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Abstract

We give a comprehensive review of the renormalization group method for global
and asymptotic analysis, putting an emphasis on the relevance to the classical theory
of envelopes and the existence of invariant manifolds of the dynamics under consid-
eration. We clarify that an essential point of the method is to convert the problem
from solving differential equations to obtaining suitable initial (or boundary) condi-
tions. We mention that the notion of envelopes is also useful for constructing global
and asymptotic behavior of wave functions of quantum systems such as the ones
with the quartic potential or double-well $\dot{\mathrm{p}}$otential.

1 Introduction

The renormalization group $(\mathrm{R}\mathrm{G})$ equations have a peculiar power to improve the global
nature of functions obtained in the perturbation theory in quantum field theory [1]: The
RG equations represent the fact that a physical quantity $O(p, \alpha, \mu)$ should not depend on
the renormalization point $\mu$ ,

$\frac{\partial \mathcal{O}(p,\alpha,\mu)}{\partial\mu}.=0$. (1.1)

Such a floating renormalization point was first introduced by Gell-Mann and Low in the
celebrated $\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}[1]$ . We remark that the renormalization point $\mu$ plays a role of the initial
point and the renormalization condition for physical quantities such as coupling constants
at the energy scale $\mu$ may be viewed as setting initial values of these quantities.[2]

Recently, the present author has indicated that the RG equation \‘a la Gell-Mann-Low
can be identified as the envelope $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[3];$ . it was shown that the notion of envelopes is
useful for improving the perturbative expansions appearing in quantum field theory. This
identification was realized through an examination of the RG method of Chen, Goldenfeld
and Oono for global analysis of differential $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}[6]$ ; they applied the RG equation to

numerous problems and found that the RG equation gives slow dynamics of the system
in question. The new point of their method is to utilize secular terms which usually
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appear when perturbation theory is applied to differential equations; this is in contrast
to all previous methods, which are formulated on the principle to avoid the appearance
of secular terms.

Their method was reformulated on the basis of the classical theory of $\mathrm{e}\mathrm{n}\mathrm{v}\mathrm{e}1_{0}\mathrm{P}^{\mathrm{e}\mathrm{s}}[3,4]$ .
It was demonstrated that owing to the very envelope equation, the functions constructed
from the solutions in the perturbation theory certainly satisfies the differential equation in
question uniformly up to the order with which local solutions is constructed. It was also
shown [5] in a most general setting that the RG method gives a reduction of dynamics
and clarified that there is a correspondence between the RG method and the reductive
perturbation $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}[7]$ : Some interesting examples were also worked out in this method,
such as the forced Duffing, the Lotka-Volterra and the Lorenz equations; the first example
showed that the method is applicable to not only automonous but also non-automonous
equations, the second one showed that the method gives phase equations and the last
one showed that center manifolds of the dynamics can be extracted in the method. It is
noteworthy that the notion of functional self-similarity (FSS) extracted as the essence of
the RG in [2] is only applicable to autonomous equations; see [8] for an application of the
notion of FSS for deducing phase equations. The above fact suggests that the notion of
envelopes better represents the underlying mathematics of the powerfulness of the $\mathrm{R}\mathrm{G}$ .
It was recognized also that when the unperturbed equation has neutrally stable solutions,
the RG method works well. It implies that the method is applicable when the dynamical
system under consideration has invariant manifolds and useful to extract the manifolds
and the dynamics on the manifolds. It was shown that global and asymptotic behavior
is obtained even for discrete systems by constructing “envelopes” when the system has
neutrally stable solution of the unperturbed $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}[9]$ .

Subsequently the classical theory of envelopes was applied for getting asymptotic be-
haviors of wave functions in quantum $mechanics[10]$ . This is an optimized perturbation
theory in which the perturbation theory is combined with a variational method. The key
ingredient is to construct an envelope of a set of perturbative wave functions. This leads
to a condition similar to that obtained from the $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{i}_{\mathrm{P}}\dot{1}\mathrm{e}$ of minimal $\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}_{\mathrm{V}\mathrm{i}}\mathrm{t}\mathrm{y}[11]$ . Ap-
plications of the method to quantum anharmonic oscillator and the double well potential
show that uniformly valid wave functions with correct asymptotic behavior are obtained
in the first-order optimized perturbation even for strong couplings.

In this report, we will give only basic ingredients of the RG method based on our
formulation putting an emphasis to the relevance to envelopes; for detailed account of the
method and various applications, please refer to $\mathrm{R}\mathrm{e}\mathrm{f}.’ \mathrm{s}[3,4,5,9,10]$ . In this report, we
also clarify that the RG method is most lucidly formulated by noting that the method
converts the problem from solving differential equations to obtaining suitable initial (or
boundary) conditions as does the usual $\mathrm{R}\mathrm{G}$ . In this report, we shall not discuss on partial
differential equations due to the lack of space. Please refer to [12] as well as [6, 4, 8] for
this subject.
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2A short review of the classical theory of envelopes

We here give a brief review of the theory of envelopes. Although the theory can be
formulated in higher $\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}[4,5]$ , we consider here envelope curves, for simplicity.

Let $\{C_{\mathcal{T}}\}_{\tau}$ be a family of curves parametrized by $\tau$ in the x-y plane; here $C_{\tau}$ is rep-
resented by the equation $F(x, y, \tau)=0$ . We suppose that $\{C_{\tau}\}_{\tau}$ has the envelope $E$ ,
which is represented by the equation $G(x, y)=0$ . The $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{i}_{\mathrm{S}}\mathrm{t}\mathrm{o}\vee\cdot.$

.
obtain $G(x, y)$ from

$F(x, y, \tau)$ .

Now let $E$ and a curve $C_{\tau_{0}}$ have the common tangent line at $(x, y)=(x_{0,y_{0}})$ , i.e.,
$(x_{0}, y\mathrm{o})$ is the point of tangency. Then $x_{0}$ and $y_{0}$ are functions of $\tau_{0};X_{0}=\phi(\tau_{0}),$ $y_{0}=\psi(\tau_{0})$ ,
and of course $G(x_{0}, y0)=0$ . Conversely, for each point $(x_{0}, y_{0})$ on $E$ , there exists a
parameter $\tau_{0}$ . So we can reduce the problem to get $\tau_{0}$ as a function of $(x_{0}, y_{0})$ ; then
$G(x, y)$ is obtained as $F(x, y, \tau(x, y))=c(x, y)^{1}.\mathcal{T}_{0}(x_{0}, y\mathrm{o})$ can be obtained as follows.

Since the tangent line of $E$ at $(x_{0}, y\mathrm{o})$ is perpendicular to the normal direction of
$F(x, y, \tau)=0$ at the same point, one has

$F_{x}(x_{0}, y_{0}, \mathcal{T}_{0})\phi’(\tau_{0)}+F_{y}(X_{0,y_{0},\tau}0)\psi’(\tau_{0})=0$. (2.1)

On the other hand, differentiating $F(x(\tau_{0}), y(\tau 0),$ $\tau 0)=0$ with respect to $\tau_{0}$ , one also has

$F_{x}(x_{0}, y_{0}, \mathcal{T}_{0})\phi/(\tau_{0)}+F_{y}(X_{0,y0}, \mathcal{T}_{0})\psi’(\tau_{0})+F_{\tau_{0}}(x_{0}, y_{0}, \tau_{0})=0$ . (2.2)

Combining the last two equations, we have

$F_{\tau_{0}}(x0, y0, \mathcal{T}_{0})\equiv\frac{\partial F(x_{0,y_{0},)}\tau_{0}}{\partial\tau_{0}}=0$ . (2.3)

This is the basic equation of the theory of envelopes; we call this type of equation envelope
equations and also $\mathrm{R}\mathrm{G}/\mathrm{E}$ equation where RG and $\mathrm{E}$ stand for renormalization group and
envelope, respectively, becasue the RG equation Eq(l.l) has the same form as $\mathrm{E}\mathrm{q}.(2.3)$ .
One can thus eliminate the parameter $\tau_{0}$ to get a relation between $x_{0}$ and $y0$ ,

$G(x, y)=F(x, y, \tau_{0}(x, y))=0$ , (2.4)

with the replacement $(x_{0}, y\mathrm{o})arrow(x, y)$ . $G(x, y)$ is called the discriminant of $F(x, y, t)$ .

Comments are in order here: (i) When the family of curves is given by the function
$y=f(x, \tau)$ , the condition $\mathrm{E}\mathrm{q}.(2.3)$ is reduced to $\partial f/\partial\tau_{0}=0$ ; the envelope is given
by $y=f(x, \tau_{\mathrm{o}(}x))$ . (ii) The equation $G(x, y)=0$ may give not only the envelope $E$

but also a set of singularities of the curves $\{C_{\tau}\}_{\tau}$ . This is because the condition that
$\partial F/\partial x=\partial F/\partial y=0$ is also compatible with Eq. (2.3).

1Since there is a relation $G(x_{0}, y\mathrm{o})=0$ between $x_{0}$ and $y_{0},$ $\tau_{0}$ is actually a function of $x_{0}$ or $y_{0}$ .
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3The RG method; a simplest example

In this section, using a simplest example we show how the RG method works for obtaining
global and asymptotic behavior of solutions of differential equations. We shall present the
method so that the reader will readily see that the notion of envelopes is intrinsically
related to the method. We shall emphasize that an essential point of the method is
tuning the initial condition at an arbitrary time $t_{0}$ perturbatively along with solving the
perturbative equations successively. One will see that the reasoning for various steps in
the procedure and the underlying picture are quite different from the original ones given
in [6]. We believe, however, that the present formulation emphasizing the role of initial
conditions and the relevance to envelopes of perturbative local solutions straightens the
original argument, and is the most comprehensive one.2

Let us take the following simplest example to show our method:

$\frac{d^{2}x}{dt^{2}}+\epsilon\frac{dx}{dt}+x=0$ , (3.1)

where $\epsilon$ is supposed to be small. The solution to $\mathrm{E}\mathrm{q}.(3.1)$ reads

$x(t)= \overline{A}\exp(-\frac{\epsilon}{2}t)\sin(\sqrt{1-\frac{\epsilon^{2}}{4}}t+\overline{\theta})$ , (3.2)

where $\overline{A}$ and $\overline{\theta}$ are constants.

Now, let us obtain the solution around t.he initial time $t=t_{0}$ in a perturbative way,
expanding $x$ as

$x(t,$ $t_{0)}=x_{0}(t, t_{0})+\epsilon x_{1}(t,$ $t_{0)}+\epsilon^{2}x_{2}(t, t_{0})+$ ..., (3.3)

where $x_{n}(t, t_{0})(n=0,1,2\ldots)$ satisfy

$\ddot{x}_{0}+x_{0}=0$ , $\ddot{x}_{n+1}+x_{n+1}=-\dot{X}_{n}$ . (3.4)

The initial condition may be specified by

$x(t_{0,0}t)=W(t_{0})$ . (3.5)

We suppose that the initial value $W(t_{0})$ is always on an exact solution of $\mathrm{E}\mathrm{q}.(3.1)$ for any
$t_{0}$ . We also expand the initial value $W(t_{0})$ ;

$W(t_{0})=W0(t\mathrm{o})+\epsilon W_{1}(t_{0})+\epsilon^{2}W_{2}(t_{0})+$ ..., (3.6)

and the terms $W_{i}(t_{0})$ will be determined so that the perturbative solutions around different
initial times $t_{0}$ have an envelope. Hence the initial value $W(t)$ thus constructed will give
the (approximate but) global solution of the equation.

2The following is even a refinment of the argument given in $[3, 5]$ where the fact that the RG method
is a theory manipulating initial conditions were not fully recognized. .
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Let us perform the above program. The lowest solution may be given by

$x_{0}(t, t_{0})=A(t_{0})\sin(t+\theta(t_{0}))$ , (3.7)

where we have made it explicit that the constants $A$ and $\theta$ may depend on the initial time
$t_{0}$ . The initial value $W(t_{0})$ as a function of $t_{0}$ is specified as

$W_{0}(t_{0})=x_{0}(t0, t_{0)}=A(t_{0})\sin(t_{0}+\theta(t_{0}))$ . (3.8)

We remark that $\mathrm{E}\mathrm{q}.(3.7)$ is a neutrally stable solution; with the perturbation $\epsilon\neq 0$ the
constants $A$ and $\theta$ may move slowly. We shall see that the envelope equation gives the
equations describing the slow motion of $A$ and $\theta$ .

The first order equation now reads $\ddot{x}_{1}+x_{1}$ $=-A\cos(t+\theta)$ , and we choose the
solution in the following form,

$x_{1}(tt_{0}) \}=-\frac{A}{2}\cdot(t-t_{0})\sin(t+\theta)$ , (3.9)

which means that the first order initial value $W_{1}(t_{0})=0$ so that the lowest order value
$W_{0}(t_{0})$ approximates the exact value as closely as possible. Similarly, the second order
solution may be given by

$x_{2}(t)= \frac{A}{8}\{(t-t0)2\sin(t+\theta)-(t-t_{0})\cos(t+\theta)\}$ , (3.10)

thus $W_{2}(t_{0})=0$ again for the present linear equation.

It should be noted that the secular terms have appeared in the higher order terms,
which are absent in the exact solution and invalidates the perturbation theory for $t$ far
from $t_{0}$ . However, with the very existence of the secular terms, we could make $W_{i}(t_{0})$

$(i=1,2)$ vanish and $W(t_{0})=W_{0}(t_{0})$ up to the third order.

Collecting the terms, we have

$x$ ($t,$ to) $=$ A $\sin(t+\theta)-\epsilon\frac{A}{2}(t-t_{0})\sin(t+\theta)$

$+\epsilon^{2_{\frac{A}{8}\{(tt_{0)(t}}}-2\sin+\theta)-(\mathrm{t}-t_{0})\cos(t+\theta)\}$, (3.11)

and more importantly

$W(t_{0})=W0(\mathrm{t}_{0})=A(t_{0})\sin(t_{0}+\theta(t_{0}))$ (3.12)

up to $O(\epsilon^{3})$ . We remark that $W(t_{0})$ describing the solution is parametrized by possibly
slowly moving variable $A(t_{0})$ and $\phi(t_{0})\equiv t_{0}+\theta(t_{0})$ in a definite way.

Now we have a family of curves $\{C_{t_{0}}\}\iota_{0}$ given by functions $\{x(t, t_{0})\}_{t0}$ parametrized
with $t_{0}$ . They are $\mathrm{a}$} $1$ on the exact curve $W(t)$ at $t=t_{0}$ up to $O(\epsilon^{3})$ , but only valid locally
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for $t$ near $t_{0}$ . So it is conceivable that the envelope $E$ of $\{C_{t_{0}}\}_{t}0$ which contacts with
each local solution at $t=t_{0}$ will give a global solution. Thus the envelope function $x_{E}(t)$

coincides with $W(t)$ ;

$x_{E}(t)=x(t, t)=W(t)$ . (3.13)

Our task is actually to determine $A(t_{0})$ and $\theta(t_{0})$ as functions of $t_{0}$ so that the family of
the local solutions has an envelope. According to the classical theory of envelopes given
in the previous $\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}_{0}\mathrm{n}.$ ’ the above program can be achieved by $\mathrm{i}.\mathrm{m}$posing that the envelope
equation

$\frac{dx(t,t_{0})}{dt_{0}}=0$ , (3.14)

gives the solution $t_{0}=t$ . From Eq.’s (3.11) and (3.14), we have

$\frac{dA}{dt_{0}}+\epsilon A=0$ , $\frac{d\theta}{dt_{0}}+\frac{\epsilon^{2}}{8}=0$ , (3.15)

where we have used the fact that $dA/dt$ is $O(\epsilon)$ and neglected the terms of $O(\epsilon^{3})$ . Solving
the equations, we have $\tau$

$A(t_{0})=\overline{A}\mathrm{e}^{-\epsilon t\mathrm{o}/2}$, $\theta(t_{0})=-\frac{\epsilon^{2}}{8}t_{0}+\overline{\theta}$, (3.16)

where $\overline{A}$ and $\overline{\theta}$ are constant numbers. Thus we get

$x_{E}(t)=x(t, t)=W_{0}(t)= \overline{A}\exp(-\frac{\epsilon}{2}i)\sin((1-\frac{\epsilon^{2}}{8})t+\overline{\theta})$ , (3.17)

up to $o(\epsilon^{3})$ . Noting that $\sqrt{1-\epsilon^{2}/4}=1-\epsilon^{2}/8+O(\epsilon^{4})$ , one finds that the resultant
envelope function $x_{E}(t)=W_{0}(t)$ is an approximate but global solution to $\mathrm{E}\mathrm{q}.(3.1)$ ; see
Eq. (3.2).

4 Nonlinear equations

In this section, we treat a couple of examples of systems of ODE’s with nonlinearity to
show how the RG method $\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}\mathrm{S}[5]$ . The examples are the $\mathrm{L}\mathrm{o}\mathrm{t}\mathrm{k}\mathrm{a}- \mathrm{V}\mathrm{o}\mathrm{l}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{a}[13]$ and the
$\mathrm{L}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{Z}[14]$ equation. We shall derive the time dependence of the solution to the Lotka-
Volterra equation explicitly; a phase equation will be derived by our method. The Lorenz
equation is an example with three degrees of freedom, which shows a bifurcation. We
shall give the center manifolds of this equation around the first bifurcation point.
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4.1 Lotka-Volterra equation

The Lotka-Volterra equation $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}\mathrm{s}[13]$ ;

$\dot{x}=ax-\epsilon xy$ , $\dot{y}=-by+\epsilon’xy$ , (4.1)

where the constants $a,$ $b,$ $\epsilon$ and $\epsilon’$ are assumed to be positive. It is. well known that the
$\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{0}.\mathrm{n}\mathrm{h}$.as the conserved quantity, i.e.,

..

$b\ln|x|+a\ln|y|-(\epsilon’x+\epsilon y)=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.$ . (4.2)

The fixed points are given by $(x=0, y=0)$ and $(x=b/\epsilon’, y=a/\epsilon)$ . Shifting and
scaling the variables by

$x=(b+\epsilon\xi)/\epsilon’$ , $y=a/\epsilon+\eta$ , (4.3)

we get the reduced equation given by the system

$( \frac{d}{dt}-L_{0)\mathrm{u}=-\epsilon\xi}\eta$ , (4.4)

where

$\mathrm{u}=$ , $L_{0}=$ . (4.5)

The eigen value equation

$L_{0^{\mathrm{U}=\lambda}0^{\mathrm{U}}}$ (4.6)

has the solution

$\lambda_{0}=\pm i\sqrt{ab}\equiv\pm i\omega$, $\mathrm{U}=$ . (4.7)

Let us try to extract the global behavior of the solution around the fixed point. Our
strategy is the following: We suppose that we are on the exact solution at $t=t_{0}$ where
$t_{0}$ is arbitrary; we denote the initial value by $\mathrm{W}(t_{0})$ . We also suppose that we can apply
perturbation theory for the solution at least in the small neighbo.rhood of $t=t_{0}$ . We
expand the variable in a Taylor series of $\epsilon$ ;

$\mathrm{u}=\mathrm{u}0+\epsilon \mathrm{u}_{1}+\epsilon^{2}\mathrm{u}_{2}+\cdots$ , (4.8)

with $\mathrm{u}_{i}={}^{t}(\xi_{i}, \eta_{i})$ . An essential point of our method is to expand the initial value, too;

$\mathrm{W}(t_{0})=\mathrm{W}_{0}(t_{0)}+\epsilon \mathrm{W}_{1}.(t_{0)}+\epsilon^{2}\mathrm{W}_{2}(t_{0)}+\cdots$ . (4.9)

Our central task is to extract the initial value as a function of $t_{0}$ so that the resulting
local solutions starting from the different initial points at $t=t_{0}$ and , say, $t=t_{0}+\triangle t$
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are continued smoothly. This condition is found to be nothing but the one that the local
solutions have an envelope. In actual calculations, it is also important to use the fact
that the functional form of the initial values can be reduced from the general solution
of the differential equations in a perturbative way; in this procedure, only independent
functions modulo to secular terms are retained.

The lowest term satisfies the equation

$( \frac{d}{d\mathrm{t}}-L_{0)=}\mathrm{u}_{0}\mathrm{o}$, (4.10)

which yields the solution

$\mathrm{u}_{0}(t;t0)=A(\mathrm{t}_{0)\mathrm{e}}i\omega t\mathrm{U}+\mathrm{c}.\mathrm{c}.$ . (4.11)

Notice that $A$ is a complex number, so one may parametrize it as

$A(t_{0})=A(t_{0})/2i\cdot\exp(i\theta(\mathrm{t}_{0))}$ . (4.12)

The solution implies that the initial condition is given by

$\mathrm{u}_{0}(t_{0;t}0)=A(t_{0)}\mathrm{e}^{i\omega t0}\mathrm{U}+\mathrm{c}.\mathrm{c}.$. (4.13)

It means that in the lowest approximation the solution is parametrized by a complex
function $A(t_{0})$ or a pair of real functions, $A(t_{0})$ and $\phi(t_{0})\equiv\omega t_{0}+\theta(t_{0})$ . With a small
perturbation, we expect that $A$ and $\theta$ will move slowly.

Noting that $=\alpha \mathrm{U}+\mathrm{c}.\mathrm{c}.$ , with $\alpha=(1-ib/\omega)/2$ , one finds that the first order
term satisfies the equation

$( \frac{d}{dt}-L_{0})\mathrm{u}_{1}=\frac{\omega}{b}[iA22i\omega t\mathrm{e}(\alpha \mathrm{U}+\mathrm{c}.\mathrm{c}.)+\mathrm{c}.\mathrm{c}.]$, (4.14)

the solution to which may be given by

$\mathrm{u}_{1}=\frac{1}{b}[A^{2}(\alpha \mathrm{U}+\frac{\alpha^{*}}{3}\mathrm{U}^{*})\mathrm{e}+\mathrm{C}.\mathrm{c}.]2i\omega t$ . (4.15)

Thus the initial value $\mathrm{W}_{1}(t_{0)}$ in this order is given $\mathrm{u}_{1}(t_{0},$ $\mathrm{t}_{0)}$ .

Similarly, the second order solution may be given by

$\mathrm{u}_{2}$ $=$ $[ \frac{b-i\omega}{3b^{2}}|A|^{2}A\{\alpha(t-\mathrm{t}_{0}+i\frac{\alpha^{*}}{2\omega})\mathrm{U}+\frac{\alpha^{*}}{2i\omega}\mathrm{U}^{*}\}\mathrm{e}^{i}\omega t$

$+ \frac{b+i\omega}{4b^{2}i\omega}A^{3}(2\alpha \mathrm{U}+\alpha^{*}\mathrm{U}^{*})\mathrm{e}^{3i\omega t}]+\mathrm{c}.\mathrm{c}.$. (4.16)

Here we have a secular term proportional to the unperturbed solution. Since we want
to make the lowest initial value as close as the exact one, we demand that as many as
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possible terms in the higher order vanish at $t=t_{0}$ . Thus adding unperturbative solutions,
we make the secular term (of the upper component) vanishes at $t–t_{0^{3}}$. Thus neglecting
higher order terms, we have $\mathrm{u}(t, t_{0})=\mathrm{u}_{0}+\epsilon \mathrm{u}_{1}+\epsilon^{2}\mathrm{u}_{2}$, and $\mathrm{W}(t_{0})=\mathrm{u}(t_{0}, t_{0})$ . We impose
that the solutions $\mathrm{u}(t, t_{0})$ and $\mathrm{u}(t, t_{0}+\Delta t)$ give the same value at $t$ . By taking a limit
$\Delta tarrow \mathrm{O}$ , we have the envelope equation; .

$\frac{d\mathrm{u}}{dt_{0}}=0$ , (4.17)

with $t_{0}=\mathrm{t}$ . This gives the equation for $A(t)$ as

$\frac{dA}{dt}=-i\epsilon^{2_{\frac{\omega^{2}+b^{2}}{6\omega b^{2}}}}|A|2A$ . (4.18)

In terms of $A(t)$ and $\theta(t)$ , we have

$A(t)=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}.$ , $\theta(t)=-\frac{\epsilon^{2}A^{2}}{24}(1+\frac{b^{2}}{\omega^{2}})\omega t+\overline{\theta}_{0}$ , (4.19)

with $\overline{\theta}_{0}$ being a constant. Owing to the prefactor $i$ in r.h.s. of Eq. (4.18), the absolute
value of the amplitude $A$ becomes independent of $t$ , while the phase $\theta$ has a t-dependence.
The envelope function is given by

$\mathrm{u}_{E}(\mathrm{t})==\mathrm{u}(t, \mathrm{t})=\mathrm{W}(t)$ . (4.20)

In terms of the components, one has

$\xi_{E}$ $=$ A $\sin\ominus(t)-\epsilon\frac{A^{2}}{6\omega}(\sin 2\ominus(t)+\frac{2\omega}{b}\cos 2\ominus(t))$

$- \frac{\epsilon^{2}A^{3}}{32}\frac{3\omega^{2}-b^{2}}{\omega^{2}b^{2}}(\sin 3\ominus(t)-\frac{4\omega b}{3\omega^{2}-b^{2}}.\cos 3(t))$,

$\eta_{E}$ $=$ $- \frac{\omega}{b}[(A-\frac{\epsilon^{2}A^{3}}{24}\frac{b^{2}-\omega^{2}}{b^{2}\omega^{2}}\mathrm{I}\cos(t)-\frac{\epsilon^{2}A^{3}}{12b\omega}\sin\ominus(t)$ (4.21)

$+ \epsilon\frac{A^{2}}{2b}(\sin 2\ominus(t)-\frac{2b}{3\omega}\cos 2(t))-\frac{\epsilon^{2}A^{3}}{8b\omega}(\sin 3\Theta(t)-\frac{3b^{2}-\omega^{2}}{4b^{2}\omega^{2}}\cos 3\ominus(t))]$ ,

where

$\ominus(t)\equiv\tilde{\omega}t+\overline{\theta}_{0}$ , $\tilde{\omega}\equiv\{1-\frac{\epsilon^{2}A^{2}}{24}(1+\frac{b^{2}}{\omega^{2}})\}\omega$ . (4.22)

One sees that the angular frequency is shifted.

We can identify $\mathrm{u}_{E}(t)=(\xi_{E}(t), \eta_{E}(t))=\mathrm{w}(t)$ as an approximate solution to $\mathrm{E}\mathrm{q}.(4.4)$

by construction. We see that $\mathrm{u}_{E}(t)$ is an approximate but uniformly valid solution to the

3Although we can make other terms also vanish at $t=t_{0}[15]$ , the resulting dynamics of $A$ and $\theta$

become more complicated than the present choice. In the theory of reduction of dynamics, one usually
prefers simpler $\mathrm{d}\mathrm{y}\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{i}_{\mathrm{C}\mathrm{s}}[16]$ .
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equation up to $O(\epsilon^{3})$ . We remark that the resultant trajectory is closed in conformity
with the conservation law Eq. (4.2).

“Explicit solutions” of two-pieces of Lotka-Volterra equation were considered by Frame
[17]; however, his main concern was on extracting the period of the solutions in an average
method. we are not aware of any other work than ours which gives an explicit form of
the solution as given here.

4.2 The Lorenz model

The Lorenz $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}[14]$ for the thermal convection is given by

$\dot{\xi}$ $=$ $\sigma(-\xi+\eta)$ ,
$\dot{\eta}=$ $r\xi-\eta-\xi\zeta$ ,
$\dot{\zeta}$ $=\xi\eta-b\zeta$ . (4.23)

The steady states are give by

(A) $(\xi, \eta, \zeta)=(0,0, \mathrm{o})$ , (B) $(\xi, \eta, \zeta)=(\pm\sqrt{b(r-1)}, \pm\sqrt{b(r-1)}, r-1)$ . (4.24)

The linear stability $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{s}\mathrm{i}\mathrm{S}[18]$ shows that the origin is stable for $0<r<1$ but
unstable for $r>1$ , while the latter steady states (B) are stable for $1<r<\sigma(\sigma+b+$

$3)/(\sigma-b-1)\equiv r_{c}$ but unstable for $r>r_{c}$ . In this report, we examine the non-linear
stability around the origin, for $r\sim 1$ and extract a center manifold for the dynamics in
this region.

We put

$r=1+\mu$ and $\mu=\chi\epsilon^{2}$ , $\chi=\mathrm{s}\mathrm{g}\mathrm{n}\mu$ . (4.25)

We expand the quantities as Taylor series of $\epsilon$ :

$\mathrm{u}\equiv=\epsilon \mathrm{u}_{1}+\epsilon^{2}\mathrm{u}_{2}+\epsilon^{3}\mathrm{u}_{3}+\cdots$ , (4.26)

where $\mathrm{u}_{i}={}^{t}(\xi_{i,\eta i}, (_{i})(i=1,2,3, \ldots)$ . We also expand the initial value at $t=t_{0;}$

$\mathrm{u}(t_{0}, t_{0)}=\mathrm{W}(t_{0})=\epsilon \mathrm{W}_{1}+\epsilon^{2}\mathrm{W}_{2}+\epsilon^{3}\mathrm{W}_{3}+\cdots.$ (4.27)

The first order equation reads

$( \frac{d}{dt}-L_{0})\mathrm{u}1=0$ , (4.28)
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where

$L_{0}=$ , (4.29)

the eigenvalues of which are found to be

$\lambda_{1}=0$ , $\lambda_{2}=-\sigma-1$ , $\lambda_{3}=-b$ . (4.30)

The respective eigenvectors are

$\mathrm{U}_{1}=$ , $\mathrm{U}_{2}=$ , $\mathrm{U}_{3}=$ . (4.31)

We are interested in the asymptotic state as $tarrow\infty$ . In this asymptotic region, one
may take only the neutrally stable solution

$\mathrm{u}_{1}(t;t_{0})=A(t_{0})\mathrm{U}_{1}$ , (4.32)

because the other terms proportional to $\mathrm{U}_{2,3}$ will decay out at a sufficiently large time.
Here we have made it explicit that the solution may depend on the initial time $t_{0}$ .
$\mathrm{E}\mathrm{q}.(4.32)$ implies that we have taken the initial condition that

$\mathrm{W}(t_{0})\simeq \mathrm{W}_{1}(t_{0})=A(t_{0})\mathrm{U}_{1}$ . (4.33)

In terms of the components,

$\xi_{1}(t)=A(t_{0})$ , $\eta_{1}(t)=A(t_{0})$ , $\zeta_{1}(t)=0$ . .(4.34)

In another word, the motion of $\mathrm{u}_{1}(t)$ is confined or reduced to the one-dimensional mani-
fold ${}^{t}(A, A, 0)$ , although $A$ is a constant in this approximation. One expects that the small
perturbation with $\epsilon\neq 0$ will give rise to a s..lo,w motion of $A$ as well as a modification of
the slow manifold.

The second order equation reads

$( \frac{d}{dt}-L_{0})\mathrm{u}_{2}==A^{2}\mathrm{U}_{3}$ , (4.35)

which may yield

$\mathrm{u}_{2}(t)=\frac{A^{2}}{b}$U3, (4.36)

or in terms of the components

$\xi_{2}=\eta_{2}=0$ , $\zeta_{2}=\frac{A^{2}}{b}$ . (4.37)
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Here we have retained only functions independent of the ones appearing in the lowest
approximation. Then the third order equation is given by

$( \frac{d}{dt}-L_{0})\mathrm{u}3==\frac{1}{1+\sigma}(\chi A-\frac{1}{b}A^{3})(\sigma \mathrm{U}_{1}-\mathrm{U}_{2})$ , (4.38)

which may yield

$\mathrm{u}_{3}=\frac{1}{1+\sigma}(\chi A-\frac{1}{b}A^{3})\{\sigma(t-t0+\frac{1}{1+\sigma})\mathrm{U}_{1}-\frac{1}{1+\sigma}\mathrm{U}_{2}\}$. (4.39)

Here we have again retained functions which have not appeared before except for the term
with which the secular terms vanishes at $t=t_{0}$ . Of course, one may have other choices
for the independent functions, but it is found that the present “minimal” choice gives the
simplest dynamics for the amplitude $A$ .

Thus collecting all the terms, one has

$\mathrm{u}(t;t_{0})$ $=$ $\epsilon A(t_{0})\mathrm{U}_{1}+\frac{\epsilon^{2}}{b}A(t_{0})2\mathrm{U}_{3}$

$+ \frac{\epsilon^{3}}{1+\sigma}(\chi A(t_{0})-\frac{1}{b}A(t_{0)^{3}})\{\sigma(t-t0+\frac{1}{1+\sigma})\mathrm{U}_{1}-\frac{1}{1+\sigma}\mathrm{U}_{2}\},$ $(4.40)$

up to $O(\epsilon^{4})$ . Accordingly, the initial value reads

$\mathrm{W}(t_{0})=\mathrm{u}(t_{0}, t_{0)} = \epsilon A(t_{0})\mathrm{U}_{1}+\frac{\epsilon^{2}}{b}A(t_{0})2\mathrm{U}_{3}$

$-$

$+ \frac{\epsilon^{3}}{(1+\sigma)^{2}}.(xA(t\mathrm{o})-\frac{1}{b}A(t_{0})^{3})\{\sigma \mathrm{U}1-\mathrm{U}_{2}\}$. (4.41)

Demanding that the solutions at different initial times are continued smoothly, we
have the $\mathrm{R}\mathrm{G}/\mathrm{E}$ equation, which reads

$0$ $=$ $\frac{d\mathrm{u}}{dt_{0}}|_{\iota=t}0$

’

$=$ $\epsilon\frac{dA}{dt}\mathrm{U}_{1}+2\frac{\epsilon^{2}}{b}A\frac{dA}{dt}\mathrm{U}_{3}-\frac{\sigma}{1+\sigma}\epsilon 3(\chi A-\frac{1}{b}A^{3})\mathrm{U}1$ , (4.42)

up to $O(\epsilon^{4})$ . Noting that one may self-consistently assume that $dA/dt=O(\epsilon^{2})$ , we have
the amplitude equation

$\frac{dA}{d\mathrm{t}}=\epsilon^{2}\frac{\sigma}{1+\sigma}(xA(t)-\frac{1}{b}A(t)^{3})$ . (4.43)

With this $A(t)$ , the envelope function is given by the initial value

$\mathrm{u}_{E}(t)$ $=$ $\mathrm{u}(t;t_{0}=t)$ ,
$=$ $\mathrm{W}(t)$ ,

$=$ $\epsilon A(t)\mathrm{U}_{1}+\frac{\epsilon^{2}}{b}A(t)2\mathrm{U}3+\frac{\epsilon^{3}}{(1+\sigma)^{2}}(xA(t)-\frac{1}{b}A(t)3)(\sigma \mathrm{U}1-\mathrm{U}_{2})$ , (4.44)
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or
$-$

$\xi_{E}(t)=\epsilon A(t)$ , $\eta_{E}(t)=\epsilon A(t)+\frac{\epsilon^{3}}{1+\sigma}(xA(\mathrm{t})-\frac{1}{b}A(t)^{3})$ , $\zeta_{E}(t)=\frac{\epsilon^{2}}{b}A(t)2$ . (4.45)

We see that the initial value is obtained as the envelope of the local solutions and becomes
a global solution to the Lorenz model.

A remark is in order here; $\mathrm{E}\mathrm{q}.(4.45)$ shows that the slow manifold which may be
identified with a center $\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{d}[18]$ is given by

$\eta=(1+\epsilon^{2}\frac{\chi}{1+\sigma})\xi-\frac{1}{b(1+\sigma)}\xi^{3}$ , $\zeta=\frac{1}{b}\xi^{2}$ . (4.46)

Notice that the invariant manifold is modified with the perturbation and also the slow
dynamics $\mathrm{E}\mathrm{q}.(4.43)$ on the manifold is obtained by our method. One thus sees that
the RG method is a powerful tool to extract center manifolds in a concrete form. It
is worth mentioning that since the RG method utilizes neutrally stable solutions as the
unperturbed ones, it is rather natural that the RG method can extract center manifolds
when $\mathrm{e}\mathrm{x}\mathrm{i}_{\mathrm{S}}\mathrm{t}[7]$ .

5 The basis of the RG method for systems

In this section, we give an account of our method in a general setting for ordinary equations
as a summary.

Let $\mathrm{X}={}^{t}(X_{1}, X_{2}, \cdots, X_{n})$ and $\mathrm{F}(\mathrm{X}, t;\epsilon)={}^{t}(F_{1}(\mathrm{X}, t;\epsilon),$ $F_{2}(\mathrm{X}, t;\epsilon),$ $\cdots,$
$Fn(\mathrm{X}, t;\epsilon))$ ,

and X satisfy the equation

$\frac{d\mathrm{X}}{dt}=\mathrm{F}(\mathrm{X}, t;\epsilon)$ , (5.1)

with the initial condition $\mathrm{X}(t_{0})=\mathrm{W}$ , where $t_{0}$ is arbitrary. We remark that the initial
value $\mathrm{W}$ may be dependent on $t_{0}$ , i.e., $\mathrm{W}=\mathrm{W}(t_{0})$ . We also write the solution X as
$\mathrm{X}$ ($t;$ to) so that the initial-time dependence is explicit.

Let us try to have the perturbation solution of $\mathrm{E}\mathrm{q}.(5.1)$ around $t=t_{0}$ by expanding

$\mathrm{X}(t;t_{0})=\mathrm{X}_{0}(t;t_{0})+\epsilon \mathrm{X}_{1}(t;t_{0})+\epsilon^{2}\mathrm{X}_{2}(t;t_{0})\cdots$ . (5.2)

We also expand the initial value as
$\mathrm{X}(t_{00}, t)=\mathrm{W}(t0)=\mathrm{w}\mathrm{o}(t_{0})+\epsilon \mathrm{w}1(t_{0}))+\epsilon^{2}\mathrm{W}2(t_{0})+\cdots$ . (5.3)

In fact, $\mathrm{X}_{i}(t_{0}, to)=\mathrm{W}_{i}(t_{0)}$ . We suppose that an approximate solution $\tilde{\mathrm{X}}=\tilde{\mathrm{X}}(t;t_{0})$ to
the equation up to $O(\epsilon^{p})$ is obtained. It implies that the initial value $\mathrm{W}(t_{0})$ at $t=t_{0}$

coincides with an exact solution up to $O(\epsilon^{p})$ . We also have

$, \frac{d\tilde{\mathrm{X}}(\mathrm{t}\cdot t0\tilde{\mathrm{W}}(t_{0)})}{dt},=\mathrm{F}(\tilde{\mathrm{X}}(\mathrm{t};t_{0},\tilde{\mathrm{w}}(\mathrm{t}0)),$$t;\epsilon)+O(\epsilon^{p})$ . (5.4)
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One may say that now we have a family of the orbits given by the functions $\tilde{\mathrm{X}}(t;t_{0},\tilde{\mathrm{W}}(t_{0)})$

with $t_{0}$ parameterizing the orbits. We see that the envelope $\mathrm{E}$ of the family of the orbits
which contacts with each curve at $t=t_{0}$ will give an approximate but global solution of
the equation. Thus the envelope function is nothing but the initial value- as a function of
the initial time

$\mathrm{X}_{E}(t)=\tilde{\mathrm{X}}(t;t,\dot{\mathrm{W}}(t))--\tilde{\mathrm{W}}(t)$ . (5.5)

The construction of $\mathrm{E}$ is performed as follows: We $\mathrm{i}\mathrm{m}\mathrm{p}_{\mathrm{o}\mathrm{S}}\mathrm{e}$ that the $\mathrm{R}\mathrm{G}$

-

$/\mathrm{E}$ equation

$\frac{d\tilde{\mathrm{X}}}{dt_{0}}=0$ (5.6)

gives the solution $t_{0}=t$ , from which the dynamics of the initial value $\mathrm{W}(t)$ is obtained.
$\mathrm{E}\mathrm{q}.(5.6)$ may give equations as many as $n$ which are independent of each other. In the
applications to describe asymptotic behavior of solutions, the equation i.s... usually reduced
to a low-dimensional equation.

In accord with the above relation, one can easily show that‘ $\mathrm{x}_{E}(t)=\tilde{\mathrm{W}}(t)$ satisfies
the original equation uniformly up to $O(\epsilon^{p})$ . In fact, $\forall t_{0}$ , one has

$\frac{d\mathrm{X}_{E}}{dt}|_{t=t_{0}}$ $=$ $. \frac{d\tilde{\mathrm{X}}(t,t_{0},\mathrm{w}(t_{0}))}{dt}|_{t=t_{0}}+’\frac{d\tilde{\mathrm{X}}(t\cdot t_{0},\mathrm{w}(t_{0}))}{dt_{0}}|_{t}=t_{0}$

’

$=$
’

$\frac{d\tilde{\mathrm{X}}(t\cdot t0\mathrm{W}(t_{0}))}{d\mathrm{t}},|_{t=t_{0}}$ ,

$=$ $\mathrm{F}(\mathrm{X}_{E}(\mathrm{t}_{0}), t_{0};\epsilon)+O(\epsilon)p$ , (5.7)

where $\mathrm{E}\mathrm{q}.(5.6)$ has been used in the last equality.

6 Concluding remarks

We have described the perturbative RG method for global and asymptotic analysis. We
have emphasized its relevance to the classical theory of envelopes and that the method
concerns with the initial or boundary values of differential equations. It should be re-
marked that the notion of envelopes is also useful for improvement of perturbation series
in quantum filed $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{y}[3]$ and for obtaining asymptotic behavior of wave functions in
quantum mechanics [10]. .
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