
EQUIVALENCES BETWEEN ILLATIVE COMBINATORY LOGICS

AND PURE TYPE SYSTEMS

M. W. Bunder, W. J. M. Dekkers and J. H. Geuvers

ABSTRACT

For each Pure Type System there is a closely related “corresponding” system of

illative combinatory logic, which nevertheless differs from the Pure Type System in

three important ways. Combinations of changes eliminating these differences lead to\cdot a

number of intermediate systems. In this paper we give conditions under which pairs

of these systems are equivalent. In some cases these equivalences $\dot{\mathrm{h}}$ave been $\dot{\mathrm{p}\mathrm{r}}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{d}$, in

some others these are, as yet, conjectures. We list the known Pure Type Systems that

satisfy these conditions.

1. INTRODUCTION

Combinatory logic and lambda calculus were first introduced (in Curry [9] and

Church [7] respectively) as part of a stronger $(” \mathrm{i}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{V}\mathrm{e}")$ system designed as a foundation

for logic and mathematics. Both illative systems however turned out to be inconsistent.

Church in [8] then produced a typed version of pure lambda calculus, while illative

combinatory logic used restricted versions of some of its rules as shown below.

More recently theories generalising typed lambda calculus were introduced by

Martin-L\"of [14], Girard [10], Coquand and Huet [6] and others. Barendregt set up

a generalised framework for such systems and this was generalised a little more by Be-

rardi [2] and Terlouw [15] to Pure Type Systems (PTSs). (For details see Barendregt

[1], where these are referred to as Generalised Type Systems (GTSs).)

Pure Type Systems bear a striking resemblance to illative combinatory logics, such

as those of Bunder [3] and [4], but, as we will show, there are major apparent differences.

Some of these differences, we will show, are not essential, others will disappear under

conditions which are valid for most PTSs.

数理解析研究所講究録
1021巻 1997年 119-135 119

2. PURE TYPE SYSTEMS

All PTSs have a set of constants C and a set of variables V . These allow the

definition of a set of pseudoterms \mathcal{T} given by:

$\mathcal{T}=V|c|\mathcal{T}\mathcal{T}|\lambda V:\tau.\tau|\square V:\tau.\mathcal{T}$.

Note that if $x\in V$ and $A,$ $B\in \mathcal{T}$, ri$x:A.B$ is a generalised type expression in the

sense of Martin-L\"of, Girard, Coquand and Huet etc. In the special case where x is not

a free variable of A or B , II$x:A.B$ is well known to behave exactly as the $Aarrow B$ of

simple type theory (See for example Barendregt [1]).

Expressions of the form M : A , where $M,$ $A\in \mathcal{T}$, are called statements. M : A

can be interpreted informally as: the pseudoterm M has type A .
A sequence of statements of the form $\langle x_{1} : A_{1}, \ldots, x_{n} : A_{n}\rangle$ where $x_{1},$ \ldots , x_{n}

are distinct members of V and $A_{1},$
$\ldots,$

$A_{n}\in \mathcal{T}$ is called a pseudocontext. If Γ

is a pseudocontext and $M,$ $A\in \mathcal{T}$ an expression of the form $\Gamma\vdash M$: A is called

a judgement. A pseudocontext Γ will be called a context if for some $M,$ $A\in \mathcal{T}$,

$\Gamma\vdash M:$ A is derivable from the postulates given below.

A judgement $\Gamma\vdash M$: A can be informally interpreted as: the pseudoterm M has

type A in the pseudocontext Γ .
Notation Throughout this paper $\mathrm{c},$ $c_{1,2}c\ldots$ will denote elements of $C,$ $x,y,$ z ,

$x_{1,arrow},$
$x_{2},$ \ldots variables, $A,$ $B,$ $\ldots M,$ $N,$ \ldots elements of T and $s,$ $s_{1,2}s,$ \ldots elements of a

set S of sorts, which for each PTS will form a subset of C . We will use $\Gamma,\Gamma’,$ $\Gamma_{1},$
\ldots

for (pseudo) contexts and, later $\Delta,$ $\Delta’,$ $\triangle_{1}\ldots$ for sets of statements and also sets of

pseudoterms. We will use $FV(M)$ for the set of free variables of M and $FV(\Gamma)$ and

$FV(\Delta)$ for the set of free variables of Γ and Δ .

2.1 Definition

A Pure Type System (PTS) is determined by a specification $\lambda S=(S,A, \mathcal{R})$

where S is the set of sorts, A a set of axioms i.e. statements of the form $c:s$ where

$c\in C$ and $s\in S$, and \mathcal{R} is a subset of $S\cross S\cross S$.

120

Type derivation in the PTS λS , written $\Gamma\vdash_{\lambda S}M$: A (or just $\Gamma\vdash M$: A) is

defined by the following axioms and rules:

(axioms) \langle $\rangle\vdash c:s$ if $c:s\in A$

$\Gamma\vdash A:s$

(start rule) $x\not\in FV(\Gamma)$

$\Gamma,$ x : $A\vdash_{X:}A$

(weakening rule) $\frac{\mathrm{r}\vdash M:B\Gamma\vdash c:S}{\Gamma,x:\mathit{0}\vdash M.B}$. $x\not\in FV(\Gamma)$

(product rule) $\frac{\Gamma\vdash A:S_{1}\Gamma,.x:A\vdash B:S2}{\Gamma\vdash(\Pi_{X}\cdot A.B):s_{3}}$ if $(s_{1}, s_{2}, S_{3})\in R$

(application rule) $\frac{\Gamma\vdash F\cdot(}{\Gamma\vdash FM}$

(abstraction rule) $\cdot\frac{\Gamma,x\cdot A\vdash M\cdot.B\Gamma\vdash(\Pi x.A\cdot B).s}{\Gamma\vdash(\lambda x\cdot A.M)\cdot(\Pi x\cdot A.B)}.$

.

(conversion rule) $\frac{\Gamma\vdash A.B\Gamma\vdash B}{\Gamma\vdash A.B}.$
’

Examples The $\mathrm{o}\mathrm{r}\mathrm{i}_{\mathrm{o}}\sigma \mathrm{i}\mathrm{n}\mathrm{a}1$ type theory $\lambdaarrow \mathrm{o}\mathrm{f}$ Church [8] has $C=S=\{*\},$ $A=$

$\{*:*\}$ and $\mathcal{R}=\{(*, *, *)\}$. The calculus of constructions of Coquand and Huet [7]

has $C=S=\{*,\square \},$ $A=\{*:\square \}$ and $\mathcal{R}=S\cross S\cross S$.

3. ILLATIVE COMBINATORY LOGIC AND LAMBDA CALCULUS

Illative combinatory logic is normally based on the combinators K and S and

the illative constant $—,$ using which, implication and quantification can be defined.

Equivalently (see Hindley and Seldin [12] Chapters 15-17) we can use the language of

lambda calculus, which is more convenient, as PTSs also use this language. So while we

will talk about ICLs (systems of illative combinatory logic) we will be using equivalent

ILCs (systems of illative lambda calculus).

For each ICL we will assume a set of constants C (including $—$) and a set of

variables V . Terms are then defined by:

$Tm=V|C|\lambda V.Tm|TmTm$.

121

If Δ is a set of terms and X is a term, an expression of the form $\triangle\vdash X$ is called a

judgement. This is interpreted informally as: from $\triangle,$ X can be derived. In particular

$\vdash X\mathrm{Y}$ is interpreted informally as $\vdash \mathrm{Y}\in X$ as well as $\vdash X(Y)$, so that X can be seen

as both a class and a unary predicate. $\vdash---X\mathrm{Y}$ is interpreted informally as $\vdash X\subseteq \mathrm{Y}$

and also as $\vdash(\forall x\in X)\mathrm{Y}(x)$, ie $—$ is a subset relation or a restricted quantifier.

The following definitions allow us to relate ICLs to type theories.

3.1 Definition

$F=\lambda_{X}yz.---X(\lambda w.y(zw))$

$G=\lambda xyz^{-}.--X(\lambda w.yw(zw))$

Using the above informal interpretations of application and of $—XY$, we can interpret

FXYZ as $(\forall x\in X)(Z(x)\in Y)$, ie as Z : $Xarrow Y$. GXYZ can be interpreted as
Z :(Πx : X.Yx).

Thus in this type-free extension of lambda calculus we can represent a form of type

assignment.

The rules of inference for Π in PTSs turn out to be similar to those for G in ICLs,

if G is interpreted in the above way; however the application and abstraction rules for

$—$ are much simpler than those for G , so we will formulate ICLs using the former.

3.2 Definition

An illative combinatory logic (ICL) is determined by a specification

$I=(S, A, \mathcal{R})$ where S is a set of sorts, $A(\subseteq Tm)$ is a set of axioms and $\mathcal{R}\subseteq$

$S\mathrm{x}S\mathrm{x}S$.

Derivations in an ICL I , written as $\triangle\vdash_{I}.X$ (or just $\Delta\vdash X$) are defined by

the following axioms and rules:

(axio$m\mathrm{s}$) $\triangle\vdash X$ if $X\in A$

(start rule) $\triangle\vdash X$ if $X\in\triangle$

122

(product rule) $\frac{\Delta,Xx\vdash s_{2}Y\Delta\vdash_{S_{1}X}}{\Delta\vdash s_{3}(GX(\lambda X.Y))}$

where $x\not\in FV(\Delta, x)$ and $(s_{1}, s_{2,3}s)\in R$

($—$ application rule) $. \frac{\Delta\vdash-_{X\mathrm{Y}\Delta\vdash}--XU}{\Delta\vdash \mathrm{Y}U}$

($—$ abstraction rule 2) $\frac{\Delta,Xx\vdash Y\Delta\vdash sX}{\triangle\vdash---X(\lambda x\cdot Y)}$

where $x\not\in FV(\Delta, X)$ and $s\in S$

(conversion rule) $\frac{\Delta=_{\beta\beta}\Delta’,X=Y,\Delta\vdash X}{\Delta\vdash Y}$,

Note 1 We define $=_{\beta}$ between sets as the symmetric, transitive closure of $arrow\rho$ where

$\trianglearrow_{\beta}\Delta’$ if for all $M\in\Delta$ there is an $M’\in\Delta’$ such that $Marrow_{\beta}M’$ and for each

$N\in\Delta’$ there is an $M\in\triangle$ such that $Marrow_{\beta}N$

Note 2 The names of the above rules (and the ones for F and G), including par-

ticularly the ” $2’$ ’ on the abstraction rules, are chosen to match those of the closest

corresponding rules for the PTSs introduced below.

The application and abstraction rules for F and G given below follow from those

for $—$.
$\Delta\vdash FXYZ$ $\Delta\vdash XU$

(F application rule)
$\Delta\vdash Y(ZU)$

(F abstraction rule 2) $\frac{\Delta,Xx\vdash Yz\Delta\vdash sX}{\Delta\vdash FXY(\lambda_{X}.z)}$ where $x\not\in FV(\Delta, XY),$ $s\in S$

(G application rule) $\frac{\Delta\vdash GXYz.\Delta\vdash XU}{\Delta\vdash YU(ZU)}$

(G abstraction rule 2) $\frac{\triangle,Xx\vdash Yz\triangle\vdash sX}{\triangle\vdash GX(\lambda_{X}.\mathrm{Y})(\lambda_{X}.z)}$ where $x\not\in FV(\triangle, X),$ $S\in S$

Note that if $—XY$ was defined as $FX\mathrm{Y}(\lambda u.u)$ or $GX(\lambda uv.v)\mathrm{Y}$, the $—$ rules

would follow from those for F or G .

Note also if under our informal interpretation any X could be interpreted by X^{i}

123

and Δ by Δ^{i} , these F rules could be interpreted as:

$\Delta^{i}\vdash z^{i}:x^{i}arrow \mathrm{Y}^{i}$ $\Delta^{i}\vdash U^{i}:X^{i}$

$\Delta^{i}\vdash Z^{i}U^{i}$: Y^{i}

$\frac{\triangle^{i},x:x^{i}.z^{i}\cdot Yi\Delta^{i}\vdash Xi:s}{\Delta^{i}\vdash\lambda x.Z^{i}:X^{i}arrow Yi}.$.

With S representing the set of simple types, these are the postulates of simple

type theory (TA_{λ} of Hindley [12]). A similar translation is used, more formally, below

for Π and G .

4. SIMILARITIES AND DIFFERENCES BETWEEN PTSs AND ICLs

The main difference between PTSs and ICLs is obviously in the notation. This we

can overcome with the following translation $*\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\mathcal{T}$ to Tm :

$x^{*}=x$ for $x\in V$

$(MN)^{*}=M*N^{*}$

$c^{*}=c$ for $c\in C$

$(\Pi x:A.B)^{*}=GA^{*}(\lambda x.B*)$

$(\lambda x : A.B)^{*}=\lambda_{X}.B^{*}$

$(M : A)^{*}=A*M^{*}$

A problem we will face in Section 8 is: under what conditions does the translation

$*\mathrm{o}\mathrm{f}$ deductions have an inverse?

Given $*,$ the product and application rules of PTSs translate into the product rule

of ICLs and the G application rule.

The abstraction rule of PTSs, however, translates into:

$\frac{\Gamma^{*},Ax\vdash BM\mathrm{r}^{*}\vdash s.(GA(\lambda X\cdot B))}{\mathrm{r}*\vdash GA(\lambda_{X.B})(\lambda XM)}$

A second difference therefore is that in the PTS abstraction rule the new type GXY

(or Πx : X.Yx) $)$, being formed, must be in a sort s , while in the ICL abstraction rule

the type of the class X over which we are abstracting must be in a sort s .

124

The remaining differences involve the use of sequences for contexts in PTSs and

sets of arbitrary terms in ICLs and the seemingly more general conversion rule for

ICLs.

For each PTS we will consider, in this paper, a version with an ICL-like start rule

and sets as contexts as well as the stronger conversion rule. We will call these SPTSs.

For each PTS we will consider one with something like the ICL-abstraction rule

and a more liberal conversion rule. These we will call APTSs. Also we will consider

PTSs with both of these changes-SAPTSs.

In the next three sections we will outline results connecting PTSs, SPTSs, APTSs

and SAPTSs, these are to appear in [5]. We will then list some anticipated results

(partly conjectures at this stage) linking the $*$ translated versions of these systems

- the $*\mathrm{S}\mathrm{A}\mathrm{P}\mathrm{T}\mathrm{S}$ being the ICLs corresponding to given PTSs - with each other and

the four PTS systems. The connections between the systems will often depend on the

specification of the PTS being considered.

5. SET PTSs

5.1 Definition

Given a PTS with specification λS , the corresponding Set PTS (SPTS) has the

axioms and the start, weakening and conversion rules replaced by:

(axioms) $\triangle\vdash^{S}c:s$ where $c:s\in A$

(start rule) $\Delta\vdash^{S}M:$ A where $\Lambda I:A\in\triangle$

$\Delta\vdash^{S}M:A$ $\triangle=_{\beta}\triangle^{J}$, $M=_{\beta}M’$, $A=_{\beta}A’$

(conversion rule)
$\Delta’\vdash^{s}M’$: A’

In each case \triangle is an arbitrary finite set of statements. In all other rules Γ is

replaced by such a \triangle and \vdash by $\vdash_{\lambda S}^{S}$ or just \vdash^{S}

It is clear that not every provable SPTS judgement has a valid PTS counterpart.

125

for example

s_{1} : $s_{2}\vdash^{S}s_{1}$: S_{2}

but s_{1} : s_{2} cannot form a context as s_{1} is not a variable.

The following class of sets Δ will correspond to the contexts of PTSs.

5.2 Definition

A set of statements \triangle is S-legal in an SPTS with specification (S, A,\mathcal{R}) if

$\Deltaarrow\beta\{x_{1} : A_{1}, \ldots , x_{n} : A_{n}\}$ and:

(i) $(\forall\dot{i},j)(1\leq i<j\leq narrow x_{i}\neq X_{j})$

(ii) $(\forall i)(1\leq i\leq narrow(\exists s\in S)(x_{11} : A, \ldots , x_{i-1} : Ai-1\vdash^{S}A_{i} : S)$

(iii) $(\forall\dot{i})(1\leq i\leq narrow x_{i}, \ldots, x_{n}\not\in FV(A_{i}))$.
Notation

M : $Aarrow_{\beta}N$: B iff $Marrow_{\beta}N$ and $Aarrow_{\beta}B$.
5.3 Definition

If Γ is a (pseudo-) context $S(\Gamma)$ is the corresponding set.

We then prove (in [5]):

5.4 Theorem

For a PTS and SPTS with the same specification:

(i) $\Gamma\vdash M$: A \Rightarrow $S(\Gamma)$ is S-legal&S(\Gamma)\vdash M : A

(ii) Δ is S-legal&\Delta \vdash $M:A$

\Rightarrow $(\exists\Gamma, M’, A’)\Deltaarrow\beta S(\mathrm{r}),$ $Marrow_{\beta}M’,$ $Aarrow_{\beta}A^{;}$ &\Gamma \vdash M’ : A’

Corollary

For a PTS and SPTS with the same specification:

(i) $\vdash M:A$ \Rightarrow $\vdash^{S}M:A$

(ii) $\vdash^{S}M:A$ \Rightarrow $(\exists M’)Marrow_{\beta}M’$ & $\vdash M’$: A .

Thus the systems are “theorem equivalent”, modulo β -equality.

6. ABSTRACTION-ALTERED PTSs

The difference between the PTS abstraction rule and one like the ICL version

126

proposed in Section 4:

(abstraction rule 2) $. \cdot\frac{\Gamma,x.A\vdash M.\cdot B.\mathrm{r}\vdash A.S}{\Gamma\vdash(\lambda X.}$. where $s\in S$

turns out, for most PTSs, to be an essential one. To explain this we need a further

definition.

6.1 Definition

B \in \mathcal{T} is a toptype in a PTS with a given specification, if $(\exists M, \Gamma)$

$\Gamma\vdash M:B$ and $\sim(\exists A,\Gamma)\Gamma\vdash B:A$.
A sort s is a topsort if it is a top type.

The PTS λC -the calculus of constructions-has \square as topsort. Using $\vdash*:\square$, a
λC axiom, and weakening we can prove:

x $:*\vdash*:\square$

and by the abstraction rule 2 and the axiom we get:

$\vdash(\lambda_{X:}*.*)$: $(\Pi X:*.\square)$

Using the PTS abstraction rule we would need $\vdash(\Pi x:*.\coprod)$: s to obtain this and

this, in turn, would require the product rule applied to

$x:*\vdash\coprod:s_{2}$

and $\vdash*:s_{1}$

where $(s_{1}, s_{2}, s)\in \mathcal{R}$.

As \square is a topsort the former of these is not available.

It is $\mathrm{c}\mathrm{I}\mathrm{e}\mathrm{a}\mathrm{r}$ that for any PTS with a topsort abstraction rule 2 is not valid.

In contrast: for any PTS with abstraction rule 2, the PTS abstraction rule is valid.

Abstraction rule 2 is therefore strictly stronger than the abstraction rule.

We now propose the following weaker version of abstraction rule 2, which for most

of the PTSs in current $\mathrm{u}\mathrm{s}\mathrm{e}_{J}$. allows us to prove an equivalence between PTSs and the

altered PTSs (APTSs) with this rule:

127

(abstraction rule 3) $\cdot\frac{\Gamma,x.A.\vdash M.B\mathrm{r}.\vdash A.S}{\Gamma\vdash(\lambda_{X}\cdot A\cdot M).(\Pi x\cdot A\cdot B)}.$

where $(\exists s_{2,3}s)(s1, s_{2,3}s)\in \mathcal{R}\ (B\in_{\beta}C\Rightarrow(B:S_{2})\in A)$ $(+)$

While condition $(+)$ may look a little complex for most PTSs it is equivalent to:

For some subset S_{1} of $S,$ $B\not\in S_{1}$.

We now define APTSs.

6.2 Definition

Given a PTS with specification λS the corresponding abstraction altered PTS

(APTS) has the abstraction rule replaced by abstraction rule 3 and the $\Gamma\vdash B’$: s

omitted bom the conversion rule. Derivations are written as $\Gamma\vdash_{\lambda S}^{A}M$: A (or just

$\Gamma\vdash^{A}M$: A).

6.3 Definition

$\mathcal{R}_{1}=\{_{S_{1}}\in S|(\exists s_{2}, s_{3})(_{S}1, S2, s3)\in \mathcal{R}\}$

$s_{1}=\{_{S\in S}|(\exists A, \Gamma)\Gamma\vdash A : s\}$

6.4 Theorem

For PTSs and an APTS with the same specification,

(i) $\Gamma\vdash M:B\Rightarrow\Gamma\vdash^{A}M:B$.

(ii) If the PTS satisfies:

$(\forall s\in S_{1})[s$ is not a topsort V $(\exists s_{1,2}S)(s_{1}, s_{2}, s)\in \mathit{2}$ \Rightarrow

$(\forall s_{1}\in S_{1}\cap \mathcal{R}_{1})(\exists s3)(S1, s, s_{3})\in \mathit{2})]$, $(*)$

then if

$\Gamma\vdash^{A}M$: B

then there is a C such that

$\Gamma\vdash M$: C.

In the theorem below (s_{1}, s_{2}) as an element of 2 is short for $(s_{1}, s_{2}, s_{9}-)$.

128

6.5 Theorem

The PTSs specified below satisfy $(*)$ and so are equivalent to the corresponding

APTSs. In each’ case we note the restriction imposed by $(+)$ and give S_{1} .
(i) \lambdaarrow : $S=\{*,\square \},$ $A=\{*:\coprod\},$ $\mathit{2}=\{(*, *, *)\}$

Restriction: $B\not\in_{\beta}\{*, \square \};S_{1}=\{*\}$

(ii) λ^{τ} : $S=\{*\},$ $A=\{0:*\},$ $\mathcal{R}=\{(*, *)\}$

Restriction: $B\neq_{\beta}*;S_{1}=\{*\}$

(iii) $\lambda*$: $S=\{*\},$ $A=\{*:*\},$ $\mathit{2}=\{(*., *)\}$

Restriction: (none); $S_{1}=\{*\}$

(iv) $\lambda 2$: $S=\{*, \square \},$ $A=\{*:\coprod\},$ $\mathit{2}=\{(*, *), (\square , *)\}$

Restriction: $B\not\in_{\beta}\{*, \square \};S_{1}=\{*, \square \}$.

(v) $\lambda C=\lambda Pw$: $S=\{*, \square \},$ $A=\{*:\square \},$ $\mathcal{R}=\{(*, *), \{*, \square \}, (\square , *), (\square , \square)\}$

Restriction: $B\neq_{\beta}\square ;S_{1}=\{*, \square \}$

(vi) λP : $S=\{*, \square \},$ $A=\{*:\coprod\},$ $\mathcal{R}=\{(*, *), (*, \square)\}$

Restriction: $B\neq_{\beta}\square$; $S_{1}=\{*\}$.
(vii) λ -AUT-68 : $S=\{*, \square , \Delta\},$ $A=\{*:\square \}$,

$\mathcal{R}=\{(*, *), (*, \square , \triangle), (\square , *, \Delta), (\square , \Delta, \Delta), (\square , \square , \triangle), (*, \Delta, \Delta)\}$

Restriction: $B\not\in_{\beta}\{\square , \Delta\};S_{1}=\{*, \square \}$

(viii) $\lambda- \mathrm{A}\mathrm{U}\mathrm{T}- \mathrm{Q}\mathrm{E}$: $S=\{*, \square , \Delta\},$ $A=\{*:\square \}$,

$\mathit{2}=\{(*, *),$ $(*, \square)(\square , *, \Delta),$ $(\square , \square , \triangle),$ $(*, \Delta),$ (\square , \triangle)

Restriction: $B\not\in_{\beta}\{\square , \Delta\};S_{1}=\{*, \square \}$

(ix) λ -PAL : $S=\{*, \square , \triangle\},$ $A=\{*:\square \}$,

$\mathcal{R}--\{(*, *, \triangle), (*, \square , \Delta), (\square , *, \Delta), (\square , \square , \triangle)\text{ノ}.(*, \Delta), (\square , \Delta)\}$

Restriction: $B\not\in_{\beta}\{\square . \triangle\};S_{1}=\{*, \square \}$.

Of the above, $\lambdaarrow \mathrm{i}\mathrm{s}$ the λ -calculus of Church [8], λC that of Coquand and Huet

[7] and $\lambda- \mathrm{A}\mathrm{U}\mathrm{T}- 68,$ $\lambda- \mathrm{A}\mathrm{U}\mathrm{T}- \mathrm{Q}\mathrm{E}$ and λ -PAL are some of the de Bruin AUTOMATH

systems.

129

Of the remaining PTSs mentioned in Barendregt [2] six do not satisq $(*)$ and one

is not singly sorted.

7. SET-ABSTRACTION ALTERED PTSs

7.1 Definition

Given a PTS with specification (S, A, \mathcal{R}) , the corresponding set-abstraction al-

tered PTS (SAPTS) with the same specification has the SPTS axioms, start and con-

version rules and the APTS altered abstraction rule.

Define SA-legal similarly to S-legal. We have:

7.2 Theorem

For an APTS and an SAPTS with th.e same specification,

(i) $\Gamma\vdash^{A}M$: A \Rightarrow $S(\Gamma)\vdash^{SA}M$: A&S(\Gamma) is SA-legal

(ii) If \triangle is SA-legal and $\Delta\vdash^{SA}M:A$, then

$(\exists\Gamma, M’)\trianglearrow\beta S(\mathrm{r}),$ $Marrow_{\beta}M’$ & $\Gamma\vdash^{A}M’$: A

7.3 Theorem

For an SPTS and an SAPTS with the same specification,

(i) If \triangle is S -legal then:

$\Delta\vdash^{S}M:A$ \Rightarrow
$\triangle\vdash^{SA}M:A$

(ii) For a PTS which satisfies

$(\forall s\in S)[s$ is not a topsort of V $(\exists s_{1}, s_{2})(S_{1}, s_{2}, s)\in \mathcal{R}$ \Rightarrow

$(\forall s_{1}\in s_{1}\cap \mathcal{R}1)(\exists S3)(S_{1t}.s, s_{3})\in \mathcal{R}]$, $(*)$

if Δ is SA-legal then:

$\triangle\vdash^{SA}M$:A \Rightarrow
$\triangle\vdash^{S}\Lambda\tau$: A .

130

8. RICLs AND SAPTSs

The following is the ICL version of abstraction rule 3:

($—$ -abstraction rule 3)
’

$\frac{\triangle,Xx\vdash Y\Delta\vdash sx}{\Delta\vdash---X(\lambda X\cdot Y)}$

where $x\not\in FV(\Delta, X),$ $s\in S$ and $(+)$ holds (with $s_{2}B$ for $B:s_{2}$).

8.1 Definition

A Restricted ICL (RICL) is an ICL with $—$ -abstraction rule 2 replaced by $—-$

abstraction $\mathrm{r}\mathrm{u}\dot{\mathrm{l}}\mathrm{e}3$. We will denote a derivation in an RICL with specification I $\dot{\mathrm{b}}\mathrm{y}$

$\triangle\vdash_{I}^{R}Z$ (or just $\triangle\vdash^{R}Z$).

Clearly we have

8.2 Theorem

For an ICL and an RICL with the same specification,

$\triangle\vdash Z\Rightarrow\Delta\vdash^{R}Z$

In a later paper we expect to prove:

8.3 Conjecture

For an SAPTS and an RICL with the same specification,

(i) $\triangle\vdash^{SA}M$: $A\Rightarrow\triangle^{*}\vdash^{R}A*M^{*}$

(ii) $\Delta\vdash^{R}X\Rightarrow(\exists\Delta_{1}, M, A)\triangle_{1}^{*}arrow_{\beta}\Delta,$ $A^{*}M^{*}arrow\beta X\ \triangle_{1}\vdash^{SA}M:A$.

9. VARIANTS OF RICLs

In the later paper mentioned above we will introduce for each IUCL, a variant

corresponding to an SPTS, an APTS and a PTS with the same specification.

9.1 Definition

An abstraction modified ICL (AICL) is an RICL with $—$ -abstraction rule 3

replaced by

131

G-abstraction 1 $\frac{\Delta,X_{X}\vdash Yz\Delta\vdash s(Gx\lambda X\cdot Y)}{\triangle\vdash GX(\lambda x\cdot Y)(\lambda x\cdot Z)}$

where $x\not\in FV(\Delta, X)$.

In an AICL, \vdash will be written as \vdash^{AI}

We hope to prove:

9.2 Conjecture

For an SPTS and a AICL with the same specification:

(i) $\Delta\vdash^{s_{M:A}}\Rightarrow\Delta^{*}\vdash^{AI}A*M^{*}$.

(ii) $\triangle\vdash^{AI}X\Rightarrow(\exists\Delta_{1}, M, A)\Delta_{1}*=_{\beta}X\Delta,$ $A^{*}M^{*}=_{\beta}$ & $\Delta_{1}\vdash^{S}M:A$.
9.3 Definition

A context-modified ICL (CICL) is an RICL with the sets \triangle replaced by

sequences Γ in the rules j with the start and conversion rules altered as follows and

with \vdash^{CI} for \vdash^{R} :

(axioms) $\vdash^{CI}X$ if $X\in A$

(start rule) $\frac{\Gamma\vdash^{CI}SX}{\Gamma,Xx\vdash CIxx}$ if $X\not\in FV(\Gamma)$

(weakening rule) $\frac{\Gamma\vdash CIX\Gamma\vdash cI_{S}Y}{\Gamma,Yx\vdash CIX}$

(conversion rule) $\frac{\Gamma\vdash^{CI}xY\Gamma\vdash^{C}ISX}{\Gamma\vdash^{cI}ZY\mathfrak{l}}$
$x=_{\beta}Z$

Note that the $\Gamma \mathrm{s}$ above are sequences as for PTSs.

9.4 Definition

A context and abstraction altered ICL is a CICL with G -abstraction rule 1,\cdot

with Γ for Δ .

9.5 Conjecture

For a CICL and an RICL with the same specification:

(i) $\Gamma\vdash^{CI}X\Rightarrow S(\Gamma)\vdash^{R}X$

(ii) If \triangle is R-legal&\triangle \vdash $X\Rightarrow(\exists \mathrm{r}_{\text{ノ}}.Y)\trianglearrow\beta s(\Gamma),$ $Xarrow\beta$ Y& $\Gamma\vdash^{CI}Y$

132

(Note \triangle is R- (or AI-) legal is defined similarly to S-legal in Definition 5.2.)

9.6 Conjecture

For a CAICL and a CICL with the same specification:

(i) $\Gamma\vdash^{CAI}X\Rightarrow\Gamma\vdash^{CI}X$

(ii) If $(*)$ holds:

$\Gamma\vdash^{CI}X\Rightarrow\Gamma\vdash^{CAI}X$.

9.7 Conjecture

For a CAICL and a AICL with the same specification:

(i) $\Gamma\vdash^{CAI}X\Rightarrow S(\Gamma)\vdash^{AI}x$

(ii) If \triangle is AI-legal,

$\Delta\vdash^{AI}X\Rightarrow(\exists\Gamma, Y)\trianglearrow_{\beta}S(\Gamma),$ $xarrow_{\beta}$ Y&r\vdash CAI Y .

9.8 Conjecture

For a AICL and a RICL with the same specification:

(i) If \triangle is AI-legal:
$\triangle\vdash^{AI}X\Rightarrow\Delta\vdash^{R}X$

(ii) If the system is singly sorted satisfies $(*)$ and \triangle is R-legal:
. $\triangle\vdash^{R}X\Rightarrow\triangle\vdash^{AI}X$.

9.9 Conjecture

For an APTS and a CICL with the same specification:

(i) $\Gamma\vdash^{A}M:A\Rightarrow\Gamma^{*}\vdash^{CI}A^{*}M^{*}$

(ii) $\Gamma\vdash^{CI}X\Rightarrow(\exists\Gamma_{1}, M, A)\Gamma_{1}^{*}\equiv\Gamma$, A*M*\equiv X& $\Gamma_{1}\vdash M:A$.

9.10 Conjecture

For a PTS and a CAICL with the same specification:

(i) $\Gamma\vdash M:A\Rightarrow\Gamma^{*}\vdash CAIA*M*$

(ii) $\Gamma\vdash^{CAI}X\Rightarrow(\exists\Gamma_{1}, M, A)\Gamma^{*}\equiv\Gamma,$ $A^{*}M^{*}\equiv X\ \Gamma_{1}\vdash M:A$.

For each PTS the relation between it, the corresponding ICL. with the same spec-

ification, and the intermediate systems can best be summarised in the cube below:

133

with each arrow showing an equivalence between systems, given certain conditions. Each

$arrow$ arrow has no condition, but Γ is changed to $S(\Gamma)$. Each $arrow \mathrm{r}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{s}\Delta$ to be

legal and certain β reductions. $\mathrm{E}\mathrm{a}\mathrm{c}\mathrm{h}\nearrow \mathrm{r}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{s}$ legality of any Δ and each ’ $(*)$

and legality of any Δ . Each \uparrow requires the $*\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ and each \downarrow reductions of $*$

translations.

We expect the proofs of the Conjectures 9.5 to 9.8 to be similar to those of Theorems

7.2, 6.4, 5.4 and 7.3 and the proofs of Conjectures 9.2, 9.9 and 9.10 to be similar to the

proof of Conjecture 8.3.

REFERENCES

[1] Barendregt, HP “Lambda calculus with types” in Handbook of Logic in Computer

Science Vol II, S Abramsky, DM Gabbay and TSE Maibaum eds. Oxford

University Press, 1992.

[2] Berardi, S “Towards a mathematical analysis of the Coquand-Huet calculus of con-

structions and the other systems of the Barendregt cube” Dept Computer Sci-

ence, Carnegie MeUon University and Dipartimento di Matematica, Universita

di Torino, 1988.

[3] Bunder, MW “Propositional and predicate calculuses based on combinatory logic”

Notre Dame Journal of Formal Logic Vol XV (1974) pp 25-32.

[4] Bunder, MW “Conjunction without conditions in illative combinatory logic” The

134

Bulletin of the Section of Logic, Polish Academy of Sciences, Vo113 (1984) pp207-

212.

[5] Bunder, MW and Dekkers, WAM “Some alternative pure type systems”, to appear.

[6] Coquand, T and Huet, G“The calculus of constructions” Information and Compu-

tation, Vol76 (1988) pp95-120.

[7] Church, A “A set of postulates for the foundation of logic” Annals of Mathematics

Vol33 pp346-366 and Vol34 pp839-864.

[8] Church, A “A formulation of the simple theory of types” Journal of Symbolic Logic

Vol5 (1940) pp56-68.

[9] Curry, HB “Grundlagen der Kombinatorische Logik” American Journal of Mathe-

matics, Vol52 (1930) pp509-536, 789-834.

[10] de Bruin, NG “A survey of the AUTOMATH project” in To HB Curry: Essays

on combinatory logic, lambda calculus and formalism, eds JR Hindley and JP

Seldin, Academic Press 1980 pp580-606.

[11] Girard, J-Y “Une extension de l’interpretation functionnelle de G\"odel \‘a l’analyse

et son application \‘a l’\^elimination des coupures dans l’analyse et la th\’eorie des

types” Proceedings of the Second Scandinavian Logic Symposium, ed JE Fen-

stad, North Holland 1971.

[12] Hindley, JR, Basic Simple Type Theory, Cambridge University Press 1997.

[13] Hindley, JR and Seldin, JP, Introduction to Combinators and λ -Calculus, Cam-

bridge University Press 1986.

[14] Martin-Lof, P ”An intuitionistic theory of types: predicative part” Logic Collo-

quium ’73, North Holland 1982 pp 153-175.

[15] Terlouw, J “Een nadere bewijstheoretische analyse van GSTT’s” Faculty of Math-

ematics and Computer Science, University of Nijmegen, 1989.

135

