford bundles $E^{+}$ and $E^{-}$ over a filling of the

compact manifold $\mathrm{Y}$ , then a famous result of Seeley [17] implies that the orthogonal

projection (the so-called Calderon projector) from $L^{2}(Y)$ to the Cauchy data space

of boundary values of solutions of $D^{+}u=0$ is a pseudodifferential operator of classical

type (i.e. with symbol an asymptotic sum of homogeneous terms) whose principal symbol

is a projection operator on the pullback of $E^{+}$ to $S^{*}Y$ . Given a pair of such operators

with Calderon projectors having the same principal symbols, the orthogonal projection

operator between their Cauchy data spaces is shown to be a Fredholm operator by Boofl-

Bavnbek and Wojciechowski [2], who prove the following “gluing theorem” (originally

conjectured by Bojarski) for the index of this operator, which we call the relative index

of the two Dirac operators. (In general, it depends on the boundary isomorphism as well

as the operators.)

Theorem. Let $D_{1}^{+}$ and $D_{2}^{+}$ be Dirac operators on compact manifolds $X_{1}$ and $X_{2}$

having the common boundary $\mathrm{Y}$ , with isomorphisms over $Y$ between the domain and range

Clifford bundles, such that their Calderon projectors have the same principal symbol with

respect to the domain isomorphism. Then the relative index of $D_{1}^{+}$ and $D_{2}^{+}\dot{i}S$ equal to

the index of a Dirac operator on the glued manifold $X=X_{1} \bigcup_{Y}X_{2}$ obtained by gluing the
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bundles and operators over $X_{1}$ and $X_{2}$ via the isomorphisms over Y.

The Dirac operators to which we wish to apply the theorem above are the Dolbeault-

Dirac operators on the Stein fillings (assumed nonsingular) $X_{1}$ and $X_{2}$ associated with a

pair of positive polarizations on the contact manifold Y. More precisely, we assume that

these fillings are equipped with K\"ahler metrics (for instance those obtained from embed-

dings in some $\mathbb{C}^{N}$ ), and we consider on each the operator $D^{+}=\overline{\partial}+\overline{\partial}^{*}$ : $\Omega^{0_{ev}en},arrow\Omega^{0,odd}$

between the even and odd parts of the Dolbeault resolution of the sheaf of holomorphic

functions. “Rolling up” the Dolbeault complex by replacing its usual $\mathbb{Z}$ grading by a $\mathbb{Z}_{2}$

grading has the result of replacing the rather delicate Dirichlet problem for the $\overline{\partial}$ operator

by a much more robust problem, to which the gluing result above may be applied.

The isomorphism over $\mathrm{Y}$ between the domain and range bundles for $D_{1}^{+}$ and $D_{2}^{+}$ is

obtained from an isomorphism between the restrictions to $Y$ of the complex vector bundles
$TX_{1}$ and $TX_{2}$ . This isomorphism is in turn obtained from the natural isomorphism

between the two induced almost complex structures on the fixed contact distribution $C$ ,

as described in Section 3 above.

The problem is now reduced to the following conjecture, in some sense a relative

version of the result in the compact case that the dimension of the space of holomorphic

sections of a line bundle without higher cohomology is equal to the index of a rolled-up

(twisted) Dolbeault complex.

Conjecture. Let $X_{1}$ and $X_{2}$ be a nonsingular Stein fillings of a contact manifold Y.

Then the relative index of $X_{1}$ and $X_{2}$ defined by the boundary values of their spaces of
holomorphic functions is equal to the relative index of the Dirac operators $D_{1}^{+}$ and $D_{2}^{+}$ .

Some evidence in favor of this conjecture comes from the case where the complex

dimension of $X_{j}$ is 2. In this case, the Cauchy data space for the Dirac operator can be

written as the direct sum (but not an orthogonal one!) of the Cauchy data space for the

holomorphic functions and a subspace isomorphic to that for the harmonic forms of type

$(0,2)$ . The latter space is independent of the CR structure, since the Dirichlet problem

for the laplacian can be solved for any Cauchy data. Thus, in considering the relative

indices for $X_{1}$ and $X_{2}$ , it ought to be possible to “cancel” the contributions coming from

the harmonic forms.
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