Stationary Keller-Segel model with the linear sensitivity

Yoshitsugu Kabeya [壁谷 喜継] (Miyazaki Univ.)

Wei-Ming Ni [倪 維明] (University of Minnesota)

1 Introduction

The Keller-Segel models [7], which describes the chemotactic aggregation stage of cellular slime molds, was investigated by many authors, see e.g., Lin, Ni and Takagi [9] and Ni and Takagi [10],[11], [12]. We are interested in the stationary problem of the Keller-Segel system

$$D_1 \Delta u - \chi \nabla \cdot (u \nabla \phi(v)) = 0 \quad \text{in } \Omega, \tag{1.1}$$

 $D_2 \Delta v - av + bu = 0 \quad \text{in } \Omega, \tag{1.2}$

$$\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0 \quad \text{on } \partial \Omega, \tag{1.3}$$

where $D_1 > 0$, $D_2 > 0$, a > 0 and b > 0 are constants, ν is the outer normal unit vector on $\partial\Omega$, ϕ is a smooth function with $\phi' > 0$ on $(0, \infty)$ and Ω is a smooth bounded domain in \mathbb{R}^2 . We will seek a pair of positive solutions (u, v) to (1.1)-(1.3). Biologically, u represents the density of amoebae, v does the concentration of the chemical which amoebae transmit. ϕ represents the sensitivity of amoebae to the chemical.

The logarithmic sensitivity $\phi(v) = \log v$, there are lots of literature, see, e.g., Ni and Takagi [10] and the references therein.

Instead, here we adopt $\phi(v) = v$. In this case, (1.1) is written as

$$\nabla \cdot \left\{ D_1 u \nabla (\log u - \frac{\chi}{D_1} v) \right\} = 0.$$

Then we see that $u = ce^{pv}$ by using (1.3), where $p = \chi/D_1$ and c > 0 is a constant. Thus (1.1)-(1.3) is equivalent to

$$D_2 \Delta v - av + bce^{pv} = 0 \quad \text{in } \Omega,$$

$$v > 0 \quad \text{in } \Omega,$$

$$\frac{\partial v}{\partial \nu} = 0 \quad \text{on } \partial \Omega.$$

Now putting $\varepsilon^2 = D_2/a$ and $bc/a = \lambda$, we have

$$\begin{aligned} \varepsilon^{2} \Delta v - v + \lambda e^{pv} &= 0 \quad \text{in } \Omega, \\ v &> 0 \quad \text{in } \Omega, \\ \frac{\partial v}{\partial \nu} &= 0 \quad \text{on } \partial \Omega. \end{aligned}$$
(1.4)

Conversely, if w is a positive solution to (1.4), then $u = c_1 e^{pw}$ and $v = c_2 w$ satisfy (1.1)-(1.3) with $c_1 = apD_1\lambda/b\chi$ and $c_2 = pD_1/\chi$.

From now on, we will mainly investigate (1.4) with ε , λ and p being positive parameters.

Before stating our results on (1.4), we first discuss a slightly more general problem:

$$\varepsilon^2 \Delta u - cu + h(u) = 0 \quad \text{in } \Omega,$$
 (1.5)

$$u > 0 \quad \text{in } \Omega, \tag{1.6}$$

$$\frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial \Omega, \tag{1.7}$$

where $\varepsilon > 0$ and c > 0.

We make the following assumptions on h:

- (h_1) $h : \mathbf{R} \to \mathbf{R}$ is locally Hölder continuous, h(z) = 0 for $z \le 0$ and h(z) > 0 for z > 0.
- $(h_2) h(z) = o(z)$ as $z \downarrow 0$.
- $(h_3) \ h(z)/z \to \infty$ as $z \to \infty$. Moreover, there exist $\alpha \ge 0$ and $\beta(z)$ with $\beta(z)/z^2 \to 0$ as $z \to \infty$ such that

$$h(z) \le \alpha \exp \beta(z) \quad \text{for } z > 0.$$

 (h_4) Let $H(z) = \int_0^z h(t) dt$. There exists $\alpha_1 \ge 0$ and $\theta \in (0, 1/2)$ such that

$$H(z) \leq \theta z h(z) \quad ext{if } z \geq lpha_1.$$

(h₅)
$$\gamma = \inf\{cz^2/2 - H(z) \mid z \in Z\} > 0$$
 where $Z = \{z > 0 \mid h(z) = cz\}.$

We note that $Z \neq \emptyset$ because of (h_2) and (h_3) . If (h_4) holds with $\alpha_1 = 0$, then (h_5) is automatically satisfied. If $\zeta \in Z$, then $u(x) \equiv \zeta$ is a positive solution to (1.5)-(1.7). An example of a function satisfying (h_1) - (h_5) is $h(z) = (e^{pz} - 1 - pz)_+$. Just note that (h_4) is satisfied with $\theta \in [1/3, 1/2)$ and $\alpha_1 = 0$.

Let E denote the Hilbert space $W^{1,2}(\Omega)$ endowed with the norm

$$||u|| = \left(\varepsilon^2 \int_{\Omega} |\nabla u|^2 \, dx + c \int_{\Omega} u^2 \, dx\right)^{1/2}$$

We define a functional J_{ε} on E by

$$J_{\varepsilon}(u) = \frac{1}{2} \Big(\varepsilon^2 \int_{\Omega} |\nabla u|^2 \, dx + c \int_{\Omega} u^2 \, dx \Big) - \int_{\Omega} H(u) \, dx.$$

Theorem 1.1 Under assumptions (h_1) through (h_5) , there exists a positive nonconstant solution u_{ε} to (1.5)-(1.7) provided $\varepsilon > 0$ is sufficiently small. Moreover, u_{ε} satisfies

$$J_{\varepsilon}(u_{\varepsilon}) \le C_0 \varepsilon^2$$

where $C_0 > 0$ depends only on Ω and h.

Corollary 1.1 In addition to (h_1) - (h_3) , assume that (h_4) holds with $\alpha_1 = 0$. Then

$$\int_{\Omega} (\varepsilon^2 |\nabla u_{\varepsilon}|^2 + c u_{\varepsilon}^2) \, dx = \int_{\Omega} u_{\varepsilon} h(u_{\varepsilon}) \, dx \leq \frac{2C_0}{1 - 2\theta} \varepsilon^2.$$

Now we return to (1.4). First we observe that $t = \lambda e^{pt}$ must have exactly two zeros on $(0, \infty)$ if (1.4) is to have a nonconstant a solution. Indeed, integrating (1.4) gives that $\int_{\Omega} (-u + e^{pu}) dx = 0$. Thus $-t + e^{pt}$ must be negative somewhere in $(0, \infty)$, which shows the assertion. Furthermore, let Qbe the minimum point of u on $\overline{\Omega}$. Then we have $0 \leq \Delta u(Q) = u(Q) - \lambda e^{pu(Q)}$, which implies that $\min_{\Omega} u \geq z_{\lambda}$ where z_{λ} is the smaller solution of $\lambda e^{pt} - t = 0$.

Let $w = u - z_{\lambda}$. Then we have

$$\varepsilon^2 \Delta w - w + z_\lambda (e^{pw} - 1) = 0. \tag{1.8}$$

To apply Theorem 1.1, we rewrite as

$$\varepsilon^2 \Delta w - (1 - z_\lambda p)w + z_\lambda (e^{pw} - 1 - pw)_+ = 0 \quad \text{in } \Omega, \qquad (1.9)$$

$$w > 0 \quad \text{in } \Omega, \tag{1.10}$$

$$\frac{\partial w}{\partial \nu} = 0 \quad \text{on } \partial \Omega, \tag{1.11}$$

From now on, set $c = (1 - z_{\lambda}p)$. We observe the following fact.

Remark 1.1 If $\lambda e^{pt} = t$ has two solutions, then c > 0 holds.

To see this, consider the slope of $\varphi(t) = \lambda e^{pt}$. At $t = z_{\lambda}$, φ intersects the straight line y = t transversally. This implies that $\varphi'(z_{\lambda}) = p\lambda e^{pz_{\lambda}} = pz_{\lambda} < 1$. The assertion is proved.

Theorem 1.2 Suppose that $t = \lambda e^{pt}$ has two positive solutions. Then (1.9)-(1.11) has a nonconstant positive solution w_{ε} which has all the properties that are stated in Theorem 1.1 and Corollary 1.1. Moreover, there exist constants $C_1 > 0, C_2 > 0$ and $\gamma > 0$ such that

$$\sup_{\Omega} w_{\varepsilon} \leq C_1.$$

Using the proof of Theorem 1.2, we can show that the $||w_{\varepsilon}|| \sim \varepsilon$ as $\varepsilon \to 0$.

Proposition 1.1 Suppose that $t = \lambda e^{pt}$ has two positive solutions. Then for the solution w_{ε} obtained in Theorem 1.2, there exist K > 0 and $\varepsilon_0 > 0$ such that

$$\int_{\Omega} (\varepsilon^2 |\nabla w_{\varepsilon}|^2 + c w_{\varepsilon}^2) \, dx \ge K \varepsilon^2$$

for $0 < \varepsilon < \varepsilon_0$.

We also have an upper estimate for $\inf_{\Omega} w_{\varepsilon}$.

Theorem 1.3 Suppose that $t = \lambda e^{pt}$ has two positive solutions. Then for the solution w_{ε} obtained in Thereom 1.2, there exist $C_2 > 0$, $\gamma > 0$ and $\varepsilon_0 > 0$ such that

$$\inf_{\Omega} w_{\varepsilon} \leq C_2 \exp(-\frac{\gamma}{\varepsilon})$$

holds for any $0 < \varepsilon < \varepsilon_0$.

Theorem 1.4 For sufficiently small $\varepsilon > 0$, the solution w_{ε} obtained in Theorem 1.2 has exactly one local maximum point in $\overline{\Omega}$, which must lie on the boundary $\partial \Omega$.

2 Proof of Theorem 1.1

To prove Theorem 1.1, we need two lemmas. Since these lemmas are proved in Lin, Ni and Takagi [9] and since these proofs are strightforward calculation, we skip the proofs. Let φ be such that

$$arphi(x) = \left\{ egin{array}{cc} arepsilon^{-2}(1-arepsilon^{-1}|x|) & |x| < arepsilon, \ 0 & |x| \ge arepsilon. \end{array}
ight.$$

Lemma 2.1 For any s > 0, there holds

$$\int_{\Omega} |\varphi(x)|^s \, dx = K_s \varepsilon^{2(1-s)}, \quad \int_{\Omega} |\nabla \varphi|^2 \, dx = \pi \varepsilon^{-4}$$

where

$$K_s = 2\pi \int_0^1 (1-\rho)^s \rho \, d\rho.$$

Now let $g(t) := J_{\varepsilon}(t\varphi)$ for $t \ge 0$. We investigate the property of g(t).

Lemma 2.2 There exist t_1, t_2 with $0 < t_1 < t_2$ such that

- (a) g'(t) < 0 for $t > t_1$.
- (b) g(t) < 0 for $t > t_2$.

As for a proof, see [9] (pp.11-12, Lemma 2.4).

Proof of Theorem 1.1. Step 1. First we remark that any critical point of J_{ε} is a classical solution to (1.5)-(1.7). In fact, a critical point of that is a generalized solution in $W^{1,2}(\Omega)$. The elliptic regularity theorem yields that it is a classical solution(note that $h(u) \in L^q(\Omega)$ for $q \ge 1$ by (h_3)).

Next, we verify that any nonconstant critical point of J_{ε} is positive everywhere in Ω . This fact is proved exactly the same way as before, see p.9 in [9].

Step 2. To obtain nonconstant critical points of J_{ε} , we shall make use of the mountain pass theorem. Clearly, $J_{\varepsilon} : W^{1,2}(\Omega) \to \mathbb{R}$ is a C^1 -mapping and $J_{\varepsilon}(0) = 0$. We must check

- (i) J_{ε} satisfies the Palais-Smale condition.
- (ii) There exist $\rho > 0$ and $\beta > 0$ such that $J_{\varepsilon}(u) > 0$ if $0 < ||u|| < \rho$ and $J_{\varepsilon}(u) \ge \beta > 0$ if $||u|| = \rho$.

(iii) For sufficiently small $\varepsilon > 0$, there exist a nonnegative function $\varphi \in H^1(\Omega)$ and positive constants C_0 and t_0 such that $J_{\varepsilon}(t_0\varphi) = 0$ and $J_{\varepsilon}(t\varphi) \leq C_0 \varepsilon^2$

The checking will be done by following the argument of [9] with some modification. After verifying these conditions, we can apply the mountain pass theorem as follows: Let $e = t_0 \varphi$ and

$$\Gamma = \{ l \in C([0,1]; H^1(\Omega)) \mid l(0) = 0, \ l(1) = e \}.$$

Then

$$c := \inf_{l \in \Gamma} \sup_{s \in [0,1]} J_{\varepsilon}(l(s))$$
(2.1)

is a critical value of J_{ε} with $0 < \beta \leq c < \infty$.

In general, $J_{\varepsilon}^{-1}(c)$ may consists only of constant functions. We must deny this possibility. By (h_5) , the infimum of the energy of constant solution \bar{z} is

$$\inf_{\bar{z}\in Z} \left\{ \frac{1}{2}c \int_{\Omega} \bar{z}^2 \, dx - \int_{\Omega} H(\bar{z}) \, dx \right\} = \inf_{\bar{z}\in Z} \left(\frac{1}{2}c\bar{z}^2 - H(\bar{z}) \right) |\Omega| = \gamma |\Omega| > 0.$$

So we obtain a nonconstant critical point by taking $\varepsilon > 0$ as $C_0 \varepsilon^2 < \gamma |\Omega|$ and using (iii).

Proof of Corollary1.1. Since u_{ε} is a solution to (1.5)-(1.7), we obtain

$$\int_{\Omega} (\varepsilon^2 |\nabla u_{\varepsilon}|^2 + c |u_{\varepsilon}|^2) \, dx = \int_{\Omega} u_{\varepsilon} h(u_{\varepsilon}) \, dx.$$

On the other hand, from (h_4) with $\alpha_1 = 0$, we have

$$J_{\varepsilon}(u_{\varepsilon}) = \frac{1}{2} \int_{\Omega} (\varepsilon^2 |\nabla u_{\varepsilon}|^2 + c|u_{\varepsilon}|^2) \, dx - \int_{\Omega} H(u_{\varepsilon}) \, dx$$

$$= \frac{1}{2} \int_{\Omega} u_{\varepsilon} h(u_{\varepsilon}) \, dx - \int_{\Omega} H(u_{\varepsilon}) \, dx$$

$$\ge (\frac{1}{2} - \theta) \int_{\Omega} u_{\varepsilon} h(u_{\varepsilon}) \, dx.$$

Thus we obtain the desired inequality.

49

3 Proofs of Theorem 1.2 and Proposition 1.1

To prove Theorem 1.2, we need to investigate the dependence of the Sobolev constant on the exponent of the target L^q space of the embedding $W^{1,2}(\Omega) \hookrightarrow L^q(\Omega)$. We invoke an inequality in the proof of Theorem 2.9.1 in Ziemer [13].

Only in this section, for $u \in W^{1,2}(\Omega)$, we define $||u||_{W^{1,2}(\Omega)}$ by

$$||u||_{W^{1,2}(\Omega)} = \left\{ \int_{\Omega} \left(|\nabla u|^2 + |u|^2 \right) dx \right\}^{1/2}.$$

The following is a key lemma to obtain the upper estimate of the solution. The proof is done by the combination of an inequality in Lemma 7. 12 of Gilbarg and Trudinger [6] and Lemma 5.14 in Adams [1], so we omit it.

Lemma 3.1 For any $u \in W^{1,2}(\Omega)$, there exists a positive constant K_1 independent of $|\Omega|$ but on the cone property of Ω such that

$$||u||_{L^{q}(\Omega)} \leq K_{1} \pi^{1/2} \left(\frac{q+2}{2}\right)^{(q+2)/2q} ||u||_{W^{1,2}(\Omega)}$$
(3.1)

holds.

From Lemma 3.1, we have

$$||u||_{L^{q}(\Omega)}^{q} \leq \left(\frac{q+2}{2}\right)^{(q+2)/2} K_{2}^{q} \left(\int_{\Omega} (|\nabla u|^{2} + cu^{2}) \, dx\right)^{q/2}$$

with positive constant $K_2 > 0$. As is the same way in (2.19) of [9], we obtain for a solution u_{ε} in Theorem 1.1

$$\left(\int_{\Omega} |u|^{q} dx \right)^{2/q} \leq K_{2}^{2} \left(\frac{q+2}{2} \right)^{(q+2)/q} \varepsilon^{-2+4/q} \int_{\Omega} \left(\varepsilon^{2} |\nabla u|^{2} + c|u|^{2} \right) dx$$

$$\leq K_{2}^{2} \left(\frac{q+2}{2} \right)^{(q+2)/q} \varepsilon^{4/q}$$

$$(3.2)$$

by Corollary 1.1. The inequality (3.2) is proved as follows: Let $u_{\varepsilon}(x) = v(y)$ with $x = \varepsilon y$ and $\Omega_{\varepsilon} = \{y \mid \varepsilon y \in \Omega\}$. Then we have

$$\begin{split} \int_{\Omega} (\varepsilon^2 |\nabla u_{\varepsilon}|^2 + c |u_{\varepsilon}|^2) \, dx &= \varepsilon^2 \int_{\Omega_{\varepsilon}} \left(|\nabla v|^2 + c |v|^2 \right) dy \\ &\geq K_2^{-2} \left(\frac{q+2}{2} \right)^{-(q+2)/q} \varepsilon^2 \left(\int_{\Omega_{\varepsilon}} |v|^q \, dy \right)^{2/q} \\ &\geq K_2^{-2} \left(\frac{q+2}{q} \right)^{-(q+2)/q} \varepsilon^{2-4/q} \left(\int_{\Omega} |u_{\varepsilon}|^q \, dx \right)^{2/q}. \end{split}$$

Now we denote various constants independent of ε by C.

Proof of Theorem 1.2. Step 1. In the case $h(u) = z_{\lambda}(e^{pu} - 1 - pu)_+$, we can take A > 0 sufficiently large such that

$$h(u) \le \frac{1}{2}(u + Auh(u)) \tag{3.3}$$

for any $u \geq 0$. Integrating (1.1) over Ω , we have

$$\int_{\Omega} u \, dx = \int_{\Omega} h \, dx \le \frac{1}{2} \int_{\Omega} (u + Auh(u)) \, dx$$

by taking the boundary condition into account. It follows from Corollary 1.1 that

$$\int_{\Omega} u \, dx \le A \int_{\Omega} u h(u) \, dx \le C \varepsilon^2. \tag{3.4}$$

Thus we obtain

$$\int_{\Omega} h \, dx \leq C \varepsilon^2.$$

Now we prove that

$$z_{\lambda}^{-2} \int_{\Omega} h^2 dx = \int_{\Omega} (e^{pu} - 1 - pu)^2 dx \le C\varepsilon^2.$$
(3.5)

Expanding in the Taylor series, we have

$$z_{\lambda}^{-2} \int_{\Omega} h^2 \, dx = \sum_{k=2}^{\infty} \int_{\Omega} (2^k - 2pu - 2) \frac{(pu)^k}{k!} \, dx.$$

From Lemma 3.1 and (3.2), we get

$$\int_{\Omega} h^2 dx \leq \sum_{k=2}^{\infty} (2^k - 2) \frac{1}{k!} (\frac{k+2}{2})^{(k+2)/2} K_2^k p^k \varepsilon^2 -2 \sum_{k=2}^{\infty} \frac{1}{k!} (\frac{k+3}{2})^{(k+3)/2} K_2^{k+1} p^{k+1} \varepsilon^2.$$

It suffice to show that the power series are convergent. Let

$$a_k := \frac{2^k - 2}{k!} \left(\frac{k+2}{2}\right)^{(k+2)/2} K_2^k p^k, \quad b_k := \frac{1}{k!} \left(\frac{k+3}{2}\right)^{(k+3)/2} K_2^{(k+1)/2} p^{k+1}.$$

We have $\lim_{k\to\infty} a_{k+1}/a_k = 0$ and $\lim_{k\to\infty} b_{k+1}/b_k = 0$. Hence we have proved (3.5).

Step 2. This step is similar to Step 2 in the proof of Corollary 2.1 of [9]. As we have seen in Introduction, $h(u) = z_{\lambda}(e^{pu} - 1 - pu)_{+}$ satisfies $(h_{1}) \cdot (h_{5})$. Thus there exists a solution w_{ϵ} by Theorem 1.1.

Multiplying the both sides of (1.7) by u^{2s-1} , with $s \ge 1$, we have

$$\frac{2s-1}{s^2} \varepsilon^2 \int_{\Omega} |\nabla u^s|^2 \, dx + c \int_{\Omega} u^{2s} \, dx = \int_{\Omega} h(u) u^{2s-1} \, dx. \tag{3.6}$$

By the Schwarz inequality, the right-hand side is estimated as

$$\int_{\Omega} h(u) u^{2s-1} dx \le \left(\int_{\Omega} (h(u))^2 dx \right)^{1/2} \left(\int_{\Omega} u^{4s-2} dx \right)^{1/2}.$$
(3.7)

Since we have already had (3.5), we obtain

$$\left(\int_{\Omega} u^{s\mu} \, dx\right)^{2/\mu} \le C(\mu) s \varepsilon^{(4/\mu) - 1} \left(\int_{\Omega} u^{4s - 2} \, dx\right)^{1/2} \tag{3.8}$$

by (3.6), (3.7) and the Sobolev inequality (3.1) with $\mu > 4$. Here we do not need to have an exact embedding constant, so we just denote the constant by $C(\mu)$. Now we define two sequences $\{s_j\}$ and $\{M_j\}$ by

$$4s_0 - 2 = \mu 4s_{j+1} - 2 = \mu s_j \text{ for } j = 0, 1, 2, \dots$$
(3.9)

and

$$M_0 = C(\mu)^{\mu/2}$$

$$M_{j+1} = (C(\mu)s_j)^{\mu/2} (M_j)^{\mu/4} \text{ for } j = 0, 1, 2, \dots$$
(3.10)

We note that s_j is explicitly given by

$$s_j = \left(\frac{\mu}{4}\right)^j \left(s_0 + \frac{2}{\mu - 4}\right) - \frac{2}{\mu - 4}.$$
(3.11)

Since we have chosen $\mu > 4$, $s_j \to \infty$ as $j \to \infty$. We shall show

$$\int_{\Omega} u^{4s_j - 2} \, dx \le M_j \varepsilon^2 \tag{3.12}$$

for $j \ge 0$ and

$$M_j \le e^{ms_{j-1}} \tag{3.13}$$

for some constant m > 0. Verfying these inequalities is done by induction. So we omit the detail. Hence we have

$$||u||_{L^{\mu s_{j-1}}(\Omega)} \le (e^{m s_{j-1}} \varepsilon^2)^{1/\mu s_{j-1}} = e^{m/\mu} \varepsilon^{2/\mu s_{j-1}}.$$
 (3.14)

Letting $j \to \infty$, we obtain

$$\|u\|_{L^{\infty}(\Omega)} \leq e^{m/\mu}$$

Proof of Proposition 1.1. Suppose to the contrary that there exist a sequence $\{\varepsilon_k\}_{k=1}^{\infty}$ and a sequence of positive solutions $\{w_k\}$ to (1.9)-(1.11) with $\varepsilon = \varepsilon_k$ such that

$$\eta_k := \varepsilon_k^{-2} \Big(\int_{\Omega} (\varepsilon_k^2 |\nabla w_k|^2 + c w_k^2) \, dx \Big) \to 0$$

as $k \to \infty$. As in the proof of Theorem 1.2, we define $\{s_j\}$ and $\{M_j\}$ by (3.9) and (3.10) with $C(\mu)$ replaced by η_k . Similar to the proof of Theorem 1.2, we have (3.8) with $w = w_k$ and $\varepsilon = \varepsilon_k$ for $k \ge 1$. Using the argument in the proof of Theorem 1.2, we obtain

$$||w_k||_{L^{\infty}(\Omega)} \le \tilde{C} \exp(b_1 \rho_0)$$

where $\tilde{C} > 0$ and $b_1 > 0$ are constants independent of k and $\rho_0 = (\mu/2) \log(C(\mu)\varepsilon_k)$. Since $\rho \to -\infty$, we have

$$||w_k||_{L^{\infty}(\Omega)} \to 0 \tag{3.15}$$

as $k \to \infty$. Hence if k is sufficiently large,

$$\varepsilon_k^2 \Delta w_k = cw_k - z_\lambda (e^{pw_k} - 1 - pw_k) > 0$$

on Ω by (3.15). This contradicts the Neumann boundary condition. The assertion is proved.

4 Proof of Theorem 1.3

To prove Theorem 1.3, we need the Harnack inequality due to [9]. We also need some estimates on L^q norm of w_{ε} .

Lemma 4.1 Let w_{ε} be the solution obtained in Theorem 1.2. Then there hold

$$m(q)\varepsilon^2 \leq \int_{\Omega} w_{\varepsilon}^q dx \leq M(q)\varepsilon^2 \quad \text{if } 1 \leq q < \infty,$$
 (4.1)

$$m(q)\varepsilon^2 \leq \int_{\Omega} w_{\varepsilon}^q dx \leq M(q)\varepsilon^{2q} \quad \text{if } 0 < q < 1.$$
 (4.2)

where m(q) and M(q) are positive constants such that m(q) < M(q) and are independent of ε .

To prove Theorem 1.3, the following proposition is useful. As in [9], we define a family of cubes. For $K = (k_1, k_2) \in \mathbb{Z}^2$ and l > 0, we define

$$C[K, l] := \{ (x_1, x_2) \in \mathbf{R}^2 \mid |x_j - lk_j| \le \frac{l}{2}, j = 1, 2 \}.$$

Clearly, $\mathbf{R}^2 = \bigcup_{K \in \mathbf{Z}^2} C[K, l]$ and the intersection of two such cubes is either empty or a line segment(face).

Proposition 4.1 Let w_{ε} be the solution obtained in Thereom 1.2. For $\eta > 0$, let $\Omega_{\eta} := \{x \in \Omega \mid w_{\varepsilon}(x) > \eta\}$. Then there exist a positive integer m > 0independent of $\varepsilon > 0$ such that Ω_{η} is covered by at most m of the C[K, l]'s provided ε is sufficiently small.

To prove Proposition 4.1, we need the Harnack inequality valid for the boundary, which was introduced by [9].

Lemma 4.2 Let w be a positive solution to

$$\varepsilon^2 \Delta w + c(x)w = 0$$
 in Ω

with $\partial w/\partial \nu = 0$ on $\partial \Omega$, where $c(x) \in C(\overline{\Omega})$. Then there exists a positive constant $C_3 = C_3(\Omega, R_{\sqrt{||c||_{L^{\infty}}/\varepsilon}})$ such that

$$\sup_{B(z,R)\cap\Omega} w \le C_3 \inf_{B(z,R)\cap\Omega} w$$

for any ball B(z, R) with radius R and centered at $z \in \Omega$.

For a proof, see that of Lemma 4.3 of [9].

Using Lemma 4.2, we prove Proposition 4.1.

Proof of Proposition 4.1. Just follow the argument in [9] with Lemma 4.2 above. \Box

Now we are in a position to prove Theorem 1.3. Proof of Theorem 1.3.

First we will show that for any $\eta > 0$, there exist $x_0 \in \Omega$ and $r_0 > 0$ independent of $\varepsilon > 0$ such that $B(x_0, r_0) \subset \Omega \setminus \Omega_{\eta}$. If this statement is not true, then there exist $\eta > 0$ and two sequences $\{r_j\}$ $(r_j \to 0)$ and $\{\varepsilon_j\}$ $(\varepsilon_j \to 0)$ such that

$$B(x,r_i) \cap \Omega_{\eta,j} \neq \emptyset$$

for any $x \in \Omega$, where

$$\Omega_{\eta,j} = \{ x \in \Omega \mid u_{\varepsilon_j} > \eta \}.$$

Hence any point $x \in \Omega$ belongs to the r_j -neighborhood of $\Omega_{\eta,j}$. Since $\Omega_{\eta,j}$ is covered by at most m cubes with its segment length ε_j by Proposition 4.1, $|\Omega| \to 0$ as $j \to \infty$. This is absurd.

Now we take $\eta > 0$ such that

$$z_{\lambda}(e^{pu}-1-pu)-(1-z_{\lambda}p)u<0$$

for $0 < u \leq \eta$ and let

$$\gamma_0 := \inf_{0 < u \leq \eta} \sqrt{-\frac{z_\lambda(e^{pu} - 1 - pu)}{u} + (1 - z_\lambda p)}.$$

Let w be the solution of the linear Dirichlet problem

$$\varepsilon^2 \Delta w - \gamma_0^2 w = 0 \quad \text{in } B(x_0, r_0) \tag{4.3}$$

$$w = \eta$$
 on $\partial B(x_0, r_0)$. (4.4)

Since

$$\varepsilon^2 \Delta(w_{\varepsilon} - w) - \gamma_0^2(w_{\varepsilon} - w) \ge 0$$

in $B(r_0, r_0)$ and $w_{\varepsilon} - w \leq 0$ on $\partial B(r_0, x_0)$, we have

$$w_{\varepsilon}(x) \le w(x)$$
 in $B(x_0, r_0)$. (4.5)

Put $r := |x - x_0|$. Then w is given by

$$w(r) = W^* I_0(\frac{\gamma}{\varepsilon} r) \tag{4.6}$$

where $W^* = \eta/I_0(\gamma_0 r_0/\varepsilon)$, $I_0(z)$ is the modified Bessel function of the first kind of order 0. Making use of the asymptotic formula $I_0(r) \sim e^r/\sqrt{2\pi r}$ as $r \to \infty$, we see that

$$\inf w_{\varepsilon} \le C_* \varepsilon^{-1/2} \exp(-\gamma_0 r_0/\varepsilon)$$

by (4.5) with $C_* = C_*(\eta, \gamma_0 r_0) > 0$. Choosing smaller γ , we obtain the desired estimate.

5 Preliminaries to a Proof of Theorem 1.4.

To show that the maximum point is on the boundary, we efficiently use the minimax value (2.1) of w_{ε} . In this section, let $u_{\varepsilon} := w_{\varepsilon}$ be the solution to (1.9)-(1.11) obtained in Thereom 1.2. Since the proof of Theorem 1.4 is lengthy, we collect technical lemmas here.

First we show an important characterization of the minimax value. For $v \in W^{1,2}(\Omega)$, put

$$M[v] := \sup_{t \ge 0} J_{\varepsilon}(tv).$$

Recall the Mountain Pass critical value

$$c_{\varepsilon} := \inf_{l \in \Gamma} \sup_{s \in [0,1]} J_{\varepsilon}(l(s)).$$

The following lemma is almost identical to Lemma 3.1 of [10] so we omit the proof.

Lemma 5.1 Let c_{ε} as above. Then c_{ε} does not depend on the choice of $e \in W^{1,2}(\Omega)$ such that $e \ge 0$, $e \ne 0$ and $J_{\varepsilon}(e) = 0$. More precisely, c_{ε} is the least positive critical value of J_{ε} and is given by

$$c_{\varepsilon} = \inf\{M[v] \mid v \in W^{1,2}(\Omega) \ v \neq 0 \text{ and } v \ge 0 \text{ in } \Omega\}.$$

As in [9] and [10], we use a diffeomorphism which straightens a boundary portion near $P \in \partial \Omega$. Since the space dimension is two in this case, it is much easier to understand the nature of the diffeomorphism than that in [9] and [10].

Through translation and rotation, we may assume $P \in \partial \Omega$ is the origin and the inner normal to $\partial \Omega$ is pointing in the direction of the positive x_2 axis. In this situation, we can take a smooth function $\psi(x_1)$ defined in $(-\delta_0, \delta_0)$ such that

(i)
$$\psi(0) = 0$$
 and $\psi'(0) = 0$,

(ii)
$$\partial \Omega \cap \mathcal{N} = \{(x_1, x_2) \mid x_2 = \psi(x_1)\},\$$

(iii)
$$\mathcal{N} \cap \Omega = \{(x_1, x_2) | x_2 > \psi(x_1)\},\$$

where \mathcal{N} is a neighborhood of P = (0, 0).

For $y = (y_1, y_2) \in \mathbf{R}^2$ with |y| sufficiently small, we define a mapping $x = \Phi(y) = (\Phi_1(y), \Phi(y))$ by

$$\Phi_1(y) = y_1 - y_2 \psi'(y_1),
\Phi_2(y) = y_2 + \psi(y_1).$$
(5.1)

Since

$$D\Phi = \begin{pmatrix} \frac{\partial \Phi_1}{\partial y_1} & \frac{\partial \Phi_1}{\partial y_2} \\ \frac{\partial \Phi_2}{\partial y_1} & \frac{\partial \Phi_2}{\partial y_2} \end{pmatrix} = \begin{pmatrix} 1 - y_2 \psi''(y_1) & -\psi'(y_1) \\ \psi'(y_1) & 1 \end{pmatrix},$$

det $D\Phi = 1 - y_2\psi''(y_1) + (\psi'(y_1))^2$. Thus det $D\Phi(0,0) = 1$. Hence Φ has the inverse mapping $y = \Phi^{-1}(x) = \Psi(x)$ for $|x| < \delta'$. We write

$$\Psi(x) = (\Psi_1(x), \Psi_2(x)).$$

As we will see later that by a suitable transformation involving $\Psi(x)$ and a scaling, the information on positive solutions to

$$\Delta w - (1 - z_{\lambda} p)w + z_{\lambda} (e^{pw} - 1 - pw) = 0 \quad \text{in } \mathbf{R}^{2}$$
 (5.2)

is required. We enumerate properties of positive solutions of (5.2). Let

$$I(u) := \frac{1}{2} \int_{\mathbf{R}^2} (|\nabla u|^2 + (1 - z_\lambda p)u^2) \, dx - z_\lambda \int_{\mathbf{R}^2} \left\{ \frac{1}{p} (e^{pu} - 1) - u - \frac{1}{2} p u^2 \right\} \, dx.$$

Proposition 5.1 (5.2) has a solution w satisfying

- (i) $w \in C^2(\mathbf{R}^2) \cap W^{1,2}(\mathbf{R}^2)$ and w > 0 in \mathbf{R}^2 .
- (ii) w is spherically symmetric, i.e., w(z) = w(r) with r = |z| and dw/dr < 0 for r > 0.
- (iii) There exist constants C > 0 and $\mu > 0$ such that

$$|D^{\alpha}w| \leq Ce^{-\mu|z|}$$
 for $z \in \mathbf{R}^2$.

with $|\alpha| \leq 1$.

(iv) For any nonnegative solution $u \in C^2(\mathbf{R}^2) \cap W^{1,2}(\mathbf{R}^2)$ of (5.2), $0 < I(w) \leq I(u)$ holds unless $u \equiv 0$.

Such w is called a ground state solution of (5.2). For a proof, see Berestycki-Gallouët-Kavian [3].

Now we introduce a new function φ_{ϵ} constructed from the diffeomorphism Ψ which straightens a portion of the boundary. Recall the definition of ψ , Φ and Ψ . We assume that $x = \Phi(y)$ is defined in $\omega \supset \bar{B}_{3\kappa}$ where $\kappa > 0$ and B_r is the open ball centered at the origin with radius r > 0.

For $\rho > 0$, define a cut-off function $\zeta_{\rho} : [0, \infty) \mapsto \mathbf{R}$ by

$$\zeta_{\rho}(t) = \begin{cases} 1 & \text{if } 0 \leq t \leq \rho, \\ 2 - \frac{t}{\rho} & \text{if } \rho < t \leq 2\rho, \\ 0 & \text{if } 2\rho < t. \end{cases}$$

Let w = w(z) be a ground state solution to (5.2) given by Proposition 5.1, and set

$$w_*(z) := \zeta_{\kappa/\varepsilon}(|z|)w(z).$$

Moreover, put $D_1 := \Phi(B_{\kappa}^+)$ and $D_2 := \Phi(B_{2\kappa}^+)$, where $B_r^+ = B_r \cap \mathbf{R}_+^2$. Note that $D_1 \subset D_2 \subset \Omega$. We define a comparison function φ_{ε} as

$$\varphi_{\varepsilon}(x) := \begin{cases} w_*(\psi(x)/\varepsilon) & x \in D_2, \\ 0 & x \in \Omega \backslash D_2. \end{cases}$$
(5.3)

Now we are in a position to state an asymptotic behavior of $M[\varphi_{\varepsilon}]$.

Proposition 5.2 As $\varepsilon \downarrow 0$, the asymptotic expansion

$$M[\varphi_{\varepsilon}] = \varepsilon^{2} \{ \frac{1}{2} I(w) - \psi''(0) \gamma \varepsilon + o(\varepsilon) \}$$

holds, where

$$\gamma := rac{1}{3} \int_{\mathbf{R}^2_+} (w'(|z|))^2 z_2 \, dz.$$

To prove Proposition 5.2, we need three lemmas. The proofs of these Lemmas are almost identical to those in [10] in Appendix pp. 844-849. So we omit here.

Lemma 5.2 There hold

$$\int_{\mathbf{R}_{+}^{2}} \left(\frac{\partial w}{\partial z_{2}}\right)^{2} z_{2} \, dz_{1} \, dz_{2} = 2\gamma$$

and

$$\int_{\mathbf{R}^2_+} \Big[\frac{1}{2} \Big\{ |\nabla w|^2 + (1 - z_\lambda p) w^2 \Big\} - z_\lambda \Big\{ \frac{1}{p} (e^{pw} - 1) - w - \frac{1}{2} p w^2 \Big\} \Big] z_2 \, dz_1 \, dz_2 = 2\gamma.$$

Lemma 5.3 As $\varepsilon \downarrow 0$, the asymptotic equality

$$\varepsilon^2 \int_{\Omega} |\nabla \varphi_{\varepsilon}|^2 \, dx = \varepsilon^2 \Big\{ \int_{\mathbf{R}^2_+} (w')^2 \, dz - \psi''(0) \gamma \varepsilon + O(\varepsilon^2) \Big\}$$

holds. Moreover, in general, if $G : \mathbf{R} \mapsto \mathbf{R}$ is locally Hölder continuous and G(0) = 0, then

$$\int_{\Omega} G(\varphi_{\varepsilon}) dx = \varepsilon^2 \Big\{ \int_{\mathbf{R}^2_+} G(w) (1 - \psi''(0)\varepsilon z_2) dz_1 dz_2 + O(\varepsilon^2) \Big\}$$

holds for $\varepsilon \downarrow 0$.

Lemma 5.4 Let us define $h_{\epsilon}(t)$ as

$$h_{\varepsilon}(t) := \frac{t^2}{2} \Big(\int_{\Omega} (\varepsilon^2 |\nabla \varphi_{\varepsilon}|^2 + c |\varphi_{\varepsilon}|^2) \, dx - z_{\lambda} \int_{\Omega} \Big\{ \frac{1}{p} (e^{tp\varphi_{\varepsilon}} - 1) - t\varphi_{\varepsilon} - \frac{1}{2} p (t\varphi_{\varepsilon})^2 \Big\} \, dx.$$

Then for each $\varepsilon > 0$ sufficiently small, h_{ε} attains a unique positive maximum at $t = t_0(\varepsilon) > 0$ and

$$t_0(\varepsilon) = 1 + \beta \varepsilon + o(\varepsilon)$$

as $\varepsilon \downarrow 0$, where $\beta > 0$ is a constant.

Proof of Proposition 5.2. For the sake of simplicity, set

$$f(u) = z_{\lambda}(e^{pu} - 1 - pu)$$
 and $F(u) = z_{\lambda}\{\frac{1}{p}(e^{pu} - 1) - u - \frac{1}{2}pu^2\}.$

From the definition of $M[\varphi_{\varepsilon}]$, we have

$$M[\varphi_{\varepsilon}] = \frac{1}{2} t_0(\varepsilon)^2 \int_{\Omega} \left\{ \varepsilon^2 |\nabla \varphi_{\varepsilon}|^2 + (1 - z_{\lambda} p) \varphi_{\varepsilon}^2 \right\} dx - \int_{\Omega} F(t_0 \varphi_{\varepsilon}) dx.$$

By Lemmas 5.3 and 5.4, expanding $F(t(\varepsilon)\varphi_{\varepsilon})$ in the Taylor series and the decay property of φ_{ε} , we have

$$\begin{split} M[\varphi_{\varepsilon}] &= \varepsilon^{2} \Big[\int_{\mathbf{R}_{+}^{2}} \Big\{ \frac{1}{2} (w')^{2} + (1 - z_{\lambda} p) w^{2} \Big\} dz \\ &+ \varepsilon \Big[\beta \int_{\mathbf{R}_{+}^{2}} \Big\{ (w')^{2} + (1 - z_{\lambda} p) w^{2} - w F'(w) \Big\} dz \\ &- \frac{\psi''(0)}{2} \{ \gamma + (1 - z_{\lambda} p) \int_{\mathbf{R}_{+}^{2}} w^{2} z_{2} \, dz - 2 \int_{\mathbf{R}_{+}^{2}} F(w) z_{2} \, dz \} \Big\} + o(\varepsilon) \Big]. \end{split}$$

Since w is radial, we get

$$2\int_{\mathbf{R}^{2}_{+}} \left\{ (w')^{2} + (1 - z_{\lambda}p)w^{2} - wF'(w) \right\} dz$$
$$\int_{\mathbf{R}^{2}} \left\{ |\nabla w|^{2} + (1 - z_{\lambda}p)w^{2} - wF'(w) \right\} dz$$
$$= \int_{\mathbf{R}^{2}} w(-\Delta w + (1 - z_{\lambda}p)w - F'(w)) dz = 0$$

Moreover, since

$$\frac{1}{2}(1-z_{\lambda}p)\int_{\mathbf{R}^{2}_{+}}w^{2}z_{2}\,dz - \int_{\mathbf{R}^{2}_{+}}F(w)z_{2}\,dz = 2\gamma - \frac{3}{2}\gamma = \frac{1}{2}\gamma,$$

we obtain

$$M[\varphi_{\varepsilon}] = \varepsilon^{2} \{ \frac{1}{2} I(w) - \psi''(0) \gamma \varepsilon + o(\varepsilon) \}.$$

Remark 5.1 Proposition 5.2 is valid for any positive radial solution w to (5.2) which decays exponentially at infinity. In Theorem 1.2, we have seen that $||u_{\varepsilon}||_{L^{\infty}(\Omega)}$ is bounded from above. Here we will show that the L^{∞} -norm is also bounded away from 0.

Lemma 5.5 Suppose that u_{ε} attains its maximum at $x_0 \in \overline{\Omega}$. Then

 $u_{\varepsilon}(x_0) \geq \bar{u}$

holds for any sufficiently small $\varepsilon > 0$. Moreover there exists $\eta_0 > 0$ independent of x_0 and ε such that $u_{\varepsilon}(x) \ge \eta_0$ holds for any $x \in B_{\varepsilon}(x_0) \cap \Omega$ if ε is sufficiently small, where \bar{u} is a positive constant solution of

 $\varepsilon^2 \Delta u - (1 - z_\lambda p)u + z_\lambda (e^{pu} - 1 - pu) = 0$ in Ω

with the homogeneous Neumann boundary condition, i.e., \bar{u} satisfies $\bar{u} = z_{\lambda}(e^{p\bar{u}}-1)$.

Proof. Suppose that $u_{\varepsilon}(x_0) < \overline{u}$. If $x_0 \in \Omega$, then

$$\varepsilon^2 \Delta u_{\varepsilon} = u_{\varepsilon} - z_{\lambda} (e^{pu} - 1) > 0$$

holds in a neighborhood of x_0 . This contradicts the fact that $\Delta u(x_0) \leq 0$ because x_0 is a local maximum point. Hence $x_0 \in \partial \Omega$. Hence $u_{\varepsilon}(x) < u_{\varepsilon}(x_0)$ in a neighborhood of x_0 . Then by the Hopf boundary point lemma, we conclude that $\partial u_{\varepsilon}/\partial \nu > 0$ at x_0 , which contradicts the boundary condition $\partial u/\partial \nu = 0$ on $\partial \Omega$. Thus we obtain

$$u_{\varepsilon}(x_0) \geq \bar{u}.$$

As for the latter part, by using Lemma 4.2(the Harnack inequality), we can find a constant $\bar{C} > 0$ independent of $\varepsilon > 0$ such that

$$\sup_{B_{\varepsilon}(x_0)\cap\Omega} u_{\varepsilon} \leq \bar{C} \inf_{B_{\varepsilon}(x_0)\cap\Omega} u_{\varepsilon}.$$

Hence from the former part, we have

$$\inf_{B_{\varepsilon}(x_0)\cap\Omega} u_{\varepsilon} \geq \frac{1}{\overline{C}} u_{\varepsilon}(x_0) \geq \frac{1}{\overline{C}} \overline{u}.$$

1.2		-	

6 Proof of Theorem 1.4

Finally, we have arrived at the position to prove Theorem 1.4.

Suppose that at $P_{\varepsilon} \in \overline{\Omega}$, u_{ε} attains its maximum. We will prove Theorem 1.4 in three steps. Although the way of proving Theorem 1.4 is almost identical to that of Theorem 1.2 of [10], we just give a sketch of a proof. Step 1. We prove that there exists $C^* > 0$ independent of $\varepsilon > 0$ such that

dist
$$(P_{\varepsilon}, \partial \Omega) \leq C^* \varepsilon$$

if $\varepsilon > 0$ is sufficiently small.

Suppose to the contrary that there exists a sequence $\{\varepsilon_j\}$ $(\varepsilon_j \downarrow 0)$ such that

$$\rho_j := rac{\operatorname{dist}\left(P_{\varepsilon}, \partial \Omega\right)}{\varepsilon_j} \to \infty$$

as $j \to \infty$. Let us define a scaled function $v_j(z) := u_{\varepsilon_j}(P_j + \varepsilon_j z), z \in B_{\rho_j}$. Then by the elliptic regularity theory (see, e.g. [6]), we can extract a subsequence, still denoted by $\{v_j\}$, such that

$$v_j \to w$$
 in $C^2_{loc}(\mathbf{R}^2)$

with $w(\neq 0) \in C^2(\mathbf{R}^2) \cap W^{2,r}(\mathbf{R}^2)$.

Now we estimate the minimax value c_{ϵ_j} from below. Using I(w), we have

$$c_{\varepsilon_i} \ge \varepsilon_j^2 (I(w) - C_3 \exp(-\mu_2 R))$$

for any $j \ge j_m$ with C_3 and $\mu_2 > 0$ inidepedent of j and m.

On the other hand, we have from Proposition 5.2 and Remark 5.1

$$c_{\varepsilon_j} < \varepsilon_j^2 \frac{1}{2} I(w)$$

if ε_j is sufficiently small. This is a contradiction. Thus we have proved

dist
$$(P_{\varepsilon}, \partial \Omega) \leq C^* \varepsilon$$
.

Step 2. We will prove $P_{\varepsilon} \in \partial \Omega$ if $\varepsilon > 0$ is sufficiently small. Suppose to the contrary that there exists a decreasing sequence $\{\varepsilon_k\}$ $(\varepsilon_k \downarrow 0 \text{ as } k \to \infty)$ such that $P_{\varepsilon_k} \in \Omega$. From Step 1, we may suppose that $P_k =: P_{\varepsilon_k} \to P \in \partial \Omega$

as $k \to \infty$ choosing a subsequence if necessary. We may regard P = (0,0). We use the diffeomorphism Φ introduced in (5.1). The inverse image Ψ of Φ straightens a boundary portion of P. We may suppose that Φ is defined in an open set containing the closed ball $\bar{B}_{2\kappa}$ and that $Q_k := \Psi(P_k) \in B_{\kappa}^+$ for all k. Put

$$v_k(y) := u_{\varepsilon_k}(\Phi(y)) \quad \text{for } y \in \bar{B}_{2\kappa}^+, \tag{6.1}$$

and extend it to $B_{2\kappa}$ by reflection:

$$\tilde{v}_{k}(y) := \begin{cases} v_{k}(y) & \text{if } y \in \bar{B}_{2\kappa}^{+}, \\ v_{k}(y_{1}, -y_{2}) & \text{if } y \in \bar{B}_{2\kappa}^{-}, \end{cases}$$
(6.2)

where $B_{2\kappa}^- = \{y \in B_{2\kappa} | y_2 < 0\}$. Moreover, we define a scaled function $w_k(z)$ by

$$w_k(z) := \tilde{v}_k(Q_k + \varepsilon_k z) \quad \text{for } z \in \bar{B}_{\kappa/\varepsilon_k}.$$
(6.3)

Let $Q_k = (q_k, \alpha_k \varepsilon_k)$ with $q_k \in \mathbf{R}$ and $\alpha_k > 0$. Then by the Step 1, $\{\alpha_k\}$ is bounded. It is easily seen that

$$w_k \in C^2(\bar{B}_{\kappa/\varepsilon_k} \setminus \{z_2 = -\alpha_k\}) \cap C^1(\bar{B}_{\kappa/\varepsilon_k})$$

since $\partial v_k / \partial y_2 = 0$ on $\{y_2 = 0\}$. Similar to Step 1, we obtain a convergent subsequence (still denoted by $\{w_k\}$) such that

$$w_k \to w \quad \text{in } C^2_{\text{loc}}(\mathbf{R}^2)$$

and $w \in C^2(\mathbf{R}^2) \cap W^{2,r}(\mathbf{R}^2)$. The limit w satisfies

$$a_{11}(0)\frac{\partial^2 w}{\partial z_1^2} + 2a_{12}(0)\frac{\partial^2 w}{\partial z_1 \partial z_2} + a_{22}(0)\frac{\partial w}{\partial z_2^2} - (1 - z_{\lambda})w + f(w) = 0 \quad \text{in } \mathbf{R}^2.$$

However, in fact, since $Q_k \to (0,0)$ as $k \to \infty$ and $D\Psi(0) = [D\Phi(0)]^{-1} = I$, we have

$$\Delta w - (1 - z_{\lambda} p)w + f(w) = 0 \quad \text{in } \mathbf{R}^2.$$

Moreover, w is raidalyy symmetric with respect to the origin and decays exponentially at infinity. Fix R > 0 sufficietly large. Then we can find an integer k_R such that, for $k \ge k_R$,

$$||w_k - w||_{C^2(\bar{B}_{4R})} \le \eta_R. \tag{6.4}$$

This shows that w_k has only one maximum point in B_R . If $\alpha_k > 0$, then by the definition of \tilde{v}_k , $Q_R^* = (q_k, -\alpha_k \varepsilon_k)$ is also a local maximum point of \tilde{v}_k , i.e., $(0, -\alpha_k)$ is another local maximum point of w_k in B_R , which is a contradiction. Step 2 is complete.

Step 3. We shall show that u_{ε} has at most one local maximum point. Suppose to the contrary that there exists a decreasing sequence $\{\varepsilon_k\}$ such that u_{ε_k} has two local maxima at P_k and P'_k . From Step 2, P_k and P'_k are on the boundary. Moreover, we may assume

$$\frac{|P_k - P'_k|}{\varepsilon_k} \to \infty \quad (k \to \infty)$$

since otherwise, the scaled function w_k has two local maxima in B_R , which contradicts Step 2.

We introduce the diffeomorphism $y = \Psi(x)$ which straightens a boundary portion around P_k as in Section 5 and define v_k , \tilde{v}_k and w_k by (6.1), (6.2) and (6.3), respectively. Then by the compactness argument as in Step 2, we see that $\{w_k\}$ has a convergent subsequence, still denoted by $\{w_k\}$, converging to $w \in C^2(\mathbf{R}^2) \cap W^{2,2}(\mathbf{R}^2)$ in the $C^2_{loc}(\mathbf{R}^2)$ topology and w is a positive radial . solution to (5.2).

Now we estimate c_{ε_k} from below. Similar to Step 1, we have

$$c_{\varepsilon_k} \ge \varepsilon_k^2 \Big\{ \frac{1}{2} I(w) + C_4 - C_5 e^{-\mu R} - C_6 \varepsilon_k \Big\}$$

$$(6.5)$$

with positive constants C_4 , C_5 and C_6 by making use of the exponential decay of w. Now choosing $P \in \partial \Omega$ such that $\psi''(0) > 0$, we see from Proposition 5.2 that

$$c_{\varepsilon_k} < \varepsilon_k^2 \frac{1}{2} I(w)$$

if ε_k is sufficiently small, which is inconsistent with (6.5). Therefore u_{ε} has at most one maximum.

References

[1] Adams, R., Sobolev Spaces, Academic Press, New York (1975).

- [2] Ambrosetti, A. and Rabinowitz, P., Dual variational methods in critical point theory and applications, J. Funct. Anal. **14** (1973), 349-381.
- [3] Berestycki, H., Gallouët, T. and Kavian, O., Equations de champs scalaires euclidiens nonlinéaire dans le pla, C.R. Acad. Sci. Paris, Série I Math. 297 (1983), 307–310.
- [4] Donaldson, T.K. and Trudinger, N. S., Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971), 52-75.
- [5] Gidas, B., Ni, W.-M. and Nirenberg. L., Symmetry of positive solutions of semilinear elliptic equations in Rⁿ, Advances in MAth., Suppl. Studies 7A (1981), 369-402.
- [6] Gilbarg, D. and Trudinger, N. S., elliptic Partial Differential Equations of Second Order, Second edition, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1983).
- [7] Keller, E. F. and Segel, L. A., Initiation of slime mold aggregation viewed as instability, J. Theoret. Biol. **26** (1970), 399-415.
- [8] Lin, C.-S. and Ni, W.-M., On the diffusion coefficient of a semilinear Neumann problem, in *Calculus of Variations and Partial Differential* Equations, Lect. Note Math. 1340, 160–174, Springer-Verlag, Berlin Heidelberg (1988)
- [9] Lin C.-S., Ni, W.-M. and Takagi, I., Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), 1-27.
- [10] Ni, W.-M. and Takagi, I., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.
- [11] Ni, W.-M. and Takagi, I., Location of the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 72 (1993), 247–281.
- [12] Ni, W.-M. and Takagi, I., Point condensation generated by a reactiondiffusion system in axially symmetric domains, Japan J. Indust. Appl. Math. 12 (1995), 327-365.