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Abstract

From the $ex$ ante point of view,.we consider decision making in partially
interactive games. In a partially interactive game, players may not be re-
quired to predict all the others’ decisions such as in Prisoner’s Dilemma.
In some games, some players can ignore some other players’ decision mak-
ing but need to predict decisions of some different ones. In this case, the
common knowledge of the entire structure of a game may be unnecessary,
but some different form of the knowledge of the payoff functions of some
players as well as of their behavioral postulates may be required. We de-
velop some generalizations of Nash equilibrium and dominant strategies in
Part I, and then investigate epistemic aspects of decision making in games
in the game logic framework in Parts II and III. One new concept, an in-
teraction structure, plays an essential role in both developments. We give
a full characterization of the knowledge structure necessary for decision
making in the games whose Nash equilibria satisfies a certain weakening
of interchangeability. This characterization tells when the solution neces-
sarily involves the common knowledge or not.

In Part I, we develop game theoretical notions, and in Parts II and III,
we will investigate the knowledge structure required for decision making
in games in the game logic framework.

1. Introduction

1.1. Problems

We consider decision making in a game from the $ex$ ante deductive point of
view, i.e., individual decision making before the actual play of the game. There
have been quite a few arguments on such decision making as wel as on neces-
sary epistemic conditions for it. Here, we consider two possibly contradictory
argument. The one is that for the players to be able to make decisions, the
game structure such as payoff functions should be common knowledge among
the players and resulting decisions are Nash equilibrium strategies. This is
explicitly formulated in the game logic framework in Kaneko-Nagashima [6]
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and Kaneko [3]. The other is that a dominant strategy equilibrium such as
in Prisoner’s Dilemma (Table 1.1) does not require the common knowledge as-
sumption but it suffices for each player to know only his own payoff function.
These arguments are mutually exclusive, but it seems reasonable to interpret
them as applied to different games. Nevertheless, there is no general frame-
work to discuss the problems of which games need such a common knowledge
assumption, which can avoid it and what are different in the consequences of
the above arguments applied to the same games. The purpose of this paper is
to develop such a general framework.

In fact, there is a great spectrum of games between the classes of games to
which the above two arguments can be directly applied. In this subsection, we
start with considering the dominant strategy argument in Prisoner’s Dilemma,
and then go to a slightly more complex game. In these considerations, one
aspect would emerge: the behavioral postulate for each individual player may
be required to be known to some other players. Then we will consider a game for
which the Nash equilibrium argument is needed. Finally, we will consider a 4-
person game for which both dominant strategy and Nash equilibrium arguments
are involved. By doing so, we would like to convey two different points: there
is a great spectrum of games between the classes of games to which the above
two clear-cut arguments are applied, and players’ knowledge on the behavioral
postulates of some others are involved in quite entangled manners for their
decision making.

Example 1.1. The following are 2-person games with two pure strategies for
each player, both of which have the same, unique Nash equilibriun $(\mathrm{s}_{12}, \mathrm{s}_{22})$ .
Table 1.2 is obtained from 1.1 by changing just player $2’ \mathrm{s}$ payoff 6 to 2. Table
1.2 has a dominant strategy, $\mathrm{s}_{12}$ , for player 1, but no dominant strategy for 2.

$\mathrm{s}_{21}$ $\mathrm{s}_{22}$ $\mathrm{s}_{21}$ $\mathrm{s}_{22}$

$\mathrm{s}_{11}$ $(5,5)$ $(1,6)$ $\mathrm{s}_{11}$ $(5,5)$ $(1,2)$

$\mathrm{s}_{12}$ $(6,1)$ $(3,3)^{*}$ $\mathrm{s}_{12}$ $(6,1)$ $(3,3)^{*}$

Prisoner’s Dilemma

Table 1.1 Table 1.2

In Prisoner’s Dilemma, each player $i$ thinks about his own payoff function
and finds that $\mathrm{s}_{i2}$ is the dominant strategy (is optimal regardless of whatever
the other chooses) for him. Then he can ignore the other player’s choice. Here
no interactions are involved.

In the game of Table 1.2, $\mathrm{s}_{12}$ is a dominant strategy for 1 but not $\mathrm{s}_{22}$ for 2.
For this game, the dominant strategy argument is not applied to player 2, but
is modified as follows: Player 2 predicts that player 1 chooses $\mathrm{s}_{12}$ anyway since
it is a dominant strategy for 1, and under this prediction, he chooses strategy
$\mathrm{s}_{22}$ . If player 2 applies the dominant strategy argument to player 1, then 2 may
think that 1 does ignore 2’ choice. Here the interaction is one-direction. This is
an argument motivating the notion of dominance-solvability (cf., Moulin [8]).
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Notice that the above argument for the game of Table 1.2 assumes that
player 2 knows (or believes) that player 1 follows the dominant strategy ar-
gument as his behavioral postulate. In fact, player $2’ \mathrm{s}$ behavioral postulate is
based upon (includes) his knowledge of l’s behavior postulate. Here we assume
that player 2 knows his own postulate, too. Then it would be parallel to assume
that player 1 himself also knows his own behavioral postulate (but may ignore
$2’ \mathrm{s})$ .

Prisoner’s Dilemma is too simple to be cautious of the problem of the knowl-
edge of their behavioral postulates, since no player needs to think about the
other’s decision and to be conscious of himself. Nevertheless, if player 1 is
assumed to be conscious of his own $\mathrm{b}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{v}\dot{\mathrm{i}}_{\mathrm{O}}\mathrm{r}$ , he himself knows his behavioral
postulate. Hence the same problem is involved in Prisoner’s Dilemma, though it
may be ignored. In this paper, we assume that each player is at least conscious
of his own behavioral postulate.

When a game has no dominant strategies, the above argument is no longer
applicable. Instead, we need the Nash equilibrium argument. We can construct
this argument in a manner comparable with the above. Let us regard of Table
1.3 as the payoff matrix of a 2-person game, which is obtained from Table 1.1
by adding one strategy for each player and has no dominant strategies. The
argument runs as follows:
(1): player 1 chooses a strategy maximizing his payoff under the prediction

of (2);
(2): player 2 chooses a strategy maximizing his payoff under the prediction

of (1).
The prediction part of (1) requires player 1 to know (believe) $2’ \mathrm{s}$ behavioral
postulate, i.e., (2), and simultaneously the prediction part of (2) requires player
2 to know (1). Each of (1) and (2) requires the corresponding player to know
the other. This yields meet an infinite regress of the knowledge (or belief)
over the behavioral postulates. Ignoring the knowledge structure. of the infinite
regress and focussing only on the behavioral consequence, however, the resulting
outcome must be Nash equilibrium strategies.

The infinite regress is, in fact, the common knowledge of the behavioral
postulates, which was discussed in a nonformalized manner in Johansen [1] and
in a formalized manner in Kaneko-Nagashima [6] and Kaneko [3]. It is proved
in [6] and [3] that the solution of the infinite regress is the common knowledge
of Nash equilibrium if a game is solvable in Nash’s [9] sense.

Here it is important to notice a similarity as well as a difference in the
dominant strategy and Nash equilibrium arguments. In the both arguments,
the knowledge of the behavioral postulates are inseparable from the behavioral
postulates themselves, while their knowledge structures take a form of a finite
hierarchy in the former and a form of an infinite regress.

In some games, the different aspects of dominant strategy and Nash equi-
librium arguments are involved in an entangled manner, which is exemplified
here.

Example 1.2. Consider the 4-person game $g=(g_{1}, ..,g_{4})$ with strategy space
$\Sigma_{i}=\{\mathrm{s}_{i1}, \mathrm{s}_{i}2, \mathrm{s}i3\}$ for player $i=1,$ $\ldots,4$ . Suppose that the payoffs of 1 and 2
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depend only upon their own strategies, i.e., $g_{1}$ and $g_{2}$ are (regarded as) defined
on $\Sigma_{1}\cross\Sigma_{2}$ which are given as Table 1.3. Then let $g_{3}$ and $g_{4}$ depend upon the
strategy choices of 3 and 4 as well as those of 1 and 2, i.e., they are defined
on $\Sigma_{1}\cross\Sigma_{2}\mathrm{x}\Sigma_{3}\cross\Sigma_{4}$ which are given as Table 1.3 (with the replacements of
players 1, 2 with 3, 4) and Table 1.4: if 1 and 2 play $(\mathrm{s}_{12}, \mathrm{s}_{22})$ , the payoffs for 3
and 4 are given in Table 1.3, and otherwise, they are given in Table 1.4, which
is obtained from 1.3 by permuting the first and second strategies for 3 and 4.

$\mathrm{s}_{21}$ $\mathrm{s}_{22}$ $\mathrm{s}_{23}$ $\mathrm{s}_{41}$ $\mathrm{s}_{42}$ $\mathrm{s}_{43}$

$\mathrm{s}_{11}$ 5,5 1,6 3,0 $\mathrm{s}_{31}$ 3,3 6,1 0,2

$\mathrm{s}_{12}$ 6,1 $3,3^{*}$ 0,2 $\mathrm{s}_{32}$ 1,6 5,5 3,0

$\mathrm{s}_{13}$ 0,3 2,0 2,2 S33 2,0 0,3 2,2

Players 1 and 2

3’ and 4’ payoffs if $(\mathrm{S}_{12}, \mathrm{S}_{22})$ are played otherwise

Table 1.3 Table 1.4

In this game, we could regard players 1 and 2 as playing simply the 2-person
game of Table 1.3 if they ignore the choices of 3 and 4. However, players 3 and
4 need to predict l’s and $2’ \mathrm{s}$ decisions to maximize their payoffs. In this game,
the first argument is applied to the “partial” game of 1 and 2 and to the game
of 3 and 4 conditional upon the predictions on the decisions in the game of 1
and 2.

We find a similarity between this game and that of Table 1.2 by regarding
{1, 2} and {3, 4} as players 1 and 2 of Table 1.2. Also, the above Nash equilib-
rium argument is applied between 1 and 2, and the common knowledge of their
payoffs as well as their behavioral postulates are involved. Between 3 and 4, the
situation is more complicated: the same NE argument is applied to between 3
and 4, and furthermore, the argument for 1 and 2 itself is commonly known to
3 and 4, since they should predict 1 and $2’ \mathrm{s}$ decisions.

From the above arguments and examples, we have found the necessity of a
new general treatment of the knowledge of players on their behavior postulates
and that of a unified treatment of dominant strategies and Nash equilibrium
includin$\mathrm{g}$ hybrids such as the game of Example 1.2. In the next subsection, we
will give brief descriptions of the developments of our theory of these problems.

1.2. Game Theoretical Developments and Game Logic Considerations

In the above subsection, we argued that for an individual player’s decision
making, his knowledge of his $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ others’ behavioral postulates as well as
of payoff functions play important roles, and that there is a great spectrum
of games which seem to require different treatments of the knowledge of the
behavioral postulates and payoff functions. To encompass such a spectrum as
well as the seemingly different arguments, we will take two basic research steps.
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The first step is to develop new game theoretical concepts to unify the above
different concepts. Then the second step is to discuss the knowledge of the
players over their behavioral postulates as well as their payoff functions. The
first step will be developed in Part I of this paper. The second $\mathrm{w}\mathrm{i}\mathrm{U}$ be discussed
in Parts II and III in the game logic framework developed in Kaneko-Nagashima
[6].’ [7] and Kaneko [2].

In Part I, first, we introduce the concept a partial Nash equilibrium, which
is a generalization of both Nash equilibrium and dominant strategy. Then
we consider an interaction structure, which tells whose decision making, each
player should think about. By these generalizations, we can discuss the above
examples in a unified way, and will take another substep of associating a graph
with an interaction structure. We call this associated graph the skeleton, which
consists of a partition of players and a partial ordering on the partition. This
concept will play crucial roles in Parts I, II and III. In Part I, we give a condition
on a game for the skeleton to have a node having multiple players. In Part II,
it is proved that the players in one node need to share common knowledge of
their behavioral postulates and payoff functions for their decision making. We
also prove in Part I that if the skeleton consists of singleton sets, the (generic)
game is dominance-solvable. In this case, any form of common knowledge can
be avoided, which will be proved in Part II.

The introduction of an interaction structure leads to two types of inter-
changeability conditions of equilibria, which are given in Section 5. In Part II,
the epistemic axiomatization of individual decision making will be given under
these conditions. When one of these interchangeability conditions is violated,
some coordination in addition to the knowledge of the behavioral postulates
and payoff functions would be needed for decision making. This problem will
be discussed in Part III.

2. Partial Nash Equilibria and Interaction Structures

2.1. Partial Nash Equilibria

Consider an $n$-person noncooperative game $g=(g_{1}, \ldots,g_{n})$ . The player set is
given as $N=\{1, \ldots, n\}$ , and each player $i\in N$ has $\ell_{i}$ (pure) strategies $\mathrm{s}_{i1},$ $\ldots,\mathrm{s}_{i}\ell:$ .
We assume throughout Parts I and II that $\ell_{i}\geq 2$ for all $i\in N$ and that the
players do not play mixed strategies. Player $i’ \mathrm{s}$ strategy space $\{\mathrm{s}_{i}1, \ldots,\mathrm{S}_{i\ell}.\cdot\}$ is
denoted by $\Sigma_{i}$ , and his payoff function is a real-valued function $g_{i}$ on $\Sigma$ $:=$

$\Sigma_{1}\cross\cdots\cross\Sigma_{n}$ for $i\in N$ . We call an element $(a_{1}, \ldots,a_{n})\in\Sigma$ a strategy profile.
A strategy profile $a=(a_{1}, \ldots, a_{n})$ is called a Nash equilibrium (NE) iff for

all $i\in N$ ,
$g_{i}(a)\geq g_{i}(x_{i,-i}a)$ for all $x_{i}\in\Sigma_{i}$ ,

where $a_{-i}=$ ( $a_{1},$
$\ldots,$ $a_{i-}1,$ $a_{i}+1,$ $\ldots,$ an) and $(b_{i}, a_{-i})=$ ( $a1,$ $\ldots,a\dot{*}-1,$ $b:,$ $ai\dagger 1,$ $\ldots,$ an).

We now provide a generalization of Nash equilibrium, which is rather an
auxiliary concept to be used in later developments in this paper. Let $S$ be a
nonempty subset of $N$ , and $T$ a (possibly empty) subset of $N$ with $S\cap T=\emptyset$ .
We say that $a_{S}=(a_{i})_{i\in}s\in\Sigma_{S}$

$:= \prod_{i\in S}\Sigma_{i}$
is an $S$-partial NE conditional upon
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$b_{T}\in\Sigma_{T}$ iff for all $y-s_{-}T\in\Sigma_{-S-T}$
$:= \prod_{\cup i\in N-(S\tau)}\Sigma$: and for all $i\in S$,

$g_{i}(a_{S}, b\tau, y_{-}s_{-}\tau)\geq g_{i}(x_{i}, as_{-}i, b\tau, y-s_{-}\tau)$ for all $x_{i}\in\Sigma_{i}$ . (2.1)

Here $a_{S-1}$
. is the vector $(a_{j})_{i\in^{s-\{}}i\}$ . When $T$ is empty, we call $a_{S}=(a_{i})_{i\in^{s}}$

simply an $S$-partial NE. Note that an $N$-partial NE is a NE itself, and vice
versa. Also, $d$ is a NE if and only if $d_{i}$ is a $\{i\}$-partial NE conditional upon $d_{-1}$

for all $i\in N$ . It should be emphasized that this is an auxiliary concept and will
be used in later developments.

A partial NE is also a generalization of a dominant strategy. That is, $d_{\dot{\iota}}$

is called a dominant strategy iff it is a $\{i\}$ -partial NE. We call $d=(d_{1}, \ldots, d_{n})$

a dominant strategy equilibrium iff $d_{i}$ is a dominant strategy for all $i\in N$ .
Thus, $d=(d_{1}, \ldots,d_{n})$ is a dominant strategy equilibrium if and only if $d_{\dot{i}}$ is a
$\{i\}$-partial NE for all $i\in N$ .

In Prisoner’s Dilemma, $\mathrm{s}_{i2}$ is a unique $\{i\}$-partial NE for each $i=1,2$ . In the
game of Table 1.2, $\mathrm{s}_{12}$ is a {1}-partial NE, while $\mathrm{s}_{22}$ is a {2}-partial NE condi-
tional upon $\mathrm{s}_{12}$ . The 2-person game of Table1.3 has no properpa-rtial NE, while
$(\mathrm{s}_{12}, \mathrm{s}_{22})$ is a NE. In the 4-person game of Example 1.2, $(\mathrm{S}_{12}, \mathrm{S}_{22})$ is a $\{1, 2\}-$

partial NE, and $(\mathrm{S}_{32}, \mathrm{S}_{42})$ is a {3, 4}-partial NE conditional upon $(\mathrm{s}_{12}, \mathrm{s}_{22})$ . Thus,
our generalization of Nash equilibrium differentiates these games.

2.2. Interaction Structures

The examples of Section 1 suggest that decision making for some players are
conditional upon the knowledge or inference on the choice of some other players.
To describe this idea, we introduce the concept of an interaction structure.

We say that an $n$-tuple $(J_{1,\ldots,n}\sqrt)$ of subsets of $N$ is an interaction structure
iff

(Reflexivity): $J_{i}\ni i$ for all $i=1,$ $\ldots,$
$n$ ;

(Transitivity): $J_{i}\ni j$ and $J_{j}\ni k$ imply $J_{i}\ni k$ .

An interaction structure $(J_{1}, \ldots, J_{n})$ will be used to describe, later, the idea that
$J_{i}-\{i\}$ , denoted as $J_{i}-i$ in the following, represents the set of players whose
choices player $i$ may need to infer. Following this interpretation, Reflexivity
means that he himself is conscious of his own decision, and Transitivity means
that if player $i$ needs to infer $j’ \mathrm{s}$ choice and player $j$ needs $k’ \mathrm{s}$ choice, player $i$

needs to infer $k’ \mathrm{s}$ choice. Transitivity is written also as

$j\in J_{i}$ implies $J_{j}\subseteq J_{1}.$ . (2.2)

Of course, $N=(N, \ldots, N)$ is an interaction structure, which we call the full
interaction structure.

Let $J=(J_{1}, \ldots, J_{n})$ be an interaction structure. We say that a subset $J$

of $N$ is $J$ -closed iff $\bigcup_{i\in J}J_{j}=J$
. By Transitivity, each $J_{\}$ is $J$-closed, and by

Reflexivity of $J$ , so is $N$ . Since our primary objective is to consider individual
decision making, we would like to focus on each $J_{\dot{\iota}}$ . However, Example 2.1
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given below shows that we may not decentralize our consideration and that the
consideration of a $J$-closed set may be essential.

We consider the following condition for a game $g$ , a $J$-closed set $J$ and a
profile $d_{J}$ in $\Sigma_{J}$ :

for each $i\in J,$ $d_{i}$ is an $\{i\}$-partial NE $\mathrm{c}\mathrm{o}\mathrm{n}$.ditional upon $d_{J_{i}i}-\cdot$ (2.3)

Profile $d_{J}$ in (2.3) is an $J$-partial NE, but not vice versa. We say that an
interaction structure $J=(J_{1}, \ldots, J_{n})$ is feasible for $J$ in game $g$ iff there is a
profile $d_{J}$ in $\Sigma_{J}$ for which (2.3) holds. When $J=(J_{1}, \ldots, J_{n})$ is feasible for
$N$ , a strategy profile $d$ in (2.3) is a NE. Conversely, if $g$ has a NE $d$ , the full
interaction structure $N=(N, \ldots, N)$ is feasible for $N$ .

Prisoner’s Dilemma has four feasible interaction structures for $N$ :

$J_{1}=(\{1\}, \{2\}),$ $J_{2}=(\{1,2\}, \{2\}),$ $J_{3}=(\{1\}, \{1,2\}),$ $J_{4}=(\{1,2\}, \{1^{t},2\})$ .

In the game of Table 1.2, neither $J_{1}$ nor $J_{2}$ is feasible for $N$ , but $J_{3},$ $J_{4}$ are
feasible $N$ . The 2-person game defined by Table 1.3 has the unique feasible
interaction structure $J_{4^{-_{\mathrm{W}\mathrm{e}}}}$ will later call such games fully interactive games.

The game of Example 1.2 has only two feasible interaction structures for $N$ :

$(\{1,2\}, \{1,2\}, N, N)$ and $(N, N, N, N)$ .

In this game, players 3 and 4 need to infer the choices of 1 and 2. When player 1
(or 2) wants to infer $3’ \mathrm{s}$ and $4’ \mathrm{s}$ decisions, then 2 (or 1) also needs to infer their
decision. Therefore we obtain the feasible interaction structure $(N, N, N, N)$
for $N$ . In $(N, N, N, N)$ , the inferences of players 1 and 2 on the choices of 3
and 4 could be redundant for l’s and $2’ \mathrm{s}$ decision making unless either 1 an.$\mathrm{d}2$

wants to know $3’ \mathrm{s}$ and $4’ \mathrm{s}$ decisions.
In this game, $(\{1,2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\})$ is feasible for. {1, 2}, but for

neither {1, 2, 3} nor {1, 2, 4}.
A partial ordering $\leq$ over the interaction structures is defined by $J=$

$(J_{1}, \ldots, J_{n})\leq J’=(J_{1}’, \ldots, J_{n}’)$ iff $J_{i}\subseteq J_{i}’$ for all $i\in N$ . Then we can consider
minimal and maximal feasible structures for $N$ (or $J$ ) in a game by this ordering
$\leq \mathrm{i}\mathrm{f}$ the game has feasible interaction structures for $N$ (or $J$ ).

The following are simple observations on feasible interaction structures.

Proposition $2.1.(1)$ . Game $g$ has a dominant strategy equilibrium if and only
if $(\{1\}, \ldots, \{n\})$ is a feasible interaction structure for $N$ in $g$ .
(2): If $J\leq J’$ and $J$ is feasible for $N$ , then $J’$ is also feasible for $N$ .
(3): $g$ has a NE if and only if $N$ is feasible for $N$ .

It follows from (1) and (2) that if game $g$ has a dominant strategy equilib-
rium, then any interaction structure can be feasible for $N$ . Here we allow an
interaction structure to include some redundancy in the inferences for decision
making. In the present paper, we will not consider the further choice of an
interaction structure, since more structures should be developed before such a
discussion.
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Now we give a game which has a feasible interaction structure for a proper
subset $J$ but not for $N$ -some players could make decisions but some not. Also,
it implies that we cannot necessarily decentralize our consideration into each
$J_{i}$ .
Example 2.1. Consider the 5-person game $(g_{1}, ..,g_{5})$ with $\Sigma_{i}=\{\mathrm{s}_{11}, \mathrm{s}_{i2}\}$

for $i\in N$ . Let $g_{5}$ take always $0$ over $\Sigma$ . The payoff functions $g_{1}$ and $g_{2}$ over
$\Sigma_{1}\cross\Sigma_{2}\cross\Sigma_{5}$ are given as Table 1.1 (Prisoner’s Dilemma) if player 5 chooses
$\mathrm{s}_{51}$ , and as Table 2.1 (Matching Penny) if 5 chooses $\mathrm{s}_{52}$ . The payoff functions
$g_{3}$ and $g_{4}$ defined over $\Sigma_{3}\cross\Sigma_{4}\cross\Sigma_{5}$ are given as Table 2.1 if 5.$\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{O}\mathrm{S}\mathrm{e}\mathrm{S}\mathrm{s}_{5}1$ , and
as Table 1.1 if 5 chooses $\mathrm{s}_{52}$ .

$\mathrm{s}_{41}$ $\mathrm{s}_{42}$

$\mathrm{s}_{31}$ $1,$ $-1$ $-1,1$

$\mathrm{s}_{32}$ $-1,1$ $1,$ $-1$

Matching Pennies

Players 1 and 2: $(\mathrm{s}_{12}, \mathrm{S}_{22})$

Table 2.1

Consider the interaction structure $J=(\{1,2,5\}, \{1,2,5\}, \{3,4,5\}, \{3,4,5\}, \{5\})$ .
This $J$ is feasible for $J_{1}=J_{2}$ with $(\mathrm{s}_{12}, \mathrm{s}22, \mathrm{s}51)$ , and it is feasible for $J_{3}=J_{4}$

with $(\mathrm{s}32, \mathrm{s}42, \mathrm{s}52)$ . However, $J$ is not feasible for $N$ , since there are no $\{1, 2\}-$

partial NE’s conditional upon $\mathrm{s}_{52}$ and no {3, 4}-partial NE’s conditional upon
$\mathrm{s}_{51}$ .

One condition for decentralization is given in the following proposition, and
a condition on a game for decentralization will be given in Section 5.

Proposition 2.2. Let $J$ be a $J$-closed subset of $N$ . Suppose that $J$ has a
partition consisting of sets in $J$ . Then in game $g,$ $J$ is feasible for $J_{i}$ for each
$i\in J$ if and only if $J$ is feasible for $J$ .

3. Skeletons of Interaction Structures

Graph theoretic considerations of interaction structures are useful for the fur-
ther developments of our theory. The graph directly associated with an inter-
action structure $J=(J_{1}, \ldots, J_{n})$ is the directed graph $(N, \{(j, i):j\in J_{i}\})$ , but
this is not convenient for our later purposes. Instead, we consider the skeleton
of this graph by treating each maximal cycle in $(N, \{(j, i) : j\in J_{i}\})$ as one
point. The skeleton will be used to investigate partial Nash equilibrium and to
characterize the knowledge structure defined by $J$ in Part II.

Let $J=(J_{1}, \ldots, J_{n})$ be an interaction structure. We call a subset $\{i_{1}, \ldots, i_{l}\}$

of $N$ a cycle iff

$J_{i_{t}}\ni i_{t+1}$ for all $t$ (mode $\ell$).
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Note that any singleton set $\{i\}$ , i.e., $\ell=1$ , is a cycle. We denote the class of
maximal cycles by $C_{J}$ . Then $C_{J}$ is a partition of $N$ .

We introduce a binary $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\succ \mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}c_{J}$ as follows: for any distinct $S,T\in$

$C_{J}$ ,
$S\succ T$ if and only if $\sqrt\dot{.}\ni j$ for some $i\in S$ and $j\in T$ . (3.1)

It follows from Transitivity for $J=(J_{1}, \ldots, J_{n})$ that $S\succ T$ if and only if $J_{i}\ni j$

for all $i\in S$ and all $j\in T$ . Then it is easy to see that $\succ$ satisfies Transitivity
and Anti-Symmetry, which implies. the following lemma.

Lemma 3.1 The $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\succ \mathrm{i}\mathrm{s}$ a partial ordering over $C_{J}$ .
We call the graph $(C_{J}, \succ)$ the skeleton of the interaction structure $J$ . Since

$C_{J}$ is a finite set, we can use inductive arguments over $C_{J}$ from the minimal
components in $C_{J}$ with respect $\mathrm{t}\mathrm{o}\succ$ . For inductive arguments as well as graph-
ical representations, it would be useful to introduce the immediate $parl\succ^{I}$ of
$\succ \mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}C_{J}$ : for any $S,T\in C_{J},$ $S\succ^{I}T$ if and only if $S\succ T$ but $S\succ R\succ T$ for
no $R\in C_{J}$ . We also write $S\succeq T$ iff $S\succ T$ or $S=T$.

It follows from the definition of $C_{J}$ and Transitivity that

$J_{i}=J_{j}$ if $i,j\in S\in C_{J}$ . (3.2)

Hence we can denote $J_{i}(i\in S)$ by $J(S)$ . Of course, $J(S)$ is $J$-closed. Since
$J(S)-S \mathrm{i}\mathrm{S}\bigcup_{T\prec^{I}s^{j}}(T),$ $J(s)-s$ is also J-closed.

In Prisoner’s Dilemma, there are four feasible interaction structures for $N$ :
The skeletons of these structures are described ( $\succ^{I}$ is denoted $\mathrm{b}\mathrm{y}arrow$ (“$\mathrm{i}\mathrm{s}$ affected
by”) in the diagrams):

{2} {1}
$\uparrow$ $\uparrow$

{1} {2} {1} {2} {1, 2}

$J_{1}=(\{1\}, \{2\})$ $J_{2}=(\{1\}, \{1,2\})$ $J_{3}=(\{1,2\},\{2\})$ $J_{4}=(\{1,2\},\{1,2\})$

The game of Example 1.2 has two feasible interaction structures for $N$ whose
skeletons are:

{3, 4}
$\uparrow$

{1, 2} {1, 2, 3, 4}

$(\{1,2\}, \{1,2\},N,N)$ $(N, N, N,N)$

Diagram 3.1 Diagram 3.2

The skeleton of $J=(\{1,2,5\}, \{1,2,5\}, \{3,4,5\}, \{3,4,5\}, \{5\})$ of Example 2.1
is given as Diagrams 3.3:

{1, 2} {3, 4}
$\backslash$ $\nearrow$

{5}

Diagram 3.3.
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Thus the skeletons permit much simpler graphical representations of interaction
structures.

The following example shows that the skeleton may have a cycle.

Example 3.1. Consider the following 4-person game where each player has
two pure strategies. The payoff function $g_{1}$ depends upon $\Sigma_{1}$ , which is given
by Table 3.1, and the payoff functions $g_{2}$ and $g_{3}$ depending upon $\Sigma_{1}\cross\Sigma_{2}$ and
$\Sigma_{1}\cross\Sigma_{3}$ , respectively, are given by Tables 3.2 and 3.3. Finally, $g_{4}$ depends upon
$\Sigma_{2}\cross\Sigma_{3}\cross\Sigma_{4}$ given by Tables 3.4 and 3.5.

$\mathrm{s}_{21}$ $\mathrm{s}_{22}$ $\mathrm{s}_{31}$ $\mathrm{s}_{32}$

$\mathrm{s}_{11}$ 1
$\mathrm{s}_{11}$ 1 $0$

$\mathrm{s}_{11}$ 1 $0$

$\mathrm{s}_{12}$
$0$

$\mathrm{s}_{12}$
$0$ 1 $\mathrm{s}_{12}$

$0$ 1

Table 3.1 Table 3.2 Table 3.3

$\mathrm{s}_{41}$ 1 $\mathrm{s}_{41}$
$0$

$\mathrm{s}_{42}$
$0$ $\mathrm{s}_{42}$ 1

$2’ \mathrm{s}$ and $3’ \mathrm{s}$ strategies: $(\mathrm{s}_{21}, \mathrm{s}_{31})$ otherwise

Table 3.4 Table 3.5

In this game, $(\{1\}, \{1,2\}, \{1,3\}, \{1,2,3,4\})$ is a unique minimal feasible inter-
action structure for $N$ with $d=(\mathrm{s}_{11}, \mathrm{s}_{21}, \mathrm{s}31, \mathrm{S}41)$ . The skeleton of this structure
is described as:

$\nearrow\backslash \{4\}$

{2} {3.}
$\nwarrow\nearrow$

{1}

Diagram 3.4

Using the skeleton of an interaction structure, condition (2.3) is written as
follows.

Proposition 3.2. Let $J$ be an interaction structure, $(C_{J}, \succ)$ its skeleton and
$J$ a $J$-closed subset. Also, let $d_{J}\in\Sigma_{J}$ . Then (2.3) for all $i\in J$ if and only if
$d_{T}$ is a $T$-partial NE conditional upon $d_{J(T)-^{\tau}}$ for all $T\in C_{J}$ with $T\subseteq J$.

Let us apply this proposition to the 4-person game of Example 1.2 with the
interaction structure $J=(\{1,2\}, \{1,2\},N, N)$ . The skeleton of $J$ is given as
Diagram 3.1. Then

(i): $(\mathrm{s}_{12}, \mathrm{s}_{22})$ is a {1, 2}-partial NE;
(ii): $(\mathrm{s}_{32}, \mathrm{s}_{42})$ is a {3, 4}-partial NE conditional upon $(\mathrm{s}_{12}, \mathrm{s}_{22})$ .

These should be interpreted as having two sets of statements, instead of two
independent statements. One consists of simply (i), which means that players
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1 and 2 think that $(\mathrm{s}_{12}, \mathrm{s}_{22})$ is a partial NE for them, and the other consists of
(i) and (ii). That is, players 3 and 4 predict (i) for 1’ and 2’ decisions and think
about (ii) under this prediction–the conditional of (ii). This interpretation
is still implicit. The fully explicit treatment .will be given in the game logic
framework in Part II.

To avoid multiple statements like (i) and (ii) above, we give a name to them.
Let $J$ be a $J$-closed subset of $N$ . Then we say that $d_{J}\in\Sigma_{J}$ is a $J- NE_{J}$ iff

for all $T\in C_{J}$ with $T\subseteq\sqrt$, (3.3)
$d_{T}$ is a $T$-partial NE conditional upon $d_{j()-\tau}T$ .

For the full interaction structure $N=(N, \ldots,N),$ $d$ is a $N- \mathrm{N}\mathrm{E}_{N}$ if and only if it is
simply a NE. In the above 4-person game example with $J=(\{1,2\}, \{1,2\},N, N)$ ,
$(\mathrm{s}_{12},\mathrm{s}_{22})$ is a $J-\mathrm{N}\mathrm{E}_{\{2\}}1$, and $(\mathrm{s}_{12}, \mathrm{S}22, \mathrm{S}32, \mathrm{s}42)$ is a $J- \mathrm{N}\mathrm{E}_{N}$ .

The latter part of Proposition 3.2 is simply that $d_{S}$ is a $J^{- \mathrm{N}}\mathrm{E}s\cdot \mathrm{T}\mathrm{h}^{r}\mathrm{u}\mathrm{s}$ we
have the following proposition.

Proposition 3.3. For a $J$-closed subset $J$ of $N$ and a game $g=(g_{1}, \ldots,g_{n})$ ,
$J$ is feasible for $\sqrt$ if and only if there is a $J- \mathrm{N}\mathrm{E}_{J}d_{J}$ .

It holds that if $d$ is a $J- \mathrm{N}\mathrm{E}_{N}$ , then $d$ is a NE, but the converse is not
necessarily true.

4. Games with and without Mutual Interactions

We say that an interaction structure $J=(J_{1}, \ldots, J_{n})$ has mutual interactions
iff the skeleton $(C_{J}, \succ)$ of $J$ has at least one component consisting at least two
players. It will be shown in Part II that a feasible interaction structure has a
mutual interaction if and only if the individual decision making involves some
common knowledge. Hence it is important to give some conditions for a game
to separate interaction structures with from ones without mutual interactions.

4.1. Games with Mutual Interactions

Let $g$ be a game, $\sqrt$ a subset of $N$ and $i,j\in J$ . We say that player $i$ is
immediately dependent upon player $j$ in a $J$-partial NE $d_{J}$ in $g$ iff there are
$y_{j}\in\Sigma_{j}$ and $x_{i}\in\Sigma_{i}$ such that

$gi(di, yi, dJ-\{i,i\}, z-J)<gi(x_{i}, y_{i,-}dJ\{i,j\}, z-J)$ for some $z_{-J}\in\Sigma_{-j}$ .

This means that for player $i’ \mathrm{s}$ utility maximization, he needs to infer $j’ \mathrm{s}$ choice
$d_{j}$ . We say that player $i$ is dependent upon $j$ in $d_{J}$ iff there is a sequence
$i_{1}=i,$ $i_{2},$ $\ldots,i_{k}=j$ in $J$ such that $i_{t}$ is immediately dependent upon $i_{t+1}$ for
$t=1,$ $\ldots,$ $k-1$ in $d_{J}$ . We say that $i$ and $j$ are mutually dependent iff $i$ is
dependent upon $j$ and vice versa. The dependence relation is transitive, and
the mutual dependence relation is an equivalence relation.

Lemma 4.1. Let $J=(J_{1}, \ldots, J_{n})$ be an interaction structure feasible for a
$J$-closed set $J$ with $d_{J}$ , and $i,j\in J$ . If $i$ is dependent upon $j$ , then $j\in J_{i}$ .

Lemma 4.1 implies the following proposition.
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Proposition 4.2. Let $(J_{1}, \ldots, J_{n})$ be an interaction structure feasible for a
$J$-closed set $J$ with $d_{J}$ in game $g$ .
(1): If players $i$ and $j$ in $J$ are mutually dependent, then $J_{i}\ni j$ and $J_{j}\ni i$ ;
(2): If any two players in $J=N$ are mutually dependent in $g$ , then $(N, \ldots,N)$

is the only feasible interaction structure for $N$ .
We say that a game $g$ is fully interactive iff $(N, \ldots,N)$ is only a feasible

interaction structure for $N$ . It will be shown in Part II that in a fully interactive
game, the payofffunctions should be common knowledge for each player to have
a final decision.

In the following example, each player is immediately dependent upon only
one player, but is dependent upon the $\mathrm{o}\mathrm{t}.\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{s}$. Hence it is a fully interactive
game by Proposition $4.2.(2)$ .

4.2. Games without Mutual Interactions

Here we consider a game with a feasible interaction $J=(J_{1}, \ldots, J_{n})$ for $N$ where
every component of the skeleton $(C_{J}, \succ)$ is singleton. It will be shown in Part
II that in such a game, the common knowledge of the payoff functions can be
avoided for decision making. In this subsection, we look at the status of these
games in the literature of game theory.

The following proposition follows a known result (cf., Osborne-Rubinstein
[10], p.94), but is proved for completeness. Note that a 2-person game with an
NE has a unique minimum feasible interaction structure.

Proposition 4.3. Let $g$ be a 2-person game with two strategies for each player.
Assume that the game has a unique NE. Then $J_{1}=\{1\}$ or $J_{2}=\{2\}$ for the
minimal feasible interaction structure $(J_{1}, J_{2})$ for {1, 2}.

Next we consider the notion of dominance-solvability. We say that for strate-
gies $a_{i},$ $b_{:}\in\Sigma_{\dot{*}},$ $a_{i}$ is dominated by $b_{i}$ iff $g_{i}(a_{\dot{\iota},-}a\dot{.})\leq g_{i}(b_{i}, a_{-i})$ for all $a_{-\dot{*}}\in\Sigma_{-i}$

and $g_{i}(a_{i}, a-i)<g_{1}.(b_{i}, a_{-i})$ for some $a_{-i}\in\Sigma_{-i}$ . A strategy is called a dominated
strategy iff it is dominated by some other strategy. We say that a game $g$ is
dominance-solvable iff there is a finite sequence $g^{0}=g,$ $g^{1},$

$\ldots,$
$g^{m}$ of games such

that

(1): for $t=0,$ $\ldots,m-1,$ $g^{t+1}$ is obtained from $g^{t}$ by eliminating dominated
strategies in $g^{t}$ ;
(2): for all $i\in N,$ $g_{i}^{m}(a_{i,i}a_{-})=g_{i}^{m}(b_{i,-\dot{\iota}}a)$ for any $a_{i},$

$b_{i}$ and $a_{-\dot{i}}$ in $g^{m}$ .
Dominance-solvability describes “after finitely many elimination rounds all

strategies of any player are equivalent to him but not necessarily to other play-
ers” (Moulin [8], $\mathrm{p}.51$ ). The following proposition states that it is a suffi-
cient condition for dominance-solvable that the skeleton of a feasible interaction
structure for a generic game consists of singleton sets.

Proposition 4.4. Assume that for $i=1,$ $\ldots,n,$ $gi(a_{i}, a-i)\neq g_{i}(b_{i}, a_{-i})$ for any
distinct $a:,b:\in\Sigma\dot{.}$ and $a_{-i}\in\Sigma_{-i}$ . Suppose that $g$ has a feasible interaction
structure $J=(J_{1}, \ldots, J_{n})$ for $N$ where every component of $C_{J}$ is singleton.
Then $g$ is dominance-solvable.
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5. Conditional Interchangeability and Concatenation

Nash [9] demarcates between the games with interchangeable NE’s and the
ones with $\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{C}\dot{\mathrm{h}}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$NE’s, where th.e NE’s of a game $g$ are said to be
interchangeable iff

if $a$ and $b$ are NE’s, then $(a_{i}, b_{-1})$ is also a NE for all $i\in N$ . (5.1)

Interchangeability is an extension of uniqueness and avoids the problem of an
individual choice from the multiple NE strategies. If game $g$ has the inter-
changeable NE’s, then each individual player can choose any of his NE strate-
gies, but if not, he needs to worry about the double-cross such as in the game
of Battle of the Sexes:

$\mathrm{s}_{21}$ $\mathrm{s}_{22}$

$\mathrm{s}_{11}$ $(2,1)^{*}$ $(0,0)$

$\mathrm{s}_{12}$ $(0,0)$ $(1,2)^{*}$

Battle of the Sexes

Table 5.1

When we introduce an interaction structure $J$ , we may meet another type of
interchangeability as well as the type of (5.1). In this section, we give these two
types of interchangeabilities. These conditions would play essential roles in the
epistemic axiomatization of decision making in Part II where we take explicitly
the knowledge structure into account. If at least one of these conditions is
violated, some additional coordination, e.g., communication, would be required
to have final decisions, which is the subject of Part III.

-Let an interaction structure $J=(J_{1}, \ldots, J_{n})$ , its skeleton $(C_{J}, \prec)$ and a J-
closed subset $J$ of $N$ be given. The two conditions for $J$ are: for all $T\in C_{J}$

with $T\subseteq J$ ,
$(\mathrm{I}- 1)$ ( $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ Interchangeability): if $(d\tau, dj\mathrm{t}^{T)}-\tau)$ and $(c\tau, dJ(\tau)-\tau)$

are $J- \mathrm{N}\mathrm{E}_{j(\tau)}$ , so is $(c_{i}, d_{T-i}, d_{J(T})-\tau)$ for all $i\in T$ .
$(\mathrm{I}- 2)(\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n})$ : if $(d_{T}, d_{j}(T)-\tau)$ is a $J- \mathrm{N}\mathrm{E}_{j()}T$ and if $c_{J\mathrm{t}\tau)-\tau}$ is a
J-NEJ$(\tau)-\tau$ , then $(d\tau, c_{J(T})-^{\tau})$ is also a $J- \mathrm{N}\mathrm{E}_{J(T}$).

Conditional Interchangeability, I-l, is a restriction of (5.1) over $T$ conditional
upon $d_{J\langle T)}-\tau$ , which is based on the same reasoning as that of (5.1). Concate-
nation I-2 guarantees that the $T$-part of any $J- \mathrm{N}\mathrm{E}_{j\mathrm{t}^{\tau})}$ can be concatenated
with any $J- \mathrm{N}\mathrm{E}_{J()T}T-\cdot$ In the decision making of the players in $J(T)-\tau$, they
ignore decision making of $T$ . When there are multiple J-NEJ$(T)-\tau$ , this multi-
plicity may generates no difficulty for $J(T)-T$, but it may affect $T’ \mathrm{s}$ choices.
Condition I-2 rules this possibility out.

These conditions are satisfied by the examples previously given, except Ex-
amples 2.1, 3.2 and Battle of the Sexes. In Battle of the Sexes, the full interac-
tion structure $N=(\{1,2\}, \{1,2\})$ is only feasible. Both $(\mathrm{s}_{11}, \mathrm{s}_{21})$ and $(\mathrm{s}_{12}, \mathrm{s}_{22})$
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are $N- \mathrm{N}\mathrm{E}_{N}$ , and thus, I-l is violated. In Example 3.2, $(\mathrm{s}_{12}, \mathrm{s}_{22}, \mathrm{s}32, \mathrm{S}42)$ is a
unique $J- \mathrm{N}\mathrm{E}_{N}$ for $J=(\{1,2\}, \{1,2\}, N, N)$ . Hence both I-l and I-2 are ful-
filled. For $N=(N, \ldots, N),$ $(\mathrm{s}_{12}, \mathrm{s}22, \mathrm{S}\mathrm{s}2, \mathrm{s}_{42})\mathrm{r}$.emains to be a $N- \mathrm{N}\mathrm{E}_{N}$ but there
is another $N- \mathrm{N}\mathrm{E}_{N}$ ( $\mathrm{s}_{13,2}\mathrm{s}3$ , S33, $\mathrm{s}_{43}$ ). Hence I-l is violated but not I-2.

In Example 2.1 with $J=(\{1,2,5\}, \{1,2,5\}, \{3,4,5\}, \{3,4,5\}, \{5\})$ , whose
skeleton is

$\{1, 2\}\backslash \nearrow\{3,4\}$

{5}

Diagram 5.1
$(\mathrm{s}_{12}, \mathrm{s}_{22}, \mathrm{s}51)$ is a unique $J- \mathrm{N}\mathrm{E}_{j_{1}}$ and $(\mathrm{s}_{32}, \mathrm{s}_{42}, \mathrm{s}52)$ is also a unique $J- \mathrm{N}\mathrm{E}_{j_{3}}$ .
Both $\mathrm{s}_{51}$ and $\mathrm{s}_{52}$ are $J- \mathrm{N}\mathrm{E}_{J_{5}}$ . However, neither $(\mathrm{s}_{12}, \mathrm{s}_{22}, \mathrm{s}52)$ nor $(\mathrm{s}_{32}, \mathrm{s}_{42}, \mathrm{S}_{51})$

is a J-NE$J_{1}$ or $J- \mathrm{N}\mathrm{E}_{J_{3}}$ . Thus I-2 is violated. This causes the infeasibility of $J$

for $N$ .
When the skeleton $(C_{J}, \succ)$ consists of singleton sets, I-l is fulfilled in general

since each decision making is made by a single player. Condition I-2 is fulfilled
for a generic game, since each player’s choice is unique and no concatenation
problem occurs.

Proposition 5.1. Let $J$ be an interaction structure feasible for a $J$-closed set
$\sqrt$ in a game $g$ . Suppose that $\{j\}\in C_{J}$ for all $j\in J$.
(1): Condition I-l holds for $J$ .
(2): Assume that for all $i\in J,$ $g_{i}(a_{i}, a-i)\neq g_{i}(b_{i}, a_{-i})$ for any distinct $a_{i},$

$b_{:}\in\Sigma_{i}$

and $a_{-i}\in\Sigma_{-i}$ . Then I-2 holds for $J$ .
Conditions I-l and I-2 imply the following, rather direct generalization of

(5.1), but the converse is not true. Example 5.1 is a counterexample for the
converse.

Proposition 5.2. Let $J$ be an interaction structure, and $J$ a $J$-closed subset
of $N$ . If I-l and I-2 hold for $\sqrt$ in game $g$ , then

. $(\mathrm{I}- 1^{*})$ : if $d_{J}\mathrm{a}.\mathrm{n}\mathrm{d}_{C_{J}}$ are $J- \mathrm{N}\mathrm{E}_{J}$ , then so is ( $c_{i},$ $d_{J:)}-$ for all $i\in J$.
The following proposition states that I-2 guarantees that we can decentralize

our consideration as far as feasibility is concerned.

Proposition 5.3. Let $J$ be an interaction structure, and $J$ a $J$-closed subset
of $N$ . Suppose that I-2 holds for $J$ . Then if $J$ is feasible for $J_{i}$ for all $i\in J$,
then $J$ is feasible also for $J$.

6. Concluding Remark

We should give one remark on the relationship between the feasibility of an
interaction structure $J$ and conditions I-l and I-2, since they are not related
in this Part I. Feasibility for a $J$-closed set $J$ is, in fact, a necessary condition
for the players to have final decisions. In fact, its point is the negative part: it
will be shown in Part II that $J$ is not feasible for $\sqrt$ in game $g$ if and only if the
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players cannot have final decisions. On the other hand, I-l and I-2 are sufficient
conditions for these players to have final decisions without coordinations in
addition to individual thinking on decision making. It will be shown in Part
II that if $J$ is feasible for $J$ in game $g$ and if I-l and I-2 hold, then they can
have final decisions under appropriate knowledge of their payoff functions but
without further coordinations. The subject of Part III is the consideration
of necessary coordinations when at least one of I-l and I-2 are violated but
feasibility is, of course, assumed.
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