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Abstract

The notion of GL,-Au-terms is introduced, in terms of Parigot’s Au-terms with
proper restrictions, as proof terms of classical substructural logics without contrac-
tion rules. GL,,-Au-terms are obtained as a natural extension of BC K-A-terms. The
main theorem says that any pure G L,,-Ap-term is strongly normalizable. We observe .
that some GL,-\u-terms are not stratified, namely, a certain GL,-Ap-term is not
well-typed. There exist some variants of Au-calculus, for instance, Parigot[Pari93-1],
Ong[Ong96] and Fujita[Fuji95-1]. The stratification property of pure G Ly,-Ap-terms
is lost for any formulation of them. However, our strong normalization proof of pure
G L-Ap-terms is available for all of them.

1 Introduction

The Au-calculus is originally introduced by M.Parigot[Pari92] for giving a computational
meaning to classical proofs via the Curry-Howard isomorphism [How80]. In terms of Au-
calculus with proper restrictions, we introduce a notion of GL,-Au-terms as a proof of
classical substructural logics without contraction rules. In other words, well-typed GL,,-
Ap-terms denote proofs of classical substructural logics without contraction rules, and vice
versa. The notion of GL,-Au-terms is obtained by a natural extension of BC K-A-terms.

One can prove by a simple induction on the length of terms that all BC K-\-terms
are stratified and strongly normalizable. However, in the presence of u-reductions, the
length of terms may not decrease under p-reductions, for instance, (po.az)Nopa.a(zN).
Moreover, the application of y-reductions can make the number of redexes increase, for
example, (po.a(pB.M))Ny N> (po.of(pfB.M)Ny))Na. ’

A strong normalization property is usually proved by using the reducibility candidate,
which is defined by induction on the structure of types. There are some variants of Ap-
calculus, for instance, Parigot[Pari93-1], Ong[Ong96], Fujita[Fuji95-1]. We observe that
in all the formulations of them a certain GL,-\u-term is not stratified, namely, some term
does not have a type. However, in this paper we prove that every pure GL,-\u-term is
strongly normalizable in the three formulations.



2 GLy-Ap-Terms for Proofs of Classical Substruc-
tural Logics without Contractions

From the view point that the right structural rules in classical logics can be simulated by
the p-operator in the Ap-calculus, we adopt the Au-calculus. However, minor modifica-
tions of the system and proper restrictions on proof terms are used in this paper. In order
to manage multiple-consequence, the concept of names was introduced by Parigot, for
which p-variables (greek letters) were used. Here, giving names is dealt with as a special
form of application, which might make no distinction between A-variables and p-variables.
This kind of treatment also appears in Aa-calculus [RS94]. However, in classical systems
every occurrence of the name a is to be moved to the left side position by the substitution
[ := Ak.ak]. Hence, we can harmlessly make the restriction that names take only the left
side position of applications. A second modification is that in appearance, inference rules
have one consequence, as in NJ. This avoids the possibility that closed terms in our usual
sense might contain free u-variables which are names of L. Quite similar modifications
also appear in [Ong96].
The syntax of the A\u-term M is defined by A-variables z and p-variables a:
M: =z |MM| .M |aM | pa.M .
The term of the form aM is called a named term whose name is a. The set of \-
free variables and A-bound variables in M are usually defined, and respectively denoted
by AFV(M) and ABV(M). The set of u-free variables and p-bound variables in M
are also naturally defined, and are denoted by uFV (M) and uBV (M), respectively. If
AFV (M) = ¢, then we call M A-closed. If uFV (M) = ¢, then we call M p-closed. When
M is A-closed and p-closed, we call M closed.
We consider the following reduction rules. We implicitly use a-conversion.
p-reduction rules: contract (Az.M)M; to M|z := M;].
p-reduction rules (structural reduction rules): contract (ua.M)M; to (ua.M)[a < M
where
zla < M| =
(Az.M)la < Mi] = lz.Ma < M];
(MM,)[CV <= Ml] = M[CU <= Ml]M'[Oz <= Ml];
(uB.M)[a <= My] = pp.Mla < My
(aM)[a < M) = o(M[a < M|M;);
(BM)[a = My] = pM[a < M) if 8 # a.
The one step reduction relation > is inductively defined as follows:

(Ae.M)No>Mz:=N]  (pa.M)N > pa.Mla < N|

Mpv>N Mv> N
Az.M v Ax.N po. M > pa.N

Mo N Mv> N Mo N
LMvs LN aMb>aN MRv>NR

We have two kinds of types, types indexed with \-variables and negated types indexed
with p-variables. In the following, I, called a context, is a set of indexed types with \-
variables and —A is a set of negation types indexed with p-variables where distinct types
never have the same index. The set of type assignment rules (T'A,,) is defined as follows



together with the rule that infers I',-AF 2 : A from z: A € I

F,.’L‘ZA],—IA FM: Ag Fl,—lAl F M1 2A1 - A2 F2,_|A2 F M2 . A1 (_) E)
F, -AF Az.M : Al — A2 F],Fg,ﬁAl,ﬂAQ - M]Mg : A2

(= 1)

T,-A,a:~AFM: L a:mA€E-A T,-AFM:A
T,-AFpuaM:A L-AkFaM: L

‘The first two rules are called logical rules and the latter two are called naming rules.
When there is a TA u deduction of a statement I', A+ M : A, we say M is stratified.
Let I be {z1: 41, +*,Tm: An} and -A be {a;: -4y, -,a,: A}, then a set of A-
variables ASubjects(T) is defined by {z1,---,zm} and a set of y-variables pSubjects(-A)
is {@1,+ -+, a,}. Foraterm M and a context I, a restricted context I' | \FV (M) is defined
‘such that
{YTAFV(M) = { };
({z: A} UD)TAFV(M) = {2: A} U(TTAFV(M)) if z € AFV(M);
({z: A} UD)TAFV(M) =T1AFV(M) if z g AFV(M).
For a term M and -A, =ATuFV (M) is similarly defined.
Putting proper restrictions on Au-terms makes it possible to define the notions of
GL,-\p-terms which would correspond to proofs of the respective classical substructural
logics. We give the definitions below, which is a natural extension of BC K-)\-terms.

(LE)

(L1)

Definition 1 (GL,-Au-Terms)

1. Every A-variable is a G L,,-Au-term. ‘

2. If My and M, are GL,-Au-terms where AFV (M;) N AFV (M) = ¢ and pFV(M;) N
pFV(Ms) = ¢, then so is M; M. '

3. If M and N are GL,-Au-terms, respectively, then so are Ax.M and pa.N, respectively.
4. If M is a GL,-Au-term where a ¢ uFV (M), then so is aM.

~Clause 2 forbids the left and right contraction rules on applications, and right con-

tractions are not allowed by clause 4 in the other cases. By the definition, each A-free
variable and p-free variable in a GL,-Au-term, respectively, appear at most once. Ev-
ery A-abstraction and p-abstraction in a GL,-Au-term bind at most one A-variable and
p-variable, respectively.

We show a closed example with a type, Ay.pa.y(Az.uf.ax) : -(A — B) — A.

Similarly to the definition of GL,-Au-terms, GL-Au-terms and GL.-Ap-terms can be
given. Well-typed GL-Au-terms and GL.Au-terms, respectively are proofs of classical
substructural logics without weakening and contractions; and without weakening, respec-
tively (see [Fuji95-2][Fuji]). When no conditions are applied on terms, the terms are
exactly Au-terms.

3 Well-Typed GL,-A\u-Terms Are Proofs of GL,

Following [Ono90][Ono93], we define GL by the implicational and negational fragment
of Gentzen’s LK without the contraction rules or the weakening rules. It is shown that
well-typed GL,-Au-terms correspond to proofs of GL,,. In other words, following the
notion of formulae-as-types [How80], types inhabited by GL,-Au-terms are provable in
GL,,. We define GL,, as the following sequent calculus system, namely, GL together with
the right and left weakening rules.



A=A

P:A,A,( - AF:A( o)
—AT=>A' 7/ T=A -4

Iy =>A1,A1 AQ,F2=>A2 (D#) AI,F=>A,A2
A DAQ,Fl,F2:>A1,A2 F=>A,A1 D A,

(=2)

FliAl,A A,FQ#AQ( t)
T,Te = A, Ay cu

I, B, A ngA( :>) ' A{,B,A, A, (:> 8)
',A,B,T'y=A I'=> A,A B, Ay

I'=s A '=> A
ATl= A 'sAA

It is known that the cut ehmlnatlon theorem (Grisin, Wronski-Krzystek) holds for
GL,, [Ono90).

For a sequence I', I is defined as a set of types with distinct A-variables. For a sequence
A, -A is a set of negated types with distinct u-variables. They are inductively defined
as follows: B ~ 5
ail={}; (AT)={z:A}UT, and -~ail={}; —=(A4,A)={a:-~A}U-A.
Now we prove that GL,, proofs are represented as GL,-Au-terms.

(w =) (= w)

Theorem 1 (GL, Proofs as GL,-Au-Terms) o
IfT" = Ais provablein GL,, then there exists a GL,,-Au-term M such that I', ~A - M : L
is derivable in T'A,,.

Proof. We prove this by induction on the number of sequents contained in the deriva-
tion of GL,. We show some of the cases in a step-by-step case analysis on the last
rule. ’

Case 1-1. (D=):

By the induction hypotheses, for GL,-Au-terms M; and Ms, we have T'y, ~Aq,a : =4, F
M; : 1, and we have 1 : Ag,I‘z,—:Az F M, : L. Moreover, we can use A-variables
and p- varlables such that AFV(M;) N AFV(Ms) = ¢ and pFV(M;) N uFV(Ms) = ¢
Using the first deduction, we obtain a GL,-Au-term such that z: A4, — Az,f‘l,—lél H
zpa. My : Ap for a fresh variable z. Then we have 2z : A; — Ag,_f‘l,fg,—-ﬁl,ﬁAz [
(Az.Ms)(2pa.My) : L. Since it is satisfied that AFV (zua.M;) N AFV (Az.Ms) = ¢ and
pFV (zpoa. M) 0 pFV(Ax.Ms) = ¢, the term is also a GL,-Au-term.

Case 1-2. (=D): '

By the induction hypothesis, z : Aj, I',=A,a:-A; - M : L1 for some GL,-A\u-term M.
Then using a new variable 3, we obtain T, ~A, #:=(A4; — Ay) F S(Az.pa. M) : 1 where
the term is also a GL,,-Au-term.

Case 2. (cut): o
By the induction hypotheses, for some GL,-\u-terms M; and Ms, we have I'1, 7Aq, a
—=AF M;: 1, and we have z : A,_f‘z,—lAQ F M, : L Here, we can use A-variables and
p-variables such that AFV(M;) N AFV(M,) = ¢ and pFV (Mi) N uFV (M) = ¢.



By the two deductions, Ty, Ty, Ay, =Ay F (Ax.Ms)(pa.M;) - L is obtained. Since
AFV(Az.My) N \FV(ua.M;) = ¢, and uFV(Az.Mz) N pFV (ua.M;) = ¢, the term is a
GL,- pu-term.

Case 3-1. (w =):
By the induction hypothesis, for a GL,-Au-term M, we have T, A+ M : L. Here,
Azy.x : L — —Ais a GL,-Ap-term. Then for a fresh variable z, we obtain z: A, T,-AF
(Azy.x)Mz : L where the term is a GL,-Ap-term.

Case 3-2. (= w):
By the induction hypothesis, for a GL,-Ap-term M, there is [,-A+ M: L. Then we
have I', =A, a:=A + auB.M : L for a fresh p- varxables « and (3. Since a & uFV(uf.M),
the term is a GL,-Au-term. O

For a term M and a context I', a sequence of formulae I' 1* AFV (M) is defined as
follows:
{ }1*AFV(M) = nil; .
({z: A} UD)*AFV(M) = A, TT*AFV(M) if z € AFV(M);
({z:A} UT)T*AFV(M) = TT*AFV(M) if z & AFV(M).
For a term M and —A, a sequence of formulae (=A) T* uF V(M) is similarly defined.
That is, I T* AFV(M ) and (-A) 1" uFV(M) are the sequences obtained by omitting
\-variables and p-variables from the restricted T' T AFV (M) and -A 1 uFV (M), respec-
tively. For the inverse direction of the above theorem, we prove that GL,-Ap-terms are
represented as GL,, proofs.

Theorem 2 (GL,-A\u-Terms as GL,, Proofs) Let M be a GL,-Ap-term.
If I,-A F M : A is derivable in TA,,, then T' T* AFV(M) = (=A) 1* uFV(M),A is
provable in GL,,. ‘

Proof. By induction on the number of types contained in the T'A,, deductions. We
show some of the cases in a step-by-step case analysis on the last rule.

Case 1: (— I),ie., M is Az.M;.

Case 1-1. £ € AFV(M,):
By the induction hypothesis, we have I' 1* AFV (M), Ay = (~A) 1* uFV (M), A2 under
exchange rules in GL,, from I,z : A;,~A + M; : Ay for a GL,-Apu-term M;. Hence,
(=D) and exchange rules give ' 1* AFV(M;) = A; D A, (-A) 1* pFV(M;) in GL,
‘where T T*AFV(M;) = T T*AFV(Az.M;) and (=A) T* uFV (M) = (2A) 1* uFV (Az.My)
under exchange rules.

Case 1-2. x € AFV(My):
By the induction hypothesis, we have T 1* AFV(M;) = A, (-A) 1" uFV (M) in GL,.
Hence, by (w =) and (=D) we have D T*AFV(Az. M) = A; D Ag, (mA) T*uFV (Az.M)
in GL,.

Case 2: (= E), i.e., M is MM, and AFV(M,) N AFV(M,) = ¢ and puFV(M;) N
MFV(MQ) ¢:
By the induction hypotheses, there are proofs of T'y 1* AFV(M;) = A1 D As, (—1A1) ™
pFV(My) and Ty T* AFV(Ms) = Ay, (=A2) 1* uFV(M,) in GL,. By (D=) and the
second sequent, we have A; O Ay, T's 1* AFV(Ms) = Ay, (mAg) T* uFV(M,) and
hence Ty 1* AFV(M;),Ta 1% AFV(Ma) = As, (nA1) 1% pFV (M), (=Ag) 1% uFV (M)
by (cut). Here Ty 1% AFV(My), Ty 1% AFV(M,) = (Ty,Ty) T* AFV(M; My) and (=A;) 17
pEV (M), (=A) 1" uFV (Ms) = (nAy, 7 A2) T* uF'V (M, My) under exchange rules.



Case 3: (LI), ie., M is aM, and o ¢ uFV(M,):
By o ¢ uFV (M), (-A) 1* uFV(M;) contains no A whose index is a. The induction
hypothesis is, therefore, the required result.

Case 4: (LE), i.e., M is po.M;.
Case 4-1. a € pFV(M,):
By o € uFV (M), the induction hypothesis is the result.
Case 4-2. a € pFV(M,):
Since a ¢ pFV(M,), (-A) t* uFV(M;) contains no A whose index was a. Hence,
the application of the right weakening rules leads to I' 1* AFV(pa.M;) = (=4) 1T
pFV (pa.M,), Ain GL,, from the induction hypothesis ' 1* AFV (M;) = (-A) T pFV(M;). O

From Theorems 1 and 2, we can identify stratified GL,-Au-terms as GL,, proofs.
Moreover, with the following theorem [Ono90], the set of types inhabited by closed GL,-
Ap-terms corresponds to the set of theorems of FL., + -—A D A with respect to the
implicational fragment with the multiplicative constant 0.

Theorem 3 [Ono90] Let FL, be Full Lambek Calculus with exchange rules, i.e., the
intuitionistic fragment of GL. Then GL,, = F L., + -—A D A.

Let BCK be the Hilbert-type system (axioms-based logic) consisting of modus ponens
and substitution rules together with axioms (B): (B D C) D (A D> B) D A D C; and
(C):(ADBD>C)D>BD>ADC and (K): AD B D A. Since the sequent system F L,
contains the right weakening rules, FL,,, corresponds to BCK with 0 O A. Here, BCK
with =—A D A can derive 0 D A! (see also [Bunder93]). Then the statement of Corollary
1 follows. ‘

Corollary 1
Fra,, M : X for some closed GL,-Au-term M iff X is a theorem in BCK + -—ADA.

It is known that every linear A-term (BCK-)A-term) is stratified by Theorem 4.1 in
[Hind89]. However, the corresponding classical terms no longer have this property, ie.,
some GL,-\u-terms are not stratified. For instance, pa.(Azy.yz) is a GL,-Au-term, but
it is not stratified. Strictly speaking, this example shows that the stratification property
is lost even for the full intuitionistic fragment of GL,,-Au-terms, which might correspond
to terms as F L., proofs. However, every pure GL,-Au-term is strongly normalizable with
respect to >g,.

4 Every Pure GL,-Au-Term Is Strongly Normaliz-
able

One can prove by induction on the length of terms that every pure BCK-A-term is
strongly normalizable. However, in the presence of y-reductions, the length of terms may
not decrease under i, for instance, (pa.az)N > pa.a(zN). The reduction of y is logically
a kind of permutative reduction rules. We observe some examples in the following. Let a
context with a hole be £ such that

1The proof of 0 O A can be given by “BcK” where c: ~mAD Aand ~A=AD0.




g[l==1[]|EM | ME .

Example 1. The number of p-redexes increases: -
(nev.a(uB. M) Ny Ny > (. (B M)N)) N,

Example 2. 3-reductions introduce p-redexes:
(Az.zN)pa.M > (pa.M)N.

Example 3. u—reductions introduce [-redexes:
(ua.a(Az.M))N > pa.a((Az.M)N).

Example 4. The length of named terms increases under y-reductions:
(pa.ElaM))N > pa.Ela(MN)).

Example 5. When o € uFV (M), the length of (ua. M)N decreases under py-reductions:
(pa.M)N > pa. M.

Example 6. 3-reductions make the length of named terms increase:
(Az.(pa.az))N > po.aN.

Example 7. 3-reductions make the length of named terms decrease:
pa.B((Az.2)M) > po.fM.

Following the simple observations, for proving the strong normalization property we
consider a pair of two induction measures, namely, the first one is the length of a whole
term, and the second is the length of a whole term minus the length of a named term.

Definition 2 The length of a term M denoted by |M| is defined as follows:
lz| =1;

|IAz. M| = |ua.M| = |aM| =1+ |M|;

|[MN| = |M|+ |N|. .

The sum of length of named terms is defined such that

|zl = 0;

| Az.M]| = ||M]|;

IMN| = M|+ |V

laM]| = M| + || M];

||pe. M|| = || M]|.

The number of named terms is defined as follows:
#r =0;

#\x. M =#M;

#MN = #M + #N;

#oM =1+ #M;

#uoa.M = #M.

L(M) = #M *|M| - | M].

The degree of a term M is defined by

d(M) = (|M], L(M)).

The degrees are compared by the lezicographical order.

Lemma 1 |(Az.M)N| > |M|z := N}|.



Proof. By induction on the structure of M. O
Lemma 2 |(pa.M)N| > |pa.M[a < N]|.

Proof. By induction on the structure of M. 0O
Lemma 3 If M> N, then #M > #N.

Proof. By induction on the derivation of M > N.
Case 1. (Az.M)N > M|z := NJ:
By induction on M:
Case 1-1-1. M = z:
#(Azx.x)N = #N.
Case 1-1-2. M=y #z:
#OYN = #N > 0= #y.

Case 1-2. M = M1M22

Case 1-2-1. z € AFV(M;):

#(Ae M My)N = #M; +#M; + #N = #((Ax. Mi)N) + # Mz > #(My[z := N]) + #M3
Case 1-2-2. z € AFV(M>): '

Same as the above.

Case 1-2-3. x € AFV (M My):

Similarly to the above.

Case 1-3. M = A\y.M;:
#((Azy.M1)N) = #M, + #N = #((Az.M;)N) > #(Ml[x = N]) = #(Ay.M[z := N]).

Case 1-4. M = aM;:
#(Az.oM)N) = 1 + #M; + #N = 1 + #((Az.M;)N) > 1 + #(Mj[z := N]) =
#(aM [z := NJ).

Case 1-5. M = po.Mi:
#%)(Ax.ua.Ml)N) =14+#M +#N = #((Az.M1)N) > #(My[z := N|) = #(pa. M|z :=
Nj).

Case 2. (ua.M)N > pa.M[a < NJ:
By induction on M:
Case 2-1. M =z:

#((pa.z)N) = #N > 0 = #(po.z).

Case 2-2. M = M; My:

Case 2-2-1. a € uFV(M,):
#M2 = #(uaMl [0[ = N]MQ)
Case 2-2-2. o € pFV(My):
Same as the above.

Case 2-2-3. a € uFV(M;Ms):
Similarly to the above.

Case 2-3. M = \z.M;y:



#%(,ua.)\x.Ml)N) = #M; + #N = #((ua.M;)N > #(Mi[a < N)) = #(parz.Mija <
N)).

Case 2-4-1. M = oM, where a & uFV(M,):
#((a.aMi)N) = 1+ #My + #N1+ #MAEN = #(po.a(MiN)).
Case 2-4-2. M = fM; where § # a:
#((pa.fM)N) = 1+ #M + #N = 1+ #((pa.Mi)N) > 1 + #(Ml[a < N) =
#(naB(Mifa < ).

Case 2-5. M = uf3.M;:
ﬁ%?aﬂ-MI)N) #M; + #N = #((po.M)N) > #(Mi[a < N]) = #(Maﬂ (Mifa <

The rest of the cases is similarly confirmed. O
Proposition 1 If M > N, then d(M) > d(N).

Proof. By induction on the derivation of M > N.
Case 1. (\z.M)N > M|z := N|:
By |(Az.M)N| > |M[z := N]|.

Case 2. (pa.M)N > pa.Mla < NJ:
Case 2-1. a & uFV(M):
(. M)N| > |pa.M[a < NJ| = |pa.M|.

Case 2-2. a € uFV(M):
Let M be E[aM’] where a g uFV(E[M')).

Case 2-2-1. M' # gM":

((na.ElaM))N| = [pa.Ela(M'N)]|.

Let d1 be

({0 E[QMN) = GHE+ 1+ +#N) (s EpMDN] -] - |7 = |[M')| = | N
et do be

L(po.E[(MN)]) = (HE+1+#M'+#N)x|ua.Ela(M'N)]| - [|€] - |M'N| - | M| || V.

Then d; > d». ,

Case 2-2-2. M' = M" wheré 0 # a:
|(pa-E[a(BM"))N]| = |pa.Ela((BM")N]|.
Let d; be L{(pa.Ela(BM")])N)

= (#E+2+#M" +#N) x| (pa.Ea(BM")])N| = ||l = (1 +[M"]) = | M"| = [|M"]| - | V.
Let ds be L(pa.Ela(BM")N)) 7
= (HE+2+EM "+ N )+ o Ela(BM")N)] |~ €]l - (1+IM"|+|N]) = [ M"|~ [ M"]| - | V]|
Then d; > d».

In the following we assume that |M| = |N| and that L(M) = #M  |M| — ||M|| >
L(N) = #N * [N| - | N].

Case 3. \xz.M > Az.N is derived from M > N:

LOAz.M)=#M = (1+|M|) - ||M||

LAz.N)=#N (1 +|N|) — || N]|

L(z.M) = L(Az.N) = (1+ |[M]) x (#M — #N) + ||N|| - || M]]
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> |M|+ (#M — #N) + |N|| - | M]| = £(M) ~ L(N) > 0.

Case 4. pya.M > pa.N is derived from M > N:

Lpa.M) = #M * (1 + |M]) - | M||

L{pa.N) =#N *(1+|N|) = |[N]|

L(pa-M) — L(pe.N) = (1 +|M|) * (#M — #N) + ||N|| — [ M]
> | M| * (#M — #N) + ||N|| - |M]| = L(M) — L(N) > 0.

Case 5. aM v aN is derived from M > N:

L(aM) = (1+#M)*(1+|M])— |M| - ||M]|

L{aN) = (1+#N)* (1 +|N|) - [N| - ||N|

L(aM) - L(aN) = (1+ |M|)* (#M — #N) + || N|| - ||M]||
> |M|* (#M — #N) + ||N|| - ||M]| = L(M) — £L(N) > 0.

Case 6. LM > LN is derived from M > N:

L(LM) = (#L +#M) * (|L| + |M]) — ||IL|| — || M]]

L(LN) = (#L +#N)* (|L| + |N|) — || L]l - || V]|

L(LM) — L(LN) = (|| + [M]) * (#M = #N) + ||N|| — || M|
> |M|x (#M - #N) + |IN|| - |M|| = L(M) — L(N) > 0.

Case 7. MRv> NR is derived from M > N:

L(MR) = (#R+#M) * (|R| + |M|) — ||R|| — || M|

L(NR) = (#R+#N) * (|R| + |N|) — ||R|| — || V||

L(MR) — L(NR) = (|R| + |M|) » (#M — #N) + ||[N| — |M]||
> [M|* (#M — #N) +||N|| - [|M]| = L(M) — L(N) >0. O

Corollary 2 Every pure GL,-Au-term is strongly normalizable.
Proof. By the above lemma. 0O

Remarks 1 The above proof with a slight modification is also available for GL,,-Ap-terms
in the other formulations of Parigot[Pari93-1] and Ong[Ong96].

In Parigot[Pari92][Pari93-1][Pari93-2], more reduction rules are considered as the fol-
lowing (S1) and (S2). Since after the application of the reduction rules, the length of a
term decreases, every pure GL,-Au-term is also strongly normalizable.

(S1): contract auf.M to M[F := a.
(S2): contract pa.aM to M if a & uFV(M).
n-reduction rules: contract Ax.Mz to M if x g AFV(M).

Corollary 3 Every pure GL,-Au-term is strongly normalizable with respect to (3,7, i,

(S1) and (S2) as well.
Remarks 2 In contrast to BCK-A-terms, a certain G L,,-Au-term is not stratified.

For instance, pa.\z.7 is given in our formulation and in Ong[Ong96] (see appendix
B).
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5 Remarks on Formulations

Depending on the treatment of L, there are some variants of Au-calculus, for instance,
Parigot[Pari93-1], Ong[Ong96] and Fujita[Fuji95-1]. In the style of Parigot (see appendix
A), the proof term, Ay.pa.[01]y(Az.uds.[a)z), of type -—A — A becomes a GL,,-Au-term
in our sense, where we do not have to use the weakening rules to prove it. When we
consider the term as a GL,-Au-term, the principal type of the term, -(A — B) — A, is
provable in GL,,. Moreover, this proof term should be closed in our usual sense, but it
does contain a free name.

If one takes the formulation in the style of Parigot to consider proofs of substructural
logics, then one has to fix ones attention to the treatment of names of L.

We use a special name § for the constant type L. Another definition of p-free variables
is given below. Here, the occurrence of ¢ is not counted as a free variable.

Definition 3 (u-free variables)

pFV'(z) =

uFV'(Az. M) pFV'(M);

[LFV (M1M2> [LFV’(Ml) U MFV’(MQ)

pEV' (o [0]M) = (uFV'(M))/{a},

pEV (po[IM) = (uFVI(M) U {B})/{a} where § # 6.

We redefine the notion of GL,-Au-terms in this formulation.

Definition 4 (GL,-\u-terms in the style of Parigot)

1. Every \-variable is a G L, -Au-term.

2. If My and My are GL,,-A\u-terms where AFV (M) N AFV(Ms) = ¢ and uFV'(M;) N
pFV'(Ms) = ¢, then so is M1 M,.

3. If M is a GL,,-\u-term, then so is Ax.M.

4. If M is a GLy-Mu-term where § € uFV'(M), then so is po.[f)M.

Proposition 2 (Well-typed GL,-\u-terms are proofs of GL,,)
(1) If we have I' = A in GL,,, then there is a GLy-Au-term M such that ' M : L; A.
(2) For a GL,-Au-term M if we have T'F M : A; A, thenT = A, A in GL,,.

Proposition 3 FEvery pure GL,,-Au-term is strongly normalizable.

We can assume that (Az.2N)ud.[a]M is a GL,-Ap-term. Even in this formulation,
this term is not stratified.

To define classical proof terms corresponding to BC K-A-terms, we may consider yet
another formulation based on Felleisen’s A, with C : =—A — A [FFKD86][Grif90]. How-
ever, C(Azy.zxy) is not stratified.
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6 Appendix
A )\p-calculus of Parigot

Proof Terms:
M=z | z.M| MM | po.le)M

Inference Rules:
Ifl'(z)=A,then Tz : A;A.

I z:A FM: Ay A T M : A — Ap Ay Tob My: A A

TF XM : A4 — A A (=D T1. Do F MM, : As A, D

- T'FM:B;A
T'F pa.[B|M : A; (A, BP) /A

(1)

B J\up-calculus a la Ong

Proof Terms:
M:=z | M| MM)| paM|[c|M

Inference Rules:
IfT'(z)=A,then ;A2 A

I‘,.’L’ZAl;A"MZAQ Pl;All_MllAl-—)Az FQ;AQ*‘MQ:AI

(= 1)

F;A"AI.M:Al—)AQ P],FQ;Al,AQ'_MlM2:A2

DARM:B ) DAAEM: Lo
;A BPF[BIM:L T,AF pa A W

(—

(—
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