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1 Introduction
The notion of compact quantum groups, matrix pseudogroups in original terminology,
was first introduced by S. L. Woronowicz on the basis of $C^{*}$ -algebra theory [22], and
it is the dual notion of Drinfel’d and Jimbo’s quantum universal enveloping algebras
[4] [7]. Since it may provide a new kind of symmetry because it generalizes the notion
of ordinary groups, actions of quantum groups on operator algebras have drawn several
authors’ attention. In this note we report recent results of actions, especially product
type actions, of compact quantum groups on operator algebras.

Among other results, we focus on the relationship between quantum probability theory
and product type actions, which is an unexpected byproduct of the subject. Usually,
product type actions of ordinary compact groups are typical examples of so called minimal
actions, which mean the triviality of the relative commutants of the fixed point algebras.
However, the natural product action of $SU_{q}(2)$ on the Powers factor does not have this
property; the Podles quantum sphere arises as the relative commutant. The mathematical
structure behind this phenomenon is parallel to the boundary theory of random walks
on discrete groups, and here the role of the discrete group is replaced with the dual Hopf
algebra of $SU_{q}(2)$ .

2 Product Type Actions
Since we do not need the general definition of compact quantum groups, we just give
that of $SU_{q}(2)$ introduced by Woronowicz [21]. For general theory, see [22]. Our choice
of generators is taken from [13].

Definition 2.1 Let $q$ be a non-zero real number satisfying $|q|\leq 1$ . $C(SU_{q}(2))$ is the
universal $C^{*}$ -algebra generated by four elements $x,$ $u,$ $v$ , and $y$ satisfying the following
relations:

$ux=qxu$ , $vx=qxv$ , $yu=quy$, $yv=qvy$,

$uv=vu$, $xy-q^{-1}uv=yx-quv=1$ ,

数理解析研究所講究録
1024巻 1998年 55-60 55



$x^{*}=y$ , $u^{*}=-q^{-1}v$ .

Let $(w_{ij})$ be the matrix with entries in $C(SU_{q}(2))$ defined by

Thanks to the universality of $C(SU_{q}(2))$ , there exists a $*$-homomorphism, called the
coproduct,

$\Delta:C(SU_{q}(2))arrow C(SU_{q}(2))\otimes_{\min}C(SU_{q}(2))$

determined by the following relations:

$\Delta(w_{ij})=\sum_{k}w_{i}k\otimes w_{kj}$ .

Therefore, $C(SU_{q}(2))$ is a matrix pseudogroup in the sense of Woronowicz [22]. There
exists a unique invariant state on $C(SU_{q}(2))$ called the Haar measure. We denote by
$L^{\infty}(SU_{q}(2))$ the weak closure of $C(SU_{q}(2))$ in the GNS representation of the Haar mea-
sure.

Although the notion of actions of quantum groups is fairly general, we introduce it
just for $SU_{q}(2)$ , which is enough for our purpose.

Definition 2.2 $A$ (right) action $\Gamma$ of $SU_{q}(2)$ on a $C^{*}$ -algebra $A$ is $a*$ -homomorphism
$\Gamma$ : $Aarrow A\otimes_{\min}C(SU_{q}(2))$ satisfying

$(\Gamma\otimes\dot{i}d)\cdot \mathrm{r}=(\dot{i}d\otimes\Delta)$ . F.

$A$ (right) action $\Gamma$ of $SU_{q}(2)$ on a von Neumann algebra $M$ is a $normal*$ -homomorphism
$\Gamma$ : $Marrow M\otimes L^{\infty}(SU_{q}(2))$ satisfying

$(\Gamma\otimes id)\cdot\Gamma=(id\otimes\Delta)$ . F.

In a similar way, one can introduce left actions just changing the order of tensor product
in an appropriate way.

Let $A,$ $M,$ $\Gamma$ be as above. We say that $x\in A$ (resp. $x\in M$ ) is invariant under $\Gamma$ if
$\Gamma(x)=x\otimes 1$ , and denote by $A^{\Gamma}$ (resp. $M^{\Gamma}$ ) the set of invariant elements. $A^{\Gamma}$ is called
the fixed point subalgebra of $A$ under $\Gamma$ .

Let $A$ be the UHF algebra of type $2^{\infty}$ , which is the infinite tensor product of 2 by 2
matrix algebra $M_{2}$ :

$A=\otimes_{i=1}^{\infty}M_{2}$ .
The infinite tensor product action of $SU_{q}(2)$ on $A$ was introduced by Y. Konishi, M.
Nagisa and Y. Watatani [12] as follows: Let $\{e_{i}^{(k)}\}jij$ be a system of matrix unit of the
$k\mathrm{t}\mathrm{h}$ tensor component. We define unitary operators $V^{(k)}$ and $W^{(k)}$ in $A\otimes C(SU_{q}(2))$ by

$V^{(k)}= \sum_{ij}e_{i}^{\langle}j\otimes k)w_{ij}$ , $W^{(k)}=V(1)V\mathrm{t}2)\ldots V\mathrm{t}k)$ .
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Then we can define an action $\Gamma$ of $SU_{q}(2)$ by the following limit:
$\Gamma(x)=\lim_{narrow\infty}Ad(W^{()}n)(x\otimes 1)$ , $x\in A$ .

Thanks to the $q$-version of the Weyl duality theorem, we can show. that the fixed point
algebra $A^{\Gamma}$ is generated by Jones projections ( $R$-matrices) with the index parameter
$(q+q^{-1})^{2}$ . (See [8] for Jones projections).

There are several interesting observations about quantum group actions on UHF
algebras made by M. Fannes, B. Nachtergaele, and R. F. Werner [3]. Among others, one
of their results shows that the above one-side infinite tensor product action is the best
possible generalization of infinite tensor product actions of compact groups. Namely,
they prove that there is no non-trivial translation invariant action of a proper quantum
group on two-side infinite tensor product.

3 Minimal Actions
In what follows, we assume $q\neq 1$ . In [11], Konishi shows that one of the Powers states,
which is the infinite product state of so called the normalized $q$-trace in 2-dimensional
representation of $SU_{q}(2)$ , is an invariant state of the action introduced in the previous
section. As in the case of usual group actions, one can extend the action of $SU_{q}(2)$

to the weak closure of the UHF algebra $A$ in the GNS representation of the invariant
Powers state, which is denoted by $R_{q^{2}}$ . For simplicity, we use the same symbol $\Gamma$ for the
extended action. Nakagami generalizes this construction to $SU_{q}(N)$ case, and investigates
the structure of the corresponding crossed products [14].

An action $\Gamma$ of a quantum group on a factor $M$ is called minimal if the relative
commutant $M\cap M^{\Gamma’}$ is trivial. Typical examples of minimal actions of compact groups
come from infinite tensor product actions with infinite product invariant states. However,
unlike the classical case our action on $R_{q^{2}}$ is not minimal. Indeed, if it were minimal,
it is not so difficult to show that the subfactor $R_{q^{2}}^{\Gamma}\supset\sigma(R_{q^{2}}^{\Gamma})$ would be irreducible, i.e.
$R_{q^{2}}^{\Gamma}\cap\sigma(R_{q^{2}})^{\Gamma’}=\mathrm{C}$ , where $\sigma$ is the shift endomorphism. However, this inclusion is
nothing but the Jones inclusion with index larger than 4, which is well-known to be not
irreducible [8]. The same argument works for $SU_{q}(N)$ case [18].

In view of the above example, it is tempting to conjecture that there is no faithful
minimal action of non-Kac compact quantum groups on AFD factors because for AFD
factors, product type actions are somehow believed to be universal objects. However, if
AFD condition is removed, there is a counter example due to Y. Ueda based on the free
product method. In [19], he constructs, among other things, a minimal action of $SU_{q}(N)$

on a full type $\mathrm{I}\mathrm{I}\mathrm{I}_{q^{2}}$ factor. Note that since the Haar measure of $SU_{q}(2)$ is not a trace
state, it is not so difficult to show that there is no faithful minimal action of $SU_{q}(N)$ on
type II factors.

4 Relative Commutants
As we saw in the previous section, the relative commutant $B=R_{q^{2}}\cap R_{q^{2}}^{\Gamma’}$ is not trivial.
It is easy to show that the restriction of $\Gamma$ to $B$ is again an action of $SU_{q}(2)$ , which
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is ergodic in the sense that the fixed point algebra is trivial. We would like to show
how to describe $B$ both as an algebra and as an $SU_{q}(2)$-space. It turns out that a non-
commutative version of the theory of Poisson boundaries of random walks plays a crucial
role in the description. For the classical theory of Poisson boundaries of random walks,
see $[9][10][20]$ . Note that it has already played an essential role in the index theory of
operator $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}\underline{\mathrm{b}\mathrm{r}\mathrm{a}}\mathrm{S}[1][2][5][16][17]$ .

Let $\ell^{\infty}(SU_{q}(2))$ be the dual Hopf algebra of $L^{\infty}(SU_{q}(2))$ , and $\hat{\Delta}$ the dual coproduct.
As a von Neumann algebra, $\ell^{\infty}(S\overline{U_{q}(}2))$ is isomorphic to the group von Neumann algebra
of $SU(2)$ . We introduce a non-commutative Markov operator $P$ on $\ell^{\infty}(S\overline{U_{q}(}2))$ , which
is a completely positive map, by $P=(id\otimes\tau_{q})\cdot\hat{\Delta}$ , where $\tau_{q}$ is the normalized $q$-trace as
before. We denote by $H^{\infty}(S\overline{U(q}2),$ $P)$ the set of fixed elements under $P$ , which we call
harmonic elements with respective to $P$ . Note that $H^{\infty}(S\overline{U(q}2),$ $P)$ is not an algebra but
an operator system.

Using the non-commutative martingale convergence theorem, we can show the fol-
lowing:

Theorem 4.1 ([6]) There is a surjective isometry $\theta$ : $H^{\infty}(S\overline{U(q}2),$ $P)arrow B$ which
intertwines the natural actions of $SU_{q}(2)$ . Moreover, one can recover the product structure
of $B$ from $H^{\infty}(S\overline{U(q}2),$ $P)$ and $P$ by the following formula:

$\theta^{-1}(\theta(X)\theta(y))=s-\lim_{narrow\infty}Pn(xy)$, $x,$
$y\in H^{\infty}(S\overline{U(q}2),$ $P)$ .

In view of the classical case [9], this result indicates that $B$ should be interpreted as
the “function space” on the “Poisson boundary” of the “quantum random walks” induced
by $P$ . Moreover, the next result shows that the “Poisson boundary” should be $\mathrm{T}\backslash SU_{q}(2)$ .

In [15] P. Podles introduced a family of quantum spheres, which are $C^{*}$-algebras with
ergodic $SU_{q}(2)$ actions satisfying a certain spectral condition under the actions. The
homogeneous space $C(\mathrm{T}\backslash SU_{q}(2))\subset C(SU_{q}(2))$ is the most natural one among them.
Let $L^{\infty}(\mathrm{T}\backslash SU_{q}(2))$ be the weak closure in the GNS representation with respective to the
unique $SU_{q}(2)$ -invariant state.

By using the representation theory of $SU_{q}(2)$ and random walks on $\mathrm{N}$ , we can deter-
mine the structure of $B$ through $H^{\infty}(S\overline{U(q}2),$ $P)$ and $P$ .

Theorem 4.2 ([6]) There is an isomorphism between $B$ and $L^{\infty}(\mathrm{T}\backslash SU_{q}(2))$ that inter-
twines the natural $SU_{q}(2)$ -actions.

There is a natural left $S\overline{U_{q}(}2$ ) action on $L^{\infty}(\mathrm{T}\backslash SU_{q}(2))$ , which is a “purely quantum”
phenomenon because it is trivial when $q=1$ . The natural map between $L^{\infty}(\mathrm{T}\backslash SU_{q}(2))$

and $H^{\infty}(S\overline{U(q}2),$ $P)$ , obtained by composing the two maps in the above theorems, can be
given by an explicit formula with the Haar measure and the multiplicative unitary. Using
this formula, one can show that the map intertwines the natural left $S\overline{U_{q}(}2$ ) actions as
well as the right $SU_{q}\cdot(2)$ actions. The formula can be interpreted as generalization of the
Poisson integral formula in [9].

One might wonder why all these phenomena occur only when $q\neq 1$ . Although there
is no philosophical explanation so far, it is worth pointing out the fact that $\mathrm{T}\backslash SU_{q}(2)$ is
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the very deformed part of $SU_{q}(2)$ while the maximal torus $\mathrm{T}$ remains undeformed. The
difference between $q=1$ case and $q\neq 1$ case appearing in the proofs is as follows. It
often occurs that some quantities, which are functions of $q$ and the spin $l$ of irreducible
representations, have completely different asymptotic behavior as $l$ goes to infinity; in
one case it has polynomial growth while in the other case it has exponential growth.

There are two directions of generalizing the results stated in this section. One is
to replace the fundamental representation of $SU_{q}(2)$ with other representations. The
other is to replace $SU_{q}(2)$ with other quantum groups, for the first step, say $SU_{q}(N)$ .
Probably it is not so difficult to do the former, and the result should be the same. On
the other hand, since our analysis highly depends on the representation theory of $SU_{q}(2)$ ,
our method works only for $SU_{q}(2)$ so far. The Poisson integral formula mentioned above
might play some role in this case because it is given by a general formula which works
for very compact quantum group.
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