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For a set $S$ in a Banach space, we denote by $\dim(S)$ its covering dimension
$([1]_{\mathrm{P}^{42}},.)$ . Recall that, when $S$ is a convex set, the covering dimension of $S$

coincides with the algebraic dimension of $S$ , this latter being understood as
$\infty$ if it is not finite ([1], p.57). Also, $\overline{S}$ and conv(S) will denote the closure
and the convex hull of $S$ , respectively.

In [3], we proved what follows.

THEOREM A ([3], Theorem 1). -Let $X,$ $Y$ be two Banach spaces,
$\Phi$ : $Xarrow Y$ a continuous, linear, surjective operator, and $\Psi$ : $Xarrow \mathrm{Y}$ $a$

continuous operator with relatively compact range.
Then, one has

$\dim(\{x\in X:\Phi(x)=\Psi(x)\})\geq\dim(\Phi-1(0))$ .

In the present paper, we improve Theorem A by establishing the following
result.

THEOREM 1. -Let $X,$ $\mathrm{Y}$ be two Banach spaces, $\Phi$ : $Xarrow Y$ a contin-
$uouS$, linear, surjective operator, and $\Psi$ : $Xarrow \mathrm{Y}$ a completely continuous
operator with bounded range.

Then, one has .

$\dim(\{x\in X : \Phi(x)=\Psi(x)\})\geq\dim(\Phi-1(0))$ .

PROOF. First, assume that $\Phi$ is not injective. For each $x\in X,$ $y\in Y$ ,
$r>0$ , we denote by $B_{X}(x, r)$ (resp. $B_{Y}(y,$ $r)$ ) the closed ball in $X$ (resp. Y)
of radius $r$ centered at $x$ (resp. $y$). By the open mapping theorem, there is
$\delta>0$ such that

$B_{Y}(0, \delta)\subseteq\Phi(B_{\mathrm{x}(0},1))$ .
Since $\Psi(X)$ is bounded, there is $\rho>0$ such that

$\overline{\Psi(X)}\subseteq BY(0, \rho)$ .

Consequently, one has

$\overline{\Psi(X)}\subseteq\Phi(B_{X}(0,$ $\frac{\rho}{\delta}))$ .

Now, fix any bounded open convex set $A$ in $X$ such that

$B_{X}(0,$ $\frac{\rho}{\delta})\subseteq A$ .
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Put
$K=\overline{\Psi(A)}$ .

Since $\Psi$ is completely continuous, $K$ is compact. Fix any positive inte-
ger $n$ such that $n\leq\dim(\Phi-1(0))$ . Also, fix $z\in K$ . Thus, $\Phi^{-1}(z)\cap A$ is
a convex set of dimension at least $n$ . Choose $n+1$ affinely independent
points $u_{z,1},$ $\ldots,$ $u_{z_{)}n+1}$ in $\Phi^{-1}(z)\cap A$ . By the open mapping theorem again,
the operator $\Phi$ is open, and so, successively, the multifunctions $yarrow\Phi^{-1}(y)$ ,
$yarrow\Phi^{-1}(y)\cap A$ , and $yarrow\overline{\Phi^{-1}(y)\cap A}$ are lower semicontinuous. Then, ap-
plying the classical Michael theorem ([2], p.98) to the restriction to $K$ of the
latter multifunction, we get $n+1$ continuous functions $f_{z,1},$

$\ldots,$
$f\mathcal{Z},n+1$ , from

$K$ into $\overline{A}$ , such that, for all $y\in K_{\dot{i}},=1,$
$\ldots,$

$n+1$ , one has

$\Phi(f_{z,i}(y))=y$

and
$f_{z,i}(z)=u_{z,i}$ .

Now, for each $i=1,$ $\ldots,$
$n+1$ , fix a neighbourhood $U_{z,i}$ of $u_{z,i}$ in $A$ in such

a way that, for any choice of $w_{i}$ in $U_{z,i>}$ the points $w_{1},$
$\ldots,$ $w_{n+1}$ are affinely

independent. Now,. put

$V_{z}= \bigcap_{i=}^{n}+11f_{z}-,1i(Uz,i)$ .

Thus, $V_{z}$ is a neighbourhood of $z$ in $K$ . Since $K$ is compact, there are finitely
many $z_{1},$

$\ldots,$
$z_{p}\in K$ such that $K=\cup^{p}Vj=1z_{j}$ . For each $y\in K$ , put

$F(y)=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(\{f_{z_{\mathrm{j}}},i(y) : j=1, \ldots,p, i=1, \ldots, n+1\})$.

Observe that, for some $j$ , one has $y\in V_{z_{\mathrm{j}}}$ , and so $fz_{j},i(y)\in U_{z_{\mathrm{j}},i}$ for all
$\dot{i}=1,$

$\ldots,$
$n+1$ . Hence, $F(y)$ is a compact convex subset $.\mathrm{o}\mathrm{f}\Phi^{-1}(y)\cap\overline{A}$ , with

$\dim(F(y))\geq n$ . Observe also that the multifunction is $F$ is continuous ([2],
p.86 and p.89) and that the set $F(K)$ is compact ([2], p.90). Put

$C=\overline{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(F(K))}$.

Furthermore, note that, by continuity, one has $\Psi(\overline{A})\subseteq K$ . Finally, consider
the multifunction $G:Carrow 2^{C}$ defined by putting

$G(x)=F(\Psi(x))$

for all $x\in C$ . Hence, $G$ is a continuous multifunction, from the compact
convex set $C$ into itself, whose values are compact convex sets of dimension
at least $n$ . Consequently, by the result of [4], one has

$\dim(\{x\in C:x\in G(x)\})\geq n$ .
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But, since

$\{_{X\in}c : X\in F(\Psi(_{X)})\}\subseteq\{x\in c : x\in\Phi^{-}1(\Psi(x))\}$

the conclusion follows ([1], p.220). Finally, if $\Phi$ is injective, the conclusion
means simply that the set $\{x\in X : \Phi(x)=\Psi(x)\}$ is non-empty, and this is
got readily proceeding as before. $\mathrm{e}$ $\triangle$ In [3], we indicated some
examples of application of Theorem A. We now point out an application of
Theorem 1 which cannot be obtained from Theorem A. For a Banach space
$E$ , we denote by $\mathcal{L}(E)$ the space of all continuous linear operators from $E$

into $E$ , with the usual norm. Also, $I$ will denote a (non-degenerate) compact
real interval. THEOREM 2. - Let $E$ be an infinite-dimensional Banach
spacef $A:Iarrow \mathcal{L}(E)$ a continuous function and $f$ : $I$ $\mathrm{x}Earrow E$ a uniformly
continuous function with relatively compact range.

Then, one has

$\dim(\{u\in C^{1}(I, E) : u’(t)=A(t)(u(t))+f(t, u(t))\forall t\in I\})=\infty$.

PROOF. Take $X=C^{1}(I, E),$ $Y=C^{0}(I, E)$ and $\Phi(u)=u’(\cdot)-A(\cdot)(u(\cdot))$

for all $u\in X$ . So, by a classical result, $\Phi$ is a continuous linear operator from
$X$ onto $Y$ such that $\dim(\Phi-1(0))=\infty$ . Next, put $\Psi(u)=f(\cdot, u(\cdot))$ for all
$u\in X$ . So, $\Psi$ is an operator from $X$ into $Y$ with bounded range. From our
assumptions, thanks to the Ascoli-Arzel\‘a theorem, it also follows that $\Psi$ is
completely continuous. Then, the conclusion follows directly from Theorem
1. $\triangle$

Analogously, one gets from Theorem 1 the following
THEOREM 3. - Let $A$ : $Iarrow \mathcal{L}(\mathrm{R}^{n})$ be a continuous function and $f$ :

$I\cross \mathrm{R}^{n}arrow \mathrm{R}^{n}$ a continuous and bounded function.
$Then_{f}$ one has

$\dim(\{u\in C^{1}(I, \mathrm{R}^{n}) : u’(t)=A(t)(u(t))+f(t, u(t))\forall t\in I\})\geq n$ .

THEOREM 4. - Let $a_{1},$
$\ldots,$

$a_{k}$ be $k$ continuous real functions on I. Fur-
$ther_{f}$ let $f:I\cross \mathrm{R}^{k}arrow \mathrm{R}$ be a continuous and bounded function.

Then, one has

$\dim$ ( $\{u\in C^{k}(I)$ : $u^{(k)}(t)+ \sum_{i=1}^{k}ai(t)u^{(}-(ki)t)=f(t, u(t),$ $u’(t),$
$\ldots,$

$u-1)((kt))\forall t\in I\})\geq k$ .
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