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$0$ Introduction
This note is concerned with an elementary ordinary differential equation with
a small positive paranueter $\epsilon$ :

(1) $\frac{d^{2}y}{dt^{2}}+y+_{\mathrm{C}}\prime y^{3}=0$ .

This equation is called Duffing’s equation. Several textbooks of perturbation
theory treat this equation to illustrate the method of multiple-scale analysis
([BO], [H], [KC], [N], for example). In these textbooks, the leading ternl of
a perturbative solution of (1) is calculated by using the method of multiple-
scale analysis. On the other hand, (1) can be solved by quadrature ([KC],
[L] $)$ : the general solution can be written in terms of a Jacobi’s elliptic func-
tion. The purpose of this article is to clarify the relation between these two
solutions: a perturbative solution and the exact solution.

1 Regular perturbation expansions and an
apparent paradox

In this section, we briefly illustrate why regular perturbation expansions are
not appropriate for global analysis of (1). This section and the first half part
of the next section are due to [BO].
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A naive perturbative solution of (1) with the initial conditions

(2) $y(0)=1$ , $\cdot$ . $y’(0)=0$

is obtained by expanding $y(t)$ as a power series in $\epsilon$ :

(3) $y(t)= \sum^{\infty}\mathit{6}^{k}y_{k}(tk=0)$ .

Substituting this into (1) and equating coefficients of like powers of $\epsilon$ gives
a sequence of linear differential equa,tions:

(4) $y_{0^{+}}^{\prime/}y_{0}=^{\mathrm{o}}$

(5) $y_{1}^{\prime/}+y_{1}=-y_{0}^{3}$

(6) $y_{2}+y_{2}=-JJ23y_{0}y_{1}$

and so on. The solution to (4) which satisfies $y_{0}(0)=1,$ $y_{0}^{;}(0)=0$ is

$y_{0}(t)=\cos t$ .

Now the right-hand side of (5) is known:

$-y_{0}^{3}=-\cos^{3}t$ .

Using the relation $\cos^{3}t=\cos 3t/4+3\cos/4$ , we have the solution of (5)
with the initial conditions $y_{1}(0)=y_{1}’(0)=0$ :

$y_{1}(t)= \frac{1}{32}\cos 3t-\frac{1}{32}\cos t-\frac{3}{8}t\sin t$ .

The last term $t\sin t$ of the right-hand side of $y_{1}$ is called a secular term since
it is not bounded. The right-hand side of (6) is now given and we have the
solution $y_{2}$ of (6) with the initial conditions $y_{2}(0)=y’2(0)=0$ :

$y_{2}(t)= \frac{1}{2^{10}}\cos 5t-\frac{3}{2^{7}}\cos 3t+\frac{23}{2^{10}}\cos t+\frac{t}{2^{8}}(-9\sin 3t+24\sin t)-\frac{9}{2^{7}}t^{2}\cos t$ .

The last two terms are unbounded and we also call them secular terms. In a
similar manner, we can obtain $y_{k}’ \mathrm{s}$ successively.
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Thus we have a perturbative solution.. of (1). in arbitrary order. For ex-
ample, the first-order perturbative solution is

$y(t)= \cos t+\mathrm{c}’(\frac{1}{32}\cos 3t-\frac{1}{32}\cos t-\frac{3}{8}t\sin t)+\mathrm{O}(\epsilon^{2})$ .

The term $0(\epsilon)$ means that for fixed $t$ the error between $y(t)$ and $y\mathrm{o}(t)+\epsilon y1(t)$

is at nuost of order $\epsilon^{2}$ as $\epsilonarrow 0$ . Hence it $\mathrm{n}\dot{\mathrm{u}}\mathrm{g}\mathrm{h}\mathrm{t}$ be not small for values of
$t$ of order $1/\epsilon$ . For such large values of $t$ , the secular terms in $y_{1}$ and in $y_{2}$

suggest that the amplitude of oscillation grows with $t$ .
In spite of these observations, we can show that the solution to (1) with

(2) is bounded for all $t$ . Multiplying (1) by $y’$ converts each ternl in the
differential equation to an exact derivative:

$\frac{d}{dt}[\frac{1}{2}(\frac{dy}{dt}\mathrm{I}^{2}+\frac{1}{2}y^{2}+\frac{1}{4}\circ\prime y^{4}]=0$ .

Thus,

(7) $\frac{1}{2}(\frac{dy}{dt}\mathrm{I}^{2}+\frac{1}{2}y^{2}+\frac{1}{4}\in y^{4}=C$ ,

where $C$ is a constant. By (2), we have $C= \frac{1}{2}+\frac{1}{4}\epsilon$ . Therefore $|y(t)|$ is

bounded for all $t$ by $\sqrt{1+\epsilon/2}$ .
We have arrived at an apparent paradox. We have proved that the exact

solution $y(t)$ is bounded for all $t$ while the first-order or the second-order
perturbative solutions are unbounded. The resolution of this paradox lies in
the sumnlation of the perturbative series (3). The most secular term in $y_{k}(t)$

has the form
$A_{k}t^{k}e^{it}$ $+\overline{A}_{k}tek$-it

with
$A_{k}= \frac{1}{2}\frac{1}{n!}(\frac{3i}{8})^{k}$

The sum of the most secular ternls becomes a cosine function:

$\sum_{k=0}^{\infty}\frac{1}{2}\epsilon^{k}t^{k}[\frac{1}{k!}(\frac{3i}{8})e^{i}kt+\frac{1}{k!}(\frac{-3i}{8})^{k}e-it]=\cos[t(1+\frac{3}{8}\epsilon)]$ .

This expression is bounded for all $t$ . Less secular terms are negligible. See
[BO] for details.
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Thus the paradox has disappeared. But this explanation needs lengthy
calculation and requires an infinite sum. Such a lengthy calculation can be
avoided by using the method of multiple-scale analysis.

2 Multiple-scale analysis of $\mathrm{D}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{g}^{2}\mathrm{s}$ equa-
tion

A shortcut for eliminating the secular terlns to all orders begins by introduc-
ing a new variable $\tau=\epsilon t$ . Multiple-scale analysis seeks solutions of (1) in
the form

$y(t)=Y(t, \mathcal{T})$ ,

where the both variables $t$ and $\tau$ are treated as independent variables. The
$t$-derivative of $\mathrm{Y}(t, \epsilon t)$ is:

$\frac{d}{dt}Y(t, et)=(\frac{\partial 1’\prime}{\partial t}+\hat{\mathrm{c}}\frac{\partial 1^{\nearrow}}{\partial\tau})|_{\tau=\epsilon t}$

Hence if $\mathrm{Y}$ satisfies the partial differential equation

(8) $( \frac{\partial}{\partial t}+\epsilon\frac{\partial}{\partial\tau})2\epsilon Y+Y+Y^{3}=0$ ,

then $y(t)=Y$( $t$ , et) is a solution to (1). Equation (8) is rewritten in the form

(9) $\frac{\partial^{2}Y}{\partial t^{2}}+\mathrm{Y}=-\epsilon(2\frac{\partial^{2}Y}{\partial t\partial\tau}+Y^{3})-\epsilon^{2}\frac{\partial^{2}\mathrm{Y}}{\partial\tau^{2}}$.

We construct a perturbative solution of this partial differential equation in
the following manner. Assume a perturbative expansion of the form

(10) $Y= \sum_{n=0}^{\infty}\epsilon^{n}Y(nt, \tau)$ .

Substituting (10) into (9) and collecting powers of $\epsilon$ gives

(11) $\frac{\partial^{2}Y_{0}}{\partial t^{2}}+Y_{0}=0$ ,
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.( 12) $\frac{\partial^{2}Y_{1}}{\partial t^{2}}+Y_{1}=-2\frac{\partial^{2}Y_{0}}{\partial t\partial\tau}-Y_{0}^{3}$ ,

(13) $\frac{\partial^{2}Y_{k}}{\partial t^{2}}+Y_{k}=-2\frac{\partial^{2}Y_{k-1}}{\partial t\partial\tau}-\sum_{kk_{1}+2+k3=k}Yk_{1}Yk_{2}]\nearrow k_{3^{-}}\frac{\partial^{2}Y_{k-2}}{\partial\tau^{2}}$ $(k\geq 2)$ .

We forget the initial data and the reality of solutions for a while. The most
general solution to (11) is

(14) $\iota_{0=}/^{r}it0)e^{-}a_{1}^{(0)(}e+a-1it$ ,

where $a_{\pm 1}^{(0)}=a_{\pm 1}^{(0)}(\tau)$ are arbitrary functions of $\tau$ . $a_{\pm 1}^{(0)}$ will be $\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{l}\dot{\mathrm{u}}\mathrm{n}\mathrm{e}\mathrm{d}$ by
the condition that secular terms do not appear in the solution to (12). Fronu
(14), the right-hand side of (12) is

$-a_{1}^{(0})^{3}3ie-t[2i \frac{\partial a_{1}^{(0)}}{\partial\tau}+3a_{1}^{(0)}2a_{-1}(0)]e^{it}+[2i\frac{\partial a_{-1}^{(0)}}{\partial\tau}-3a_{1}a_{-1})^{2}(0)(0|$ $e-it-a_{-1}e^{-3}(0)3it$

Therefore, if one of the coefficients of $e^{\pm it}$ on the right-hand side of (12)
is nonzero, then the solution $Y_{1}(t, \tau)$ will be secular (unbounded) in $t$ . To
preclude the appearance of secularity, we require that the coefficients of $e^{\pm it}$

on the right-hand side of (12) to be equal to zero:

(15) $2i \frac{\partial a_{1}^{(0)}}{\partial\tau}+3a_{1}^{(0}a_{-1}=0)^{2}(0)$ ,

(16) $2i \frac{\partial a_{-1}^{(0)}}{\partial\tau}-3a^{(0)}a_{-}=01(0)^{2}1$ .

This system of differential equations for $a_{\pm 1}^{(0)}$ is easily solved and we have

(17) $a_{1}((0)\tau)=\alpha e^{3}\beta i\alpha \mathcal{T}/2$ ,

(18) $a_{-1}((0)\mathcal{T})=\beta e-3i\alpha\beta_{\mathcal{T}}/2$ ,

where $\alpha,$
$\beta$ are arbitrary constants. The right-hand side of (12) becomes

$-\alpha^{3}e3i(3\alpha\beta\tau/2+t)-\beta^{3}e-3i(3\alpha\beta \mathcal{T}/2+t)$ .

Therefore,

(19) $Y_{1}= \frac{1}{8}\alpha e+\alpha\beta+ae+1a33i(3\tau/2t)(1)it(1)-it\frac{1}{8}\beta 3-e3i(3\alpha+\tau/\beta 2+t)-1e$ .
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Here $a_{\pm 1}^{(1)}$ are arbitrary functions in $\tau$ . $a_{\pm 1}^{(1)}$ will be determined by the non-
secularity condition in the next step: the coefficients of $e^{\pm it}$ in the right-hand
side of (13) for $k=2$ are equal to zero. This condition turns out to be a
system of linear inhomogeneous differential equations for $a_{\pm 1}^{(1)}$ and we can find
easily a special solution of this system as follows:

(20) $a_{1}^{(}() \tau)1\frac{5}{16}\alpha\beta=ei23\mathrm{Q}\beta \mathcal{T}/2$ ,

(21) $a_{-1}^{(1)}(_{\mathcal{T})}= \frac{5}{16}\alpha\beta^{z}\epsilon-3i\alpha\beta \mathcal{T}/2$

Thus we have obtained $Y_{1}$ that satisfies (12) and the non-secularity condition
for (13) for $k=2$ .

Suppose that $Y_{0},$ $Y_{1,\ldots,k-1}Y$ are obtained in the form

(22) $Y_{j}=b_{2j1}(j)e^{(}12j+)+\Phi+b_{2j-}(j)e^{(}\Phi 12j-1)+e\cdot\cdot+b_{-2}(j)ej-11-(2j+)\Phi$ ,

where $b_{l}^{(j)}$ $(j=0, \ldots , k-1;l=2j+1,2j-1, \ldots , -2j-1)$ are constants and
$\Phi=i(3\alpha\beta\tau/2+t)$ so that the non-secularity condition of (13) is satisfied.
Then we can solve (13) and get $Y_{k}$ in the $\dot{\mathrm{f}}\mathrm{o}\mathrm{r}\mathrm{m}$

(23) $Y_{k}$ $=$ $b_{2k}^{(k)}+1e(2k+1)\Phi+\cdots+b_{3}^{(k)\Phi}e^{3}+a_{1}^{(k)t}e^{i}+a_{-1}^{(k)t}e^{-i}$

$+b_{-3}^{(k)3\Phi}e+\cdots+b_{-}(k)e2k-1-(2k+1)\Phi$ ,

where $b_{j}^{(k)}$ $(j=\pm 3, \ldots , \pm(2k+1))$ are deterlnined and $a_{\pm 1}^{(k)}$ are arbitrary
functions of $\tau$ . $a_{\pm 1}^{(k)}$ will be determined by the non-secularity condition of
(13) for $k+1$ . This condition can be written down in the form of a system
of linear inhomogeneous differential equations of first order whose inhomo-
geneous terms are given and the homogeneous equations are the sallue as the
equations for $a_{\pm 1}^{(1)}$ . We can choose a special solution of this system of the
form:
(24) $a_{1}((k))=\alpha cei(k)3\alpha \mathcal{T}\beta_{\mathcal{T}}/2$ ,

(25) $a_{-1}^{(k)/2}(\tau)=\beta Ce^{-}(k)3i\alpha\beta \mathcal{T}$ ,

where $c^{(k)}$ is a constant. Thus we have obtained $Y_{k}$ so that the non-secularity
condition of (13) $\mathrm{f}\mathrm{o}1k+1$ is satisfied.

By this procedure, we can calculate $Y_{k}$ term by term as nlany as we like.
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Thus we have constructed a family of perturbative solutions of (1)

(26) $y=y(t, \alpha, \beta)=\sum_{n=0}^{\infty}\mathit{6}^{n}\iota_{n}\nearrow$ ( $t$ , et)

including two arbitrary constants $\alpha,$
$\beta$ .

$\ln$ each step of constructing $Y_{k}’ \mathrm{s}$ , we have chosen special solutions $a_{\pm 1}^{(k)}$

to the inhonlogeneous system of linear differential equations. Hence there is
some ambiguity for $a_{\pm 1}^{(k)}$ in each step. But we can see that such ambiguity is
equivalent to replacing $\alpha,$

$\beta$ by arbitrary power series in $\epsilon$ :

$\alpha=\alpha_{0}+\epsilon\alpha_{1}+\epsilon\alpha 2+2\ldots$ ,

$\beta=\beta_{0+}\epsilon\beta 1+\epsilon\beta 22+\cdots$ .
Bender and Orszag wrote in their book [BO] that not only $\tau$ but infinitely
many scales are needed to construct a perturbative solution of (1) with (2)
in all order (see PROBLEM 11.7 in [BO]). But as we have shown, for-
getting initial conditions permits us to construct the general perturbative
solutions by using double scales $(t, \tau)$ only. If we choose $\alpha,$

$\beta$ so that (2)
$\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}_{\mathrm{S}:}y(0, \alpha, \beta)=1,$ $y’(\mathrm{o}, \alpha, \beta)=0$ , then we have $\alpha=\beta=1/2-7\epsilon/128+\cdots$

an.d hence
$\Phi=i(1+\cdot\frac{3}{8}\epsilon-\cdot.\frac{21}{256}\epsilon 2)+\cdots t$.

The first two terms in the right-hand side of $\Phi$ recovers the frequency shift
that we calculated by using the naive perturvative solution. Thus taking an
infinite sum of the most secular terms in the na.iv.e perturvative solution has
been already built in the leading term $Y_{0}$ .

Remark 1 Since Duffing’s equation (1) is autonomous, we can choose one
free constant as the freedom of translation. In other words,

$y(t, \alpha, \beta)=y(t+c, \gamma,\gamma)$

holds for
$c= \frac{\log\alpha-\log\beta}{i(3\alpha\beta_{\mathrm{C}}^{\wedge}+1)}$ , $\gamma=(\alpha\beta)^{\frac{1}{2}}$ .
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Remark 2 First six $Y_{k}’ \mathrm{s}$ are as follows:

$Y_{0}$ $=\alpha e^{\Phi}+\beta e^{-\Phi}$

$.1_{1}^{\nearrow}$
$=$ $\frac{\alpha^{3}}{8}c^{-}‘+3\Phi\frac{5\alpha^{2}\beta}{16}\epsilon\Phi\frac{5\alpha\beta^{2}}{16}e-\Phi+\frac{\beta^{3}}{8}e^{-}3+\Phi$

.

$Y_{2}$ $=$ $\frac{\alpha^{5}}{64}e^{5\Phi\Phi\Phi\Phi}-\frac{27\alpha^{4}\beta}{128}e^{3}+\frac{11\alpha^{3}\beta^{2}}{512}e+\frac{11\alpha^{2}\beta^{3}}{512}e^{-}$

$- \frac{27\alpha\beta^{4}}{128}e^{-3\Phi}+\frac{\beta^{5}}{64}e^{-5\Phi}$

$Y_{3}$ $=$ $\frac{\alpha^{7}}{512}e-7\Phi\frac{61\alpha^{6}\beta}{1024}e\Phi 5+\frac{1419\alpha^{5}\beta^{2}}{4096}e^{3}\Phi-\Phi+\frac{799\alpha^{4}\beta^{3}}{8192}e$

$- \frac{799\alpha^{3}\beta^{4}}{8192}e^{-\Phi}+\frac{1419\alpha^{2}\beta^{5}}{4096-}e^{-3\Phi}$
61 $\alpha\beta^{6}-5\Phi\beta^{7}$

$-7\Phi$

$-e\overline{1024}$ $\overline{512}e$

$Y_{4}$

.

$=$ $\frac{\alpha^{9}}{4096}e^{9\Phi}-\frac{95\alpha^{8}\beta}{8192}e^{7\Phi}+\frac{5255\alpha^{7}\beta^{2}}{32768}e5\Phi$

$- \frac{33119\alpha\beta^{3}6}{65536}e^{3\Phi}+\frac{61043\alpha^{5}\beta^{4}}{524288}e^{\Phi}$

$+ \frac{61043\alpha^{4}\beta^{5}}{524288}e^{-\Phi-3\Phi}-\frac{33119\alpha\beta^{6}3}{65536}e$

$+ \frac{5255\alpha^{2}\beta^{7}}{32768}e^{-5\Phi}-\frac{95\alpha\beta^{8}}{8192}e^{-7\Phi}+\frac{\beta^{9}}{4096}e^{-9\Phi}$

Y5 $=$ $\frac{\alpha^{11}}{32768}e^{11\Phi}-\frac{129\alpha^{10}\beta}{65536}e9\Phi+\frac{11403\alpha^{9}\beta^{2}}{262144}e^{7}\Phi$

$- \frac{188565\alpha^{8}\beta^{3}}{524288}e^{5\Phi 3\Phi}+\frac{2644083\alpha^{7}\beta^{4}}{4194304}e-\frac{458133\alpha^{6}\beta^{5}}{8388608}e^{\Phi}$

$-^{45813}\underline{3\alpha^{5}\beta 6}\underline{2644083\alpha\beta^{7}}e-\Phi+4e^{-}3\Phi$ 188565 $\alpha^{3}\beta^{8}-5\Phi$

8388608 4194304 $-e\overline{524288}$

$+ \frac{11403\alpha^{2}\beta^{9}}{262144}e^{-7\Phi 9\Phi 11\Phi}-\frac{129\alpha\beta^{10}}{65536}e^{-}+\frac{\beta^{11}}{32768}e^{-}$
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We constructed the general perturbative solution

(27) $y(t, \alpha, \beta)=\sum\epsilon \mathrm{I}_{n}^{\nearrow}n$ ($n=\infty 0t$ , et),

where

$Y_{n}(t, \tau)=2\sum_{k=0}^{n+1}b(n)e2n+1-2kk(2n+1-2)\Phi$ , $\Phi=i(\frac{3}{2}\alpha\beta\tau+t)$ .

At least formally, we may change the order of summation in (27) alld write

(28) $y(t, \alpha,\beta)=\sum_{\infty n=}c_{2n}\infty-+1ei(\frac{3}{2}\alpha\beta\epsilon+1)(2n+1)t$,

where
(29) $c_{2n+1}= \sum^{\infty}b^{(}n+k1n\mathrm{c}^{n+}2+\prime k=0)k$

Proposition 1 If $\epsilon|\alpha\beta|<1$ , then (29) converges for every $n$ and

$\varlimsup|_{C_{2n+1}}|^{\frac{1}{2n+1}}<1$

holds. Hence (28) makes sense as a Fourier series of a $pe\dot{n}odi_{C}$ analytic
function on the real line with a period $4\pi/(3\alpha\beta\epsilon+2)$ .

3 Exact solution of $\mathrm{D}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{g}^{2}\mathrm{s}$ equation and
its Fourier expansion

In this section, we will see what really is the analytic function obtained in
Proposition 1. To see this, we first solve (1) with initial conditions

(30) $y(0)=a$ , $y’(0)=0$

by quadrature (cf. [KC], [L]). By (7) and (30), we have

(31) $\frac{1}{2}(\frac{dy}{dt}\mathrm{I}^{2}+\frac{1}{2}y+\frac{1}{4}2=\hat{\mathrm{c}}y^{4}c$ ,
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wher.$\mathrm{e}$

$C= \frac{a^{2}}{4}(2+\epsilon a^{2})$ .

Hence we have

(32) $( \frac{dy}{dt})^{2}=(a^{2}-y)(1+\frac{1}{2}\hat{\mathrm{C}}a^{2}+\frac{1}{2}ey\mathrm{I}22$

and integrating this to obtain $t$ , we find

(33) $t$ $=$ $\sqrt{\frac{2}{\epsilon}}\int_{y}^{a}\frac{dy}{\sqrt{(a^{2}-y)2(2/\circ+\prime a2+y)2}}$

$=$ $\frac{1}{\sqrt{1+\epsilon a^{2}}}\mathrm{c}\mathrm{n}^{-1}(\frac{y}{a}$ $\sqrt{\frac{\epsilon a^{2}}{2+2\epsilon a^{2}}})$ .

Here cn is a Jacobi’s elliptic function. Therefore we have the solution of (1)
with (30):

(34) $y=a$ cn $(\sqrt{1+\epsilon a^{2}}t,$ $k)$ , $k=\sqrt{\frac{\epsilon a^{2}}{2+2ea^{2}}}$.

Taking the freedom of translation into account, we have the exact general
solution to (1):

(35) $y=a$ cn $(\sqrt{1+\epsilon a^{2}}(t+b),$ $\sqrt{\frac{\epsilon a^{2}}{2+2\epsilon a^{2}}})$ ,

where $a$ and $b$ are arbitrary constants. If we take the modulus of the elliptic
function to be one of the constants, we may write the general solution in the
form :

(36) $y=k\sqrt{\frac{2}{\epsilon(1-2k2)}}$ cn $( \frac{t+b}{\sqrt{1-2k^{2}}},$ $k)$ ,

where $b$ and $k$ are arbitrary constants. We consider real solutions and $b$ and
$k$ are taken to be real and $k$ should satisfy $|k|<1/\sqrt{2}$. Real period of the
general solution (36) is given by $T=4\sqrt{1-2k^{2}}K$ , where $K$ is the complete
elliptic integral of the first kind:
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The general solution (36) is a periodic function on the real line. Hence it has
a Fourier expansion which is given as follows in the case $b=0([\mathrm{L}])$ :

(37) $y= \frac{\pi}{I\iota^{\nearrow}}\sqrt{\frac{2}{\epsilon(1-2k^{2})}}\sum_{n=0}^{\infty}\frac{q^{n+\frac{1}{2}}}{1+q^{2n+1}}2\cos((2n+1)\frac{\pi t}{2I\mathrm{f}\sqrt{1-2k^{2}}})$ ,

where $q=e^{-\pi K’/\backslash },$$I^{\nearrow\prime}I’\iota=K(\sqrt{1-k^{2}})$ .
By the construction of the general solution by quadrature, fixing a real

period specifies an even solution to the Duffing equation uniquely up to
signature. Thus we have arrived at the following

Theorem 2 Let $y(t, \alpha, \beta)$ denote the general perturbative solution constructed
in Section 2. Let $\epsilon,$

$\alpha$ and $k$ satisfy $\epsilon|\alpha|^{2}<1,$ $\alpha k>0$ and

$\frac{3}{2}\alpha^{2}\epsilon+1=\frac{\pi}{2I\iota’\sqrt{1-2k^{\prime 2}}}$.

Then
$y(t, \alpha, \alpha)=k\sqrt{\frac{2}{\circ(\prime 1-2k2)}}$cn $( \frac{t}{\sqrt{1-2k^{2}}},$ $k)$

holds. Hence the coefficient $c_{2n+1}$ of $e^{i(3\alpha^{2_{\mathrm{p}}}}/2+1$ )( $2n+1\rangle t$ in $y(t, \alpha, \alpha)$ is written
in terms of $k$ :

$c_{2n+1}= \frac{\pi}{I\mathrm{i}’}\sqrt{\frac{2}{\epsilon(1-2k^{2})}}\frac{q^{n+\frac{1}{2}}}{1+q^{2n+1}}$ $(n\in \mathrm{Z})$ .

4 Concluding remarks
For Duffing’s equation, the perturbative solutions constructed by multiple-
scale method coincide with the Fourier expansion of the solutions obtained
by quadrature. The method of multiple-scales can be applied to construction
of formal solutions of Painlev\’e equations ([A1], [A2], [AKT], [JK]). But in
this case, the meaning of convergence is not clear. Costin [C] proved the
convergence in the case where one of the two free parameters is equal to
zero. (As a matter of fact, he treats more general equations.) We hope that
our discussion gives some insight into the convergence $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{u}$ of formal
solutions to Painlev\’e equations.
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