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Abstract

Two different topics associated with perturbed $\mathrm{K}\mathrm{d}\mathrm{V}$ equations are studied. First
one is the formal approach to the 2-D problem, that is how localized pulses behave, by
considering pulse interactions. Second topic is the linearized stability of the periodic
patterns in perturbed $\mathrm{K}\mathrm{d}\mathrm{V}$ equations in 1-D setting studied both theoretically and
numerically. The stability depends upon the wavelength of the solution, namely,
the periodic patterns with sufficiently short and long wavelength are unstable. This
result coincides with the wavelength preference which can be observed in numerical
solutions to the initial value problem of the PDE.

1 Introduction

In many physical problems, integrable systems such as the $\mathrm{K}\mathrm{d}\mathrm{V}$ or the NLS equations
have been obtained by reductive perturbation method in its lowest order. These integrable
systems are, however, sometimes insufficient to explain the original phenomena and one
needs to take not only the lowest order but also higher order correction terms at the
reductive perturbation step. These higher order terms usually contain dissipative effects.
The Benney equation, which explains the wave motions on a liquid layer over an inclined
plane, is one of the example of the nearly-integrable systems $(\mathrm{s}\mathrm{e}\mathrm{e}[\mathrm{K}\mathrm{T}])$ :

(1) $u_{t}-uu_{x}+u_{xxx}+\epsilon(u_{xx}+u_{xxxx})=0$ , $t\geq 0$ , $-\infty<x<\infty$ .

Here, $\epsilon$ is a small positive parameter, and the unperturbed equation is the $\mathrm{K}\mathrm{d}\mathrm{V}$ :

(2) $u_{t}-uu_{x}+u_{xxx}=0$ , $t\geq 0$ , $-\infty<x<\infty$ .

By considering the dispersion relation, intuitively speaking, two derivative terms in the
perturbation, $i.e$ . $u_{xx}$ and $u_{xxxx}$ , have instability and dissipative effects respectively.

The Benney equation is not only the model of the long surface wave on a thin liquid
layer but also related to various other phenomena. And in many cases it is more realistic
to study the Benney equation in the 2-D setting:

(3) $u_{t}+uu_{x}+\Delta u_{x}+\epsilon(u_{xx}+\triangle^{2}u)=0$ ,

where $\triangle=\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2}$ and the parameter 6 is assumed to be a small positive num-
ber. When the perturbation terms are absent it is equivalent to the Zakharov-Kuznetsov
$\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[\mathrm{z}\mathrm{K}]$ , one of the 2-D versions of the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation:

(4) $u_{t}+uu_{x}+\triangle u_{x}=0$ .
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The travelling wave solutions of the form $u=u(x-Ct, y)$ satisfy the following equation:

$\triangle_{u+\frac{1}{2}u^{2}}-Cu=0$ ,

where $c$ represents the wave velocity to be determined by solving this equation. We can
scale out the velocity by $cu=U,$ $\sqrt{c}x=X$ and $\sqrt{c}y=\mathrm{Y}$ as:

(5) $\triangle^{*}U+\frac{1}{2}U2-U=0$ ,

where $\triangle^{*}$ denotes the Laplacian with respect to $X$ and Y. It is easy to show that

$U=3\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}2[(x\cos\theta+\mathrm{Y}\sin\theta)/2]$

is an exact solution to (5). This solution is an oblique $\mathrm{o}\mathrm{n}\mathrm{e}-\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{o}_{\wedge}\eta$ al travelling wave
which is naturally obtained from the 1-D $\mathrm{K}\mathrm{d}\mathrm{V}$ soliton. However, this 1-D travelling wave
soloution is shown to be unstable by considering the eigenvalue problem.

It is known that the equation (5) admits the unique radially symmetric solution $F(r)$ ,
that decays exponentially as $rarrow\infty$ . Therefore the Zakharov-Kuznetsov equation admits
radially symmetric localized pulse solutions $u=cF(\sqrt{c(x^{2}+y^{2})})$ for an arbitrary positive
velocity(amplitude).

Now let us go back to the perturbed equation (3). In [TIK] they have numerically found
the quasi-stationary lattice patterns of pulses to (3). They reported that many localized
pulses appear even when the initial data is random and these localized structures preserve
their identities. These pulses travel as a whole changing their relative positions gradually
and form mysterious lattice patterns. Also each of these pulses is well approximated by the
radially symmetric localized pulse $u=cF(\sqrt{c(x^{2}+y^{2})})$ for a definite velocity(amplitude) $c$ .
It seems quite similar to the 1-D case, $i.e.$ , the pulse solution to the 1-D Benney equation
is well-approximated by the $\mathrm{K}\mathrm{d}\mathrm{V}$ soliton solution with definite amplitude. It is called
amplitude selection. However, as far as we know there are no theoretical results on the
behavior of solutions to the two-dimensional equation (3).

We shall discuss the amplitude selection of the pulse solution to the 2-D Benney equation
and the specific regular patterns of pulses by considering the pulse interaction.

First, by applying Ei-Ohta’s method to the 2-D Benney equation we shall obtain the
selected velocity(amplitude) as a non-secularity condition, a kind of solvability condition.
Second, the equations of motions of pulse positions can be obtained also from a non-
secularity condition. And third, we shall study the ODE system which describes the motion
of $\mathrm{n}$-pulses under the periodic boundary conditions. Moreover, several elementary fixed
points of the reduced ODE system is studied to compare the results with the numerical
simulations of the full system. Though the ODE system has basically the simple repulsive
character similar to the 1-D case, there are non trivial stable stationary patterns to the
ODE system which would explain the lattice patterns in [TIK].
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There are several stages in the development of the 2-D Benney $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}:\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ of

pulses, pulse interaction and fast transition process. We can conclude that the reduced
ODE would explain the pulse interaction stages which are very slow.

We will not discuss the detail on the 2-D problem here, because this result is already
published in [OL]. And we will reconsider the 1-D problem, say wavelength preference.

The following equation is a perturbation of the $\mathrm{m}\mathrm{K}\mathrm{d}\mathrm{V}$ equation:

(6) $u_{t}+(-1)k2u_{xx}uu_{x}+x+\epsilon(uxx+uxxxx)=0$ , $t\geq 0$ , $-\infty<X<\infty$ .

The equation (6), especially with $k=1$ , has a relation to a traffic congestion problem.(see
[KS].) There are some other nearly-integrable systems which can be considered as pertur-
bations of the NLS equation, e.g. the guiding-centre soliton in the optical communication
theory by Hasegawa and $\mathrm{K}\mathrm{o}\mathrm{d}\mathrm{a}\mathrm{m}\mathrm{a}[\mathrm{H}\mathrm{K}]$ . Here we don’t mention it, however, we believe that
there are many nearly-integrable systems which have similar properties to (1) and also our
method can be applied to study their stability.

These nearly-integrable systems, especially (1) and (6), have similar properties: an am-
plitude selection and a wavelength preference. It is well-known that the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation has
pulse and periodic travelling wave solutions:

$u^{(0)}(z)=3c\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}^{2}(\sqrt{c}/2z)$, and

$u^{(0)}(_{Z)}=a\mathrm{c}\mathrm{n}(2BZ,m)$ .
Here, $B=\sqrt{a/12m^{2}}$ , and moreover $a$ is an arbitrary positive constant and $z=x– ct$
is a travelling coordinate with the velocity $c=(2-m^{-2})a/3$ . Also cn denotes Jacobi’s
elliptic $\mathrm{c}\mathrm{n}$-function with modulus $m\in(\mathrm{O}, 1)$ . This means the $\mathrm{K}\mathrm{d}\mathrm{V}$ admits travelling wave
solutions with an arbitrary amplitude. We can show the existence of such solutions to
the Benney equation (1) when $\epsilon$ is small enough. In this case, however, the equation (1)
admits only one travelling wave solution up to phase shift and Galilei transformation for
each wavelength. Here, Galilei transformation: $u=\tilde{u}+c,$ $x=\tilde{x}-ct$ means to take a
different travelling wave coordinate. In fact, we have the following:

Theorem 1. $([\mathrm{E}\mathrm{M}\mathrm{R}],[\mathrm{O}\mathrm{g}])$ There exists a positive number $\epsilon^{*}$ such that the following
holds. For an arbitrary $l>2\pi(1)$ has a unique periodic travelling wave solution with
wavelength $l,$ $\Phi(z;l)$ , up to phase shift and Galilei transformation for all $\epsilon$ with $0<\epsilon<\epsilon^{*}$ .
$\Phi$ can be approximated as:

$\Phi(z;l)=\Phi^{\mathrm{t}^{0)}}(_{Z};a(l))+\epsilon\Phi^{\mathrm{t}1})(_{Z})+o(\epsilon)$ .

Here, $\Phi^{(0)}(z;a)=a\mathrm{c}\mathrm{n}^{2}(B_{Z}, m(l))$, where $m(l)$ is a well-defined smooth function with $Bl=$

$2K(m(l))$ so that $\Phi^{(0)}$ has wavelength $l$ . $K(m)$ denotes the complete elliptic integral of the
first kind. $a(l)$ is given by (the solvability condition):

(7) $\int_{-\infty}^{\infty}\{\frac{\partial\Phi^{(0)}(z\cdot a(l))}{\partial z},\}^{2}dz-\int_{-\infty}\infty\{\frac{\partial^{2}\Phi^{(0)}(z\cdot a(l))}{\partial z^{2}},\}^{2}d_{Z}=0$ ,
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and is consequently smooth and monotone increasing function of $l.(\mathrm{F}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}1(\mathrm{a}))$ Moreover,
$\Phi(z;l)$ converges to the unique pulse solution $\Phi_{\infty}(z)$ compact uniformly as $larrow\infty$ .

Therefore the amplitude selection means the property that only one travelling wave
solution can persist to the perturbed equation (1) for each wavelength. It should be noted
that other representation is also possible for $\Phi$ by an appropriate Galilei transformation.
More precisely, we used the function $a\mathrm{c}\mathrm{n}^{2}(B_{Z}, m)$ to describe the periodic solution here for
simplicity, however, $u^{(0)}(z)=u_{0}+a\mathrm{c}\mathrm{n}^{2}(BZ, m)$ is also possible by taking another speed
$c=u_{0}+(2-m^{-2})a/3$ . In the next section we require the mean-zero constraint $\int\Phi dz=0$ ,
however, Theorem 1 still holds with the same amplitude function $a(l)$ because Galilei
transformation does not affect the solvability condition (7).

On the other hand, numerical simulations suggest that the time evolutions of the solu-
tion to the equation (1) is much more interesting.(See [TK].) The equation (1) is solved
numerically in a finite interval $[0, L]$ with the periodic boundary conditions. Even if the
initial data is small, many pulses appear at the first stage by the instability effect. Then
at the second stage amplitudes of these pulses change to become close. Moreover, at the
third stage, pulse positions of these pulses are modulated gradually and the solution seems
to converge to a periodic solution finally. For a fixed interval $[0, L]$ we have $\mathrm{n}$ different
periodic travelling wave solutions from the Theorem 1, where $n< \frac{L}{2\pi}\leq n+1$ . However,
numerical solutions converge to only a few of them if we start from many different initial
data. In Figure $1(\mathrm{b})$ we show the numerically ”stable” region of each different periodic
solution. The most interesting point in the numerical simulation is that solutions to (1)
exhibit the wavelength preference(See Figure 2). That is only the periodic traveling wave
solutions with wavelength $l\in(l_{*}, l^{*})$ are stable. Here, $l_{*}$ and $l^{*}$ are independent of $L$ : the
domain length.

The motivation of this research is to understand why the specific wavelength is preferred.
We study the linearized eigenvalue problem $(EP)_{l}$ around each periodic travelling wave
solution $\Phi(z;l)$ for all $l>2\pi$ . Let us define the stable wavelength region $S$ by

$S:=\{l\in(2\pi, +\infty)|\mathrm{s}_{\mathrm{P}^{\mathrm{e}}}\mathrm{c}((EP)_{l})\subset\{\lambda|{\rm Im}\lambda<0\}\mathrm{U}\{0\}\}$.

We can intuitively understand that $S$ is bounded. Because of the dispersion relation a
long wave instability appears. It is, however, still non-trivial. In this report we introduce
the theoretical-numerical approach to this problem. By this approach we can ”show” that
$S\subset(l_{*}, l^{*})$ . The result is still not rigorous, however, suggests that there are two types of
instability mechanisms which corresponds the upper and lower bounds $l_{*},$ $l^{*}$ . It should be
noted that if we restrict the problem for the finite interval as the numerical simulations,
we can calculate all the critical eigenvalues accurately.
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2 Eigenvalue problems

Let us first linearize (1) around the periodic solution $\Phi(z;l)$ to obtain the eigenvalue
problem:

$(EP)_{l,N}$ $Lv=\sigma v$ , $z\in[0, Nl]$ ,

where $L$ is the linearized operator with $l$ -periodic coefficients:

$Lv=cv_{z}-(\Phi v)_{z}-v_{zzz}-\epsilon(v_{z}+v)zzzzz$ .

The eigenvalue problem can be written as the first order system by using the notation
$y$

.
$=(u_{\mathrm{t}}, u_{z}, uzz’ u:zzz)^{t}$ :

$\frac{d}{dz}y=A(_{Z};\sigma)y$ .

Here $A$ is a matrix with $l$ -periodic entry, $i.e.,$ $A(z+l;\sigma)=A(z;\sigma)$ Let $\mathrm{Y}(z;\sigma)$ be a

fundamental solution matrix. The floque theory tells us that $\mathrm{Y}(z;\sigma)=\Gamma(z)\mathrm{e}^{\Lambda z}$ , where $\Gamma$ is
$l$-periodic and A is a constant matrix. This means that $\sigma$ is an eigenvalue of $(EP)_{l,N}$ if and
only if $F( \sigma, \frac{n}{N};l)=\det(Y(l;\sigma)-\mathrm{e}^{2}\pi i\frac{n}{N}I)=0$. In this case the corresponding eigenfunction
is $Nl$-periodic and oscillating $n$-times. By restricting the problem to the finite interval the
spectrum becomes discrete and they can be treated as the perturbation of the eigenvalues
of the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation. The spectrum of $L,$ $spec((EP)_{l})$ , in the space such as $BC(\mathrm{R})$ is
expected to be obtained by the suitable limit of the set of all the eigenvalues of $(EP)_{l,N}$ ,

however, we don’t mention this problem here.(See for example [Mi] for the related topic.)

Therefore the question is to determine the set $C_{l}= \{\sigma|F(\sigma, \frac{\overline n}{N}, l)=0, n, N\in \mathrm{z}\}$ , trivially,
a subset of $speC((EP)_{l})$ , for each $l>2\pi$ .

Our approach owes [EMR] very much. They first considered the eigenvalue problem of
(1) as the perturbation of that of the $\mathrm{K}\mathrm{d}\mathrm{V}$ :

(8) $\sigma^{(0)}v=L^{(0)}v=cv-z(\Phi^{(0)}v)_{z}-vzzz$ .

They also calculated the first order solvability condition of the perturbation formally. We
can justify this point by the geometric singular perturbation technique as in [OS]. More
crucial point is that the eigenfunctions of the $\mathrm{K}\mathrm{d}\mathrm{V}$ can be written by using that of Hill’s
$\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}.[\mathrm{M}\mathrm{T}]$ The eigenvalues of the $\mathrm{K}\mathrm{d}\mathrm{V}$ lie densely on the imaginary axis. That means
the travelling wave solutions of the $\mathrm{K}\mathrm{d}\mathrm{V}$ is neutrally stable. Therefore we need to study
$\epsilon’ \mathrm{s}$ first order correction terms from the perturbation effect to determine the stability.

Let us briefly review the known facts about the eigenvalues of Hill’s equation:

$-y”+ \frac{u(x)}{6}y=\frac{\lambda}{6}y$ ,

where $u(x)$ is a periodic function of $[0,1]$ . Then, there exists an infinite sequence of eigen-
values

$\lambda_{0}<\lambda_{1}\leq\lambda_{2}<\lambda 3\leq\lambda 4<\cdotsarrow\infty$
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with eigenfunctions of period 1 or 2. These eigenvalues are well characterized by the
so-called Floquet discriminant. Let $Y(x;\lambda)$ be the fundamental solution matrix of Hill’s
equation with $\mathrm{Y}(\mathrm{O};\lambda)=I$ . Then it follows that $\det \mathrm{Y}(x;\lambda)\equiv 1$ and consequently the
eigenvalues of $Y(1, \lambda)$ are $(\triangle(\lambda)\pm\sqrt{\triangle(\lambda)^{2_{arrow}}4})/2$ where $\Delta(\lambda)=\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}Y(1;\lambda)$ , the Floquet
discriminant. Thus Hill’s equation has a bounded solution only when $\Delta(\lambda)\leq 2$ . Moreover,
it has 1-periodic solution if and only if $\triangle(\lambda)=2$ and has 2-periodic solution if and only if
$\Delta(\lambda)=-2$ . Now

$\Delta(\lambda_{k})=2$ when $k=0$ or $2n-1,2n$ , where $n=2,4,6,$ $\cdots$ and

$\triangle(\lambda_{k})=-2$ when $k=2n-1,2n$ , where $n=1,3,5,$ $\cdots$ .
.;

The surprising fact is that there is only one instability gap, $i.e$ . the open interval $(\lambda_{2N-1,2N}\lambda)$ ,
in the sequence of $\{\lambda_{k}\}$ if and only if the potential function $u(z)$ is a periodic travelling
wave solution of the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation with period $1/\mathrm{N}$ .

Let us recall here our original equation:

(9) $u_{t}.-$. $u‘.u_{x}.+u_{xxx}.+\epsilon.(.u.+xx;u_{xxxx}\dot,),=0$ , $.x\in[0.’ l]$ ,

with periodic boundary condition. For the sake of convenience we rewrite it by

(10) $\tilde{x}=\beta x$ , $\tilde{u}=u/\beta^{2}$ , $t\sim=\beta^{3}t$ , and $\tilde{\epsilon}--\epsilon/\beta$

as

(11) $\tilde{u}_{\overline{t}}-\tilde{u}\tilde{u}_{\overline{x}}+\tilde{u}_{\overline{x}\overline{x}\overline{x}}+\tilde{\epsilon}(\tilde{u}_{\overline{x}\overline{x}}+\beta^{2}\tilde{u}\overline{x}\overline{x}\overline{x}\overline{x})=0$ , $\tilde{x}\in[0,1]$

so that we can consider all the different periodic travelling wave solutions have period 1.
We will omit the $\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}^{\sim}}$ as far as it is clear. Every periodic travelling wave solution of
the $\mathrm{K}\mathrm{d}\mathrm{V}$ , can be written by the elliptic function a.s.fOl-lOW.S

$u_{\{0)2}=\alpha-(\alpha 2-\alpha_{1})\mathrm{C}\mathrm{n}^{2}(\sqrt{\frac{\alpha_{3}-\alpha_{1}}{12}}(Z-z_{0}))$,

where $\alpha_{1}<\alpha_{2}<\alpha_{3}$ are arbitrary real numbers and the modulus of Jacobi’s cn-function
should be $m=(\alpha_{2}-\alpha_{1})/(\alpha_{3}-\alpha_{1})$ . The speed of its travelling wave solution is $c^{\langle 0)}=$

$-(\alpha_{1}+\alpha_{2}+\alpha_{3})/3$. It is called the cnoidal wave solution. Let us chose these $\alpha’ \mathrm{s}$ to satisfy
the following three condition:

$\bullet$
$u^{(0)}$ has period 1,

$\bullet\int_{0}^{1}\{\frac{\partial u^{\mathrm{t}^{0)}}}{\partial z}\}^{2}d_{Z}=\beta^{2\int_{0}^{1}}.\{\frac{\partial^{2}u^{(0)}}{\partial z^{2}}\}^{2}dz$ ,

$\bullet\int_{0}^{1}u^{\mathrm{t}^{0})}d\mathcal{Z}=^{\mathrm{o}}$ . $\cdot$

‘
$.$.

$\dot{\mathrm{a}}$

145



Here, the second condition corresponds the solvability condition in Theorem 1, therefore
these three conditions determine a unique triple $(\alpha_{1},\alpha_{2}, \alpha_{3})$ for $\beta<1/(2\pi)$ . By the above
fact, simple eigenvalues of Hill’s equation are $\lambda_{0}=(\alpha_{1}+\alpha_{2})/2,$ $\lambda_{1}=(\alpha_{1}+\alpha_{3})/2$ and
$\lambda_{2}arrow-(\alpha_{2}+\alpha_{3})/2$ with the corresponding eigenfunctions $y_{0}--\mathrm{d}\mathrm{n}(sz),$ $y_{1}=\mathrm{c}\mathrm{n}(Sz)$ and
$y_{2}=\mathrm{s}\mathrm{n}(Sz)$ , where $s=\sqrt{(\alpha_{3}-\alpha_{1})/12}$. The other eigenvalues are all double and the
corresponding eigenfunctions are ’, . . $..\sim.$’ $i$ ,

$y_{2n-1,y_{2n}\sqrt{\lambda_{n}^{d\mathrm{t}^{0)}}+u(Z)/2+3C^{(0)}/2}}=$

(12) . $\exp(\pm\sqrt{(\lambda_{n}^{d}-\lambda_{0})(\lambda^{d}-n1)\lambda(\lambda^{d}-n\lambda_{2})/6}\int_{0}^{z}\frac{d\tau}{\lambda_{n}^{d}+u^{(0})(\tau)/2+3C(0)/2})$

for $n>1$ . Here, $\lambda_{n}^{d}=\lambda_{2n-1}=\lambda_{2n}$ and these values are determined by three simple $\lambda’ \mathrm{s}$ and
$n$ . All of the above facts are in [MT] and more detailed review can be found in [EMR].

Now the $\dot{\mathrm{e}}$igenvalue problem should also be scaled as $:\cdot$

’ $\backslash$

$1$

(13)
$\sigma^{\zeta}v^{\xi}=L^{\epsilon}v^{\epsilon}=D[(u^{\epsilon\dot{\epsilon}}.+C)v\epsilon]‘-D^{\cdot}.3v-\vee.,.rr\cdot\cdot l.\cdot\dagger 66(D^{2}.\cdot.+\prime\prime\prime\cdot\cdot|\beta 2^{\cdot}.D^{4}tj)v^{\epsilon},$

$\mathrm{t}$ .
$:...\cdot$

. $\backslash \cdot$

where $u^{\epsilon}=u^{(0)}+\epsilon u^{()}1+\cdots$ is a periodic travelling wave solution and $c^{\epsilon}=c^{(0)}+6c^{\mathrm{t}1)}+\cdots$ .
The lowest order of (13) is equivalent to (8) and solved by squared eigenfunctions of Hill’s
equation.

Fact $1.([\mathrm{E}\mathrm{M}\mathrm{R}])$ If $u(z)$ is the $\mathrm{K}\mathrm{d}\mathrm{V}$ cnoidal wave solution with period 1, then the deriva-
tives:

$v_{k}^{1}=D(0)(y_{k}0))^{2}$ , $k=3,4,5,$ $\cdots$

of the squared eigenfunctions $y_{k}$ of Hill’s equation together with $v_{1}=\partial u^{(0)}/\partial c$ and $v_{2}=$

$\partial u^{\langle 0)}/\partial z’$

.
are a

$\mathrm{s}.\mathrm{e}\mathrm{t}$

of eigenfunctions of (8) with the eigenvalues

$\sigma_{2n}^{\langle 0}-1’\sigma_{2}^{\mathrm{t}}-)0nJ_{-\pm\frac{4}{3}i}\sqrt{(\lambda_{n}^{d}-\lambda_{0})(\lambda^{d}-n1)\lambda(\lambda^{d}-n\lambda_{2})/6}$,
: . ;. ,, . $\cdot$ .

for $n=2,3,$ $\cdots$ . Moreover, the functions:

$w_{k}^{\langle 0)}=(yk\langle 0))^{2}$ , $k=3,4,5,$ $\cdots$

together with $w_{1}=u^{\langle 0)}$ and $w_{2}= \int_{0}^{z}[u^{\langle 0)}/\partial c]d_{Z}$ are a set of solutions to the adjoint
eigenvalue problem $L^{\langle 0)*}w=\overline{\sigma^{\langle 0)}}w$ . Also, the following biorthogonality holds:

1.

$<v_{j}^{(0)},$ $w^{\mathrm{t}^{0)}}k>=0$ if $j\neq k$ , $k,$ $l\geq$

.
$1,$

.

where $<f,g>:= \int_{0}^{1}f\overline{g}dz$ .

Fact 1 says that $\epsilon’ \mathrm{s}$ zero’th order of the eigenvalue equation can be solved $\mathrm{e},\mathrm{x}.\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{l}\mathrm{y}$ and
eigenvalues $\sigma_{k}^{\langle 0\rangle}$ lie on the imaginary axes. By using the formal expansions

$-’!\backslash \sim$

(14)
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for each $k\geq 3$ they $([\mathrm{E}\mathrm{M}\mathrm{R}])$ obtained the formal solvability $\infty \mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}_{0}.\mathrm{n}$ of $v_{k}^{(1)}$ as,
$\triangleleft$

$(.1.5)$
.

$\sigma_{k}^{(1\rangle}=’\frac{-<u^{(1)()}v_{k}(0)v^{(0)}k>+<\partial vkv^{(0)}k>-\beta(0)2\partial^{2}<vk’\partial v^{\langle 0)}k0>}{<v_{k}^{(0)},w_{k}.>(0)},$ .

Here, for the eigenvalue equation (13) is a singular $\mathrm{p}$ erturbation of (8), the existence
of $\dot{\mathrm{e}}\mathrm{i}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$ is not automatically trivial from the above formal solvability condition.
Therefore we apply the similar reduction to [OS] by using a geometric singular perturbation
technique so $\mathrm{t}\dot{\mathrm{h}}$ at we obtain the equivalent regular perturbation problem which solvability
condition is the same as (15) up to $O(\epsilon^{2})$ . $j$ .: ‘

Theorem 2. All the eigenvalues of (13) can be expressed as (14) with $\sigma_{k}^{\langle 1)}$ determined
as (15). :. . $\cdot$ . $\cdot$

$\Pi$ : .. . ${ }$ . : , $\cdot$ : ...,

At this stage we still need the detailed information of the periodic solution, $i.e$ . $u^{(1)}$ , to
determine $\sigma_{k}^{(1)}$ . However, by the following lemma we can obtain the required information
for stability without using $u^{(1)}$ .

Lemma 3. ${\rm Re}<v_{k’ k}^{(0)\mathrm{t}}w0$
) $>={\rm Re}<\partial v_{k}^{(0)},$ $v^{\mathrm{t}\mathrm{o})}k>={\rm Re}<\partial^{2}v_{k}^{\langle 0},$ $\partial$

) $vk(0)>=0$ . Therefore,

(16) ${\rm Re} \sigma_{k}^{(1)}=\frac{<\partial v_{k}^{\mathrm{t}},vk>-0)(0)\beta^{2}<\partial 2v_{k}^{()}0\partial v_{k}>(0)}{<v_{k}^{(0)\mathrm{t}0}w_{k}>)},’$.

This lemma can be proved by direct calculation by the exact representation of $y_{k}$ .
Let $\mu(z, \lambda)=\lambda+u^{(0)}(z)/2+3c^{10_{)}}/2$ and $\gamma=\sqrt{(\lambda-\lambda_{0})(\lambda-\lambda 1)(\lambda-\lambda 2)/6}$. Then more-

over, we have

Lemma 4.
$<v,$ $w>=2 \gamma i\int_{0}^{1}\mu(z, \lambda)dz$ ,

$<\partial v,$ $v>= \gamma i\int_{0}1\frac{(\partial u/\partial_{Z})2+16\gamma 2}{2\mu(z,\lambda)}dz$ ,

$< \partial^{2}v,\partial v>=\gamma i\int_{0}1\{\frac{3(\partial^{2}u/\partial Z^{2})^{2}}{2\mu}+\frac{1}{\mu^{3}}(32\gamma-10\backslash 4\gamma^{2}(\partial u/\partial Z)2-\frac{(\partial u/\partial Z)^{4}}{6})\}d_{Z}$.
$1$

Here, $\lambda$ satisfies $\lambda_{0}<\lambda<\lambda_{1}$ or $\lambda_{2}<\lambda$ .

Remark 1. Only when $\lambda=\lambda_{k}^{d}$ the integrals in the above lemma give the information
for $\sigma_{k}^{\langle 1)}$ . These eigenvalues correspond 1-periodic and $\mathrm{k}$-times oscillating eigenfunctions.
Since we are interested in the eigenvalues corresponding to a rational rotation number we

$.\mathrm{w}\mathrm{i}11_{0}\mathrm{b}\mathrm{t}\mathrm{a}\mathrm{i};..,\mathrm{n}.’:...$ .$.;...,.:-\cdot,.‘.;\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{o}.\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}_{\mathrm{t}}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{o}\mathrm{r}C_{l}\mathrm{b}\mathrm{y}\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{i}\mathrm{n}.\mathrm{g}..\lambda$
as $\mathrm{i},\mathrm{n}$

.
$\mathrm{L}\mathrm{e}\mathrm{m}.\mathrm{m}:$. a 4.

Remark 2. The function $m(z;\lambda)$ has zeros only when $\Delta(\lambda)\leq-2$ . Therefore, inte-
grals appearing in the second and third equations in Lemma 4 become singular when $\lambda$

approaches $\lambda_{1}$ or $\lambda_{2}$ .
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3Numerical estimates and wavelength preference

We numerically $\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{c}\dot{\mathrm{u}}$ late ${\rm Re}\sigma^{\mathrm{t}^{1)}}$ by $\mathrm{u}\mathrm{s}\mathrm{i}’ \mathrm{n}\mathrm{g}\vee\cdot$ the $\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}}1\mathrm{a}$ in Lemma 4. As we remarked
there, we can integrate them as much accuracy as we want except the neighborhood of $\lambda_{1}$

and $1\lambda_{2}$ . By.Fact 1, imaginary part of $\sigma^{\epsilon}$ is controlled by $\sigma^{(0)}$ and $\sigma^{(0)}arrow 0$ when $\lambdaarrow\lambda_{i}$ .
The numerical results in Figure 3 describe eigenvalues by plotting $(\beta^{3}\sigma^{\mathrm{t}0)}, \beta^{2}{\rm Re}\sigma\langle 1))$ . The

factors $\beta^{3}$ and $\beta^{2}$ come from a rescaling procedure to the original $(EP)_{l}$ . The spectrum

curve $C_{l}$ is expected to be obtained after the real coordinate scaling by the factor of $\epsilon$ .
Three pictures(different scale) in one row are associated with the same periodic travelling

wave solution. Figure 3 shows the results for six different wavelengths. There are basically

two curves, bounded and $\mathrm{u}\mathrm{n}\dot{\mathrm{b}}$ ounded ones. Unbounded curve comes $\dot{\mathrm{f}}\mathrm{r}\mathrm{o}\mathrm{m}$ the spectrum

branch of Hill’s equation for $\lambda>\lambda_{2}$ . And bounded curve comes from that for $\lambda_{0}<\lambda<\lambda_{1}$ .

These results are summarized as

$\bullet$ $\Phi(z;l)$ is linearly unstable when $2\pi<l<8.43\ldots$ by the perturbation with wave-
length less than $l$ .

$\bullet$ $\Phi(z;l)$ is linearly unstable when $l>26.3\ldots$ by the perturbation with wavelength
larger than $l$ .

Therefore we can obtain the wavelength preference by the linearized eigenvalue approach.

Still many problems remain open. $\dot{\mathrm{F}}$irst, as we noticed above, these numerically determined
curves are reliable except the neighborhood of the real axes. Therefore we need a local

theory to determine the connectivity to those numerical curves. To do that we know only
$0$ eigenfunction given by the derivative of the solution. And we can say that the spectrum

curve passing through $0$ stays locally in the left half plane for all $l>2\pi$ by the local
calculus around $0$ . (We haven’t mention the detail here.) However, numerical results
suggest that spectrum curve crosses the real axes three times, while we don’t know other
real eigenvalues. Second, this numerically obtained lower bound for the stable wavelength
coincides quite well with Figure 2, whiie the upper bound we obtained is much larger than
Figure 2.

We believe that these theoretical-numerical approach to detect the spectrum about the
periodic solutions can be applied to many other nearly-integrable systems. In fact, we can
do it for the equation (6) to obtain the similar wavelength preference. Also, we have an
example which does not have wavelength preference. Consider the $\mathrm{f}\mathrm{o}\mathrm{l}1_{\mathrm{o}\mathrm{W}}\mathrm{i}\mathrm{n}\mathrm{g}$

. perturbation
of the $\mathrm{K}\mathrm{d}\mathrm{V}$ :

(17) $u_{t}-uu_{x}+u_{xxx}-\epsilon(u+u_{xx})=0,t\geq 0,$ $-\infty<x<\infty$ .

We can similarly construct the family $0\dot{\mathrm{f}}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}_{\mathrm{o}\mathrm{d}\mathrm{i}}:\cdot\cdot \mathrm{c}\mathrm{c}$ S‘O$1\mathrm{u}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\mathrm{S}$ as in $\backslash \mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}’$‘rem 1, $\dot{\mathrm{w}}$hile
$l$

,’in $\dot{\mathrm{t}}\mathrm{h}\mathrm{i}\mathrm{S}$

case, spectrum curve intersects with right half plane for all $l>2\pi$ . This $\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{o}$ coincides
with the numerical simulations of the initial value problem of (17). . :.,.
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$\mathrm{v}\mathrm{v}\Lambda$ ” $L\mathrm{L}L1\tau$olll $\mathrm{v}s\mathrm{A}\mathrm{M}1’\mathrm{L}\mathrm{l}1^{\cdot}\mathrm{U}\mathrm{D}\mathrm{E}$ (Benney equation)

Figure 1 (a)

Figure 1 (b)

Figure 2

150



$\mathrm{W}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{L}\mathrm{Q}\mathrm{n}\mathfrak{g}\zeta \mathrm{h}$ – 6.28322

$\mathrm{w}\mathrm{a}\mathrm{V}\mathrm{e}\mathrm{L}\mathrm{e}\mathrm{n}\mathfrak{g}\mathrm{c}\mathrm{h}--$ $6$ .66667

$\mathrm{w}_{\mathrm{d}1\prime}\mathrm{e}\mathrm{L}\mathrm{e}\mathrm{n}\mathfrak{g}\mathrm{C}\mathrm{h}\overline{-}$ $8$ .43882

$\mathrm{w}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{L}\mathrm{Q}\mathrm{n}\mathfrak{g}\mathrm{t}\mathrm{h}=10.0000$

$\mathrm{w}_{\mathrm{d}}\mathrm{v}\mathrm{e}\mathrm{L}6\mathrm{n}g\epsilon \mathrm{n}=26.3158$

WaveLengch $=35.258$‘

Figure 3
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