統計理論を用いた圧縮性乱流のモデリング

東大生研 半場藤弘 (Fujihiro Hamba)

1. はじめに

航空機まわりやエンジン内の高速流を正確に計算するには圧縮性の乱 流モデルが重要となる。非圧縮性乱流モデルに圧縮性の効果を導入しい くつかの流れ場でモデルが試され、圧縮性乱流の直接数値計算のデータ を用いてモデルが改良されている¹⁾⁻³⁾。例えばZeman¹⁾は圧縮性散逸率のモ デル化を行い、乱流混合層の増幅率の減少を説明した。また、統計理論 を用いて解析的にモデルを導出する試みもなされてきた⁴⁾⁻⁵⁾。Yoshizawa⁴⁾ は密度揺らぎの重要性に着目し、乱流エネルギーと散逸率に密度分散を 加えた3方程式モデルを提案した。

Yoshizawa⁴の用いる2スケール直接相互作用近似(TSDIA)はもともと 非圧縮性乱流に対してによって開発された⁶。この理論は主に2つの段 階から構成される。第1段階は2スケールの変数を導入しDIAを適用し て、レイノルズ応力などの乱流統計量を波数空間の速度分散で表す。第 2段階では速度分散を慣性領域のスペクトルで近似し、物理空間での1 点クロージャーモデルを求める。TSDIAは圧縮性乱流にも適用されたが、 慣性領域のスペクトルが詳しくわからないため、第2段階まで完了して いない。その代わりに次元解析⁴や簡単化された2スケール理論ⁿを用い てモデルが求められている。ただし、圧縮性乱流には無次元パラメータ がいくつも含まれるので次元解析だけではパラメータに対する依存性が 定まらない。

そこで本研究では圧縮性乱流の理解を深め、モデル式を系統的に導出 するために慣性領域のスペクトルを仮定し、第2段階の計算を行う。密 度フラックス、レイノルズ応力などの乱流統計量のモデルを導出する。 また直接数値計算(DNS)のデータを用いて圧縮性散逸率のモデルを考察 する。

2. 2スケール統計理論

TSDIAの方法はYoshizawa[®]に、また圧縮性乱流への適用はYoshizawa[®] に書かれているので、ここでは詳細を省略する。例えばTSDIAの第1段 階で、レイノルズ応力を計算すると展開の第1次で平均速度勾配に比例 する項が現れ、その係数である渦粘性率は

 $\nu_{e} \propto \int dk \int d\tau G_{s}(k,\tau,\tau')Q_{s}(k,\tau,\tau') + \cdots$ (1)

のように書き表せる。ここで、 k_m はエネルギー包含領域の波数、 Q_s は波 数空間での速度分散の非圧縮成分、 G_s はそのグリーン関数である。第2 段階では慣性領域型を用いて Q_s と G_s の関数型を近似し(1)の積分を計算し、 渦粘性率を乱流エネルギーとその散逸率で表す。

圧縮性乱流の場合にはさらに速度分散の圧縮成分 Q_c と密度分散 Q_ρ 、お よびそれらのグリーン関数 G_c と G_ρ が必要となる。圧縮性乱流のDNS⁸や統 計理論⁹⁾によると非圧縮成分 Q_s は非圧縮性の場合とほぼ同じくコルモゴロ フの5/3乗則を満たすが圧縮成分 Q_c はそれに比べてスペクトルの勾配が急 で高波数で早く減衰することが知られている。しかし、-5/3の代わりの べき数は確立していない。そこでここではパラメータ α と β を導入してス ペクトルのべき数を表す。速度分散、密度分散、グリーン関数を以下の ように仮定する。

$$Q_{a}(k,\tau,\tau') = \sigma_{a}(k) \exp[-\omega_{a}(k)|\tau-\tau'|], \quad a = (s,c,\rho)$$
(2)

$$G_{b}(k,\tau,\tau') = H(\tau-\tau') \exp\left[-\omega_{b}'(k)(|\tau-\tau'|)\right], \quad b = (s,c,\rho)$$
(3)

ただし、

$$\sigma_{s}(k) = C_{\sigma s} \varepsilon^{2/3} k^{-11/3} H(k - k_{m})$$
(4)

$$\sigma_{c}(k) = C_{\sigma c} \varepsilon_{d} \varepsilon^{-1/3} k^{-(11/3)-\alpha} k_{m}^{\alpha} H(k-k_{m})$$
(5)

$$\sigma_{\rho}(k) = C_{\sigma\rho} M_t^2 \overline{\rho}^2 \varepsilon_d \varepsilon^{-1} k^{-3-\alpha-2\beta} k_m^{\alpha+2\beta} H(k-k_m)$$
(6)

$$\left[\omega_{s}(\mathbf{k}),\omega_{s}'(\mathbf{k})\right] = \left[C_{\omega s},C_{\omega s}'\right]\varepsilon^{1/3}k^{2/3}$$
(7)

$$\left[\omega_{c}(\mathbf{k}),\omega_{c}'(\mathbf{k}),\omega_{\rho}(\mathbf{k}),\omega_{\rho}'(\mathbf{k})\right] = \left[C_{\omega c},C_{\omega c}',C_{\omega \rho},C_{\omega \rho}'\right]M_{t}^{-1}\varepsilon^{1/3}k^{(2/3)+\beta}k_{m}^{\beta} \quad (8)$$

ここでC_{oa}, C_{oa}, C'_{ob}はモデル定数、H(k), H(τ)は階段関数、εはエネルギー 散逸率、ε_d[=(4/3)v⟨(∇·u')²⟩]はその圧縮成分、M_t[=(2K)^{1/2}/c, cは音速]は乱流 マッハ数である。

(2)と(3)では非圧縮性と同じ時間依存性を仮定した。(4)のスペクトル

は非圧縮性乱流と同じで5/3乗則に相当する。(5)の圧縮成分のスペクト ルはαの分だけ勾配が急になっている。また乱流エネルギーの圧縮成分 と非圧縮成分の比が散逸率の2成分の比とほぼ比例することが示されて いるので³、(5)に₆を導入する。また密度分散のスペクトル(6)は複雑で あるが、これはTSDIAのQ_cとQ_oの関係式から(4),(5),(7),(8)を用いて得ら れる。(7)と(8)のωは応答時間の逆数を表すが(7)は非圧縮性乱流と同じ、 (8)は非圧縮性乱流よりkの勾配がβだけ急である。また係数としてM_c⁻¹が かかり、これは圧縮成分の時間スケールが非圧縮成分のそれよりM_c倍短 いことを表す。

密度フラックス、レイノルズ応力などの乱流統計量にTSDIAの第1段 階を適用した結果に、(2)-(8)を代入し波数と時間に関する積分を実行し 乱流モデルを導出する。以下に主な結果を示す。

3. 解析結果

密度分散 $K_{\rho}(=\langle \rho'^2 \rangle)$ のモデル式を求めて、逆に ϵ_a で展開すると ϵ_a のモデル 式が次のように得られる。

$$\begin{split} & \epsilon_{d} = C_{\varepsilon d1} \frac{\rho_{n}^{2}}{M_{t}^{2}} \varepsilon \Biggl[1 + C_{\varepsilon d2} M_{t} \Biggl(2 \frac{K}{\varepsilon} \frac{\partial U_{i}}{\partial x_{i}} + \frac{3}{2\varepsilon} \frac{DK}{Dt} - \frac{K}{\varepsilon^{2}} \frac{D\varepsilon}{Dt} + \frac{K}{\varepsilon K_{\rho}} \frac{DK_{\rho}}{Dt} \Biggr) \Biggr] (9) \\ & \quad \text{ここで} \rho_{n}^{2} (= K_{\rho}/\rho^{2}) \text{i} \mathbb{T} \text{ 均密度 } \mathcal{C} \text{ 規格 } \mathcal{K} \text{ charge } \mathcal{C} \text{ b } \text{ b } \mathcal{C} \text{ b } \text{ charge } \mathcal{C} \text{$$

$$\varepsilon_{\rm d} = C_{\rm edS1} M_{\rm t}^2 \varepsilon_{\rm S}$$

ただし ε_s (= ε - ε_d)は散逸率の非圧縮成分である。(9)と(10)の大きな違いは無 次元パラメータとして(9)は M_t と ρ_n^2 を、(10)は M_t だけを含んでいる点であ る。また(9)の角かっこの前の表式はYoshizawa⁷によって提案されており、 本研究では角かっこの中の補正項が導出された。

質量フラックスのモデル式は

 $\langle \rho' u_i' \rangle = -C_{\rho u l} M_t \frac{K^2}{\epsilon} \frac{\partial \overline{\rho}}{\partial x_i} \left[1 - 2 \frac{\rho_n^2}{M_t^2} + C_{\rho u 2} \left(\frac{K}{\epsilon} \frac{\partial U_i}{\partial x_i} + \frac{3}{\epsilon} \frac{DK}{Dt} - \frac{5}{4} \frac{K}{\epsilon^2} \frac{D\epsilon}{Dt} \right) \right] (11)$ と書ける。主要項の渦拡散率は $M_t K^2 / \epsilon$ に比例し、非圧縮性乱流のスカラー の渦拡散率よりM,倍小さいことがわかる。これは密度や速度の圧縮成分 の時間スケールが非圧縮成分より短いことに起因する。また ϵ_d と同様に 平均速度発散や実質微分を含む補正項がある。またここでは省略したが、 平均密度の勾配ではなく平均圧力や乱流エネルギーの勾配に比例するク ロス拡散項も現れる。

レイノルズ応力は

$$\left\langle \mathbf{u}_{i}^{\prime}\mathbf{u}_{j}^{\prime}\right\rangle = \frac{2}{3} \mathbf{K} \delta_{ij} - \mathbf{C}_{uu1} \frac{\mathbf{K}^{2}}{\varepsilon} \left(\frac{\partial \mathbf{U}_{i}}{\partial \mathbf{x}_{j}} + \frac{\partial \mathbf{U}_{j}}{\partial \mathbf{x}_{i}} - \frac{2}{3} \frac{\partial \mathbf{U}_{i}}{\partial \mathbf{x}_{i}} \delta_{ij} \right)$$

$$\times \left[1 - 2 \frac{\rho_{n}^{2}}{M_{t}^{2}} + \mathbf{C}_{uu2} \left(\frac{23}{49} \frac{\mathbf{K}}{\varepsilon} \frac{\partial \mathbf{U}_{i}}{\partial \mathbf{x}_{i}} + \frac{1}{\varepsilon} \frac{\mathbf{D}\mathbf{K}}{\mathbf{D}t} - \frac{5}{12} \frac{\mathbf{K}}{\varepsilon^{2}} \frac{\mathbf{D}\varepsilon}{\mathbf{D}t} \right) \right]$$

$$(12)$$

と表せる。ただし平均速度勾配の2乗に比例する高次項は省略した。主 要項の渦粘性率はK²/εに比例し非圧縮性乱流の場合と同様である。これ は速度成分のうち非圧縮成分が卓越しているからである。したがって圧

(10)

と考えられる。

導出した(9), (11), (12)のモデル式には C_{ed} などのモデル定数が含まれている。それらは(4)-(8)の基本的なモデル定数とパラメータα, βの関数として表すことができるが、現段階ではその値がわからないため(9), (11), (12)のモデル定数を求めることができない。ただし $C_{\sigma s}$ や $C_{\omega s}$ は非圧縮性乱流の値に近いと考えられるし、TSDIAの考察の過程で1/3<α<4/3やβ=1/3が推測される。モデル定数の導出は今後の課題である。

4. DNSとの比較

ここではBlaisdell et al.⁸の一様等方性乱流と一様剪断乱流のDNSのデー タを用いて圧縮性散逸率 ϵ_a のモデルの評価を行う。DNSのデータのうち 3つのケースについて調べた。主なパラメータの初期値と流れの種類を 表1に示す。ただし表中で χ_c は乱流エネルギー中の圧縮成分の割合を表 す。本研究で得られたモデルの主要項

$$\varepsilon_{d} = C_{\varepsilon d1} \frac{\rho_{n}^{2}}{M_{t}^{2}} \varepsilon$$
(13)

とSarkarのモデル(10)を考察する。ただしモデル定数は C_{edl} =1, C_{eds1} =1とした。

まず一様等方性乱流について調べる。図1はケース1について、図2

はケース2についてそれぞれDNS、Sarkarのモデルと本研究のモデルに よる $\epsilon_{l}\epsilon$ の時間発展を表したものである。時間tは初期の乱流エネルギー k_{0} と散逸率 ϵ_{0} で規格化されている。DNSの結果からケース1と2では初期 値だけではなく時間の経過した後も $\epsilon_{l}\epsilon$ の値が大きく異なることがわかる。 Sarkarのモデル(10)ではM_iだけで表されているためケース1と2ではほぼ 同じ発展となる。一方本研究のモデルはM_iだけでなく ρ_{n}^{2} も用いるためケー ス1と2の違いを説明することができる。藤原³によるK- ϵ -Fモデル(Fは 規格化された密度分散と乱流エネルギーの圧縮成分の平均)の解析でも同 様の結果が得られている。

図3は一様剪断乱流のケース3の ϵ_{e}/ϵ の時間発展を表したものである。 ここで時間tは平均速度勾配Sを使って規格化されている。DNSのSt=2ご とのくぼみは計算格子の切り替えによるものである。St=10以降DNSの値 はほぼ横ばいであるのに対して、Sarkarのモデルは単調に増加している。 本モデルではやや値が小さいものの横ばいの傾向を表している。以上よ り圧縮性散逸率を適切にモデル化するにはM_eだけでなく ρ_n^2 が重要である ことがわかった。

5. まとめ

慣性領域のスペクトルを仮定することにより圧縮性乱流の2スケール 統計理論による解析を行い、乱流モデルを求めた。圧縮性散逸率は乱流 マッハ数だけでなく密度分散が重要であること、質量フラックスの渦拡 散率が乱流マッハ数に比例して小さくなること、レイノルズ応力の渦粘 性率では平均速度発散の項が含まれることなどがわかった。圧縮性散逸 率についてDNSとモデルを比較した。今後の課題は得られた乱流モデル をDNSを用いてさらに検討すること、またDNSや他の統計理論を調べて 本解析の仮定がどの程度正しいかを確かめることである。

謝辞

DNSのデータをPurdue大学のBlaisdell教授より提供していただいた。ここ に記して感謝いたします。

参考文献

1) O. Zeman: Phys. Fluids A 2 (1990) 178-188.

2) S. Sarkar, G. Erlebacher, M. Y. Hussaini, and H. O. Kreiss: J. Fluid Mech. 227 (1991) 473-493.

3) 藤原: 東京大学博士論文 (1996).

4) A. Yoshizawa: Phys. Rev. A 46 (1992) 3292-3306.

5) J. R. Ristorcelli: NASA ICASE Report, No.95-22 (1995).

6) A. Yoshizawa: Phys. Fluids 27 (1984) 1377-1387.

7) A. Yoshizawa: Phys. Fluids 7 (1995) 3105-3117.

8) G. A. Blaisdell, N. N. Mansour, and W. C. Reynolds: Rep. TF-50 Department of Mechanical Engineering, Stanford University (1991). 9) F. Bataille and J.-P. Bertoglio, FED-Vol. 151, Transitional and Turbulent Compressible Flows, ASME (1993).

ケース	流れ	M _t	ρ_n	Xc
1	一様等方	0.3	0	0
2	一様等方	0.3	0.15	0.25
3	一様剪断	0.4	0	0

表1 DNSのパラメータ

図1 散逸率の圧縮成分の比率の時間発展(ケース1)

図2 散逸率の圧縮成分の比率の時間発展(ケース2)

図3 散逸率の圧縮成分の比率の時間発展(ケース3)