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GENERALIZED STRONGLY NONLINEAR
QUASI-VARIATIONAL INEQUALITIES

JONG YEOUL PARK AND JAE Uc JEONG

ABSTRACT. In this paper, we introduce and study a new
class of variational inequalities, which are called the gen-
eralized strongly nonlinear quasi-variational inequalities.
An algorithm for finding the approximate solution of
generalized strongly nonlinear quasi-variational inequal-
ities is also given. These var‘iational inequalities include
the previously known classes of variational inequalities

as special cases.

1. Introduction

Variational inequality theory introduced by Stampac-
chia [12] has enjoyed vigorous growth for the last thirty
years. Variational inequality theory describes a broad spec-
trum of interesting and important developments involving
a link among various fields of mathematics, physics, eco-
nomics, and engineering sciences [1,6].

In recent years, various extensions and generalizations
of the variational inequalities have been proposed and ana-
lyzed. An important one is the quasi-variational inequality
introduced and studied by Bensoussan and Lions [2]. For
the recent applications, and numerical methods, see [4,5].
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In this paper, we obtain an existence theorem of solu-
tions of a generalized strongly nonlinear quasi-variational
inequality and construst a new iterative algorithm, which
includes many known algorithms as special cases to slove
variational inequalities and quasi-variational inequalities.
Further, we prove the convergence of the iterative sequences
generated by this algorithm. Our main results extend and
improve the earlier and recent results of Noor[8,9,10], Sid-
diqi and Ansari[11]. |

2. Preliminaries

Let H be a Hilbert space. We denote by < -,- > and
| - || the inner product and norm on H, respectively. Let
K C H be a closed convex subset of H. Given mappings
m:H—-H A:H—H, g:H—H, T:H — 2% and
V : H — 29 we consider the problem of finding u € H,
y € V(u), and w € T'(u) such that g(u) € K(u) and

<v-g(u),w+Ay >>0 (2.1)

for all v € K(u), where K(u) = m(u) + K.

The problem (2.1) is known as the generalized strongly
nonlinear quasi-variational inequality.

If g = I, the identity operator, the problem (2.1) is
equivalent to finding v € K(u), y € V(u), and w € T(u)
such that o

<v—u,w+ Ay >>0 (2.2)

for all v € K(u). The problem (2.2) is called the mul-
tivalued strongly nonlinear quasi-variational inequality(see

Noor[10]).
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If K(u) = K, the problem (2.2) is equivalent to ﬁndmg
ueK,ye V(u) and w € T'(u) such that |

<v—u,w+Ay>_>_0 | (2.3)

for all v € K, which is called the multivalued strongly

nonlinear variational inequality(see Noor[10]).

IfT: H — H is asingle valued operator and V : H — H
is the identity operator, the problem (2.3) is equivalent to
finding u € K such that

<v—u,T(u)+ A(u) >>0

for all v € K, which is called the strongly nonlinear varia-
tional mequahty(see Noor[10]). -

LEMMA 2.1[6]. If K C H is a closed convex set and
2z € H is a given point, then u € K satisfies the inequality

<u—z,v—u>>0
for allv € K if and on]y if

U = PKZ. - ' (24)

LEMMA 2.2[6]. The mapping Pk deﬁned by (2. 4) is
nonexpansive, that is,

[Py = Pl < |lu -]

for all u,v € H.
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LEMMA 2.3[7]. If K(u) = m(u) + K and K C H is a
closed convex set, then for any u,v € H, we have
Pruy(v) = m(u) + P (v — m(u)).
Let (X,d) be a metric space, 2% be the family of all
nonempty subsets of X. For any A, B € 2X  define
§(A,B) = sup{d(z,y) : z € A,y € B}.

Let P = {d(x,y) : =,y € X}, P denotes the closure of P.
A mapping F : X — 2% is said to be the y-contraction
mapping if
§(Fz, Fy) < ¢(d(z,y))

for all z,y € X, where ¢ : P — [0, 00) satisfies ¢(t) < t for
te P—{0}.

By the proof of Theorem 1 and 2 of Boyd and Wong [3],
it is easy to see that the following theorem holds.

THEOREM 2.1. Let (X, d) be a complete metrically con-
vex metric space and F' : X — 2% be a p-contractive
mapping. Then F has a fixed point and for any xo € X,

Ty € F(zp— 1) n>1, {a:n} converges to a fixed pomt ofF
in X.

DEFINITION 2.1. Let D be a nonempty subset of H,
T:D — 2% and ®,7 : [0,00) — [0,00). We call
(1) T is @- Llpschltz continuous if

8(Tz,Ty) < ||lz - yl|@(ll= —yl)
for all z,y € D.
(2) T is U-strongly monotone if
<u—v,z—y>> |lz—yPL(lz —yll)
for all z,y € D, u € T(z), and v € T(y).
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DEFINITION 2.2. An operator g : H — H is said to be

(i) strongly monotone if there exists a constant § > 0
such that

(g(u) — g(v),u —v) > allu —v||* forall wu,ve H;

(ii) Lipschitz continuous if there exists a constant o > 0
such that

llg(u) — g()|| < ollu—v|| forall w,ve H.

3. Main Results

THEOREM 3.1. Let K be a nonempty closed convex sub-
set of H. Thenu € H, y € V(u), and w € T(u) are a solu-
tion of problem (2.1) if and only if, for some given p > 0,
the mapping F : H — 2% defined by

F(u) = Uyer(u) Uyev(w) (v — g(v) + m(u) + Pk (g(u)
— p(w + Ay) — m(u))]

has a fixed point.

Proof. Let u € H, y € V(u), and w € T(u) be a solution
of problem (2.1). Then we have g(u) € K(u) and

<w+ Ay,v—g(u) >>0
for all v € K(u), and hence for any given p >0,

< g(u) = (9(v) — p(w + Ay)),v — g(u) >> 0
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for all v € K(u). By Lemma 2.1 and Lemma 2.3, we have
9(u) = Pru)(9(w) — p(w + Ay))
= m(u) + Pr(g(u) — p(w + Ay) — m(u)).
Hence we get
u=u—g(u)+m(u) + Pg(g(u) — p(w + Ay) — m(u))
€ UwET(u) UyEV(u) [u - g(u) + m(u)
+ Pr(9(u) — p(w + Ay) — m(u))]
= F(u), |

i.e., u is a fixed point of F.
Now let u be a fixed point of F. By the definition of F,
there exist y € V(u) and w € T'(u) such that

u=u—g(u)+m(u) + Pg(g(u) - p(w + Ay) — m(u))
Therefore |
g(u) = m(u) + P (g(u) — p(w + Ay) — m(u))
= Pr(uy(g(u) — p(w + Ay)).
Hence | | ,
9(u) € K(u)
and by Lemma, 2.1,
< g(u) = (g(u) = p(w + Ay)),v — g(u) >> 0
for all v € K(u). Note p > 0, and we have
<w+ Ay,v—g(u) >>0

for all v € K(u). ie.,u€ H,y € V(u), and w € T(u) are
a solution of problem (2.1). I
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THEOREM 3.2. Let K be a closed convex subset of H,
T : H — 27 be ®-Lipschitz continuous and W-strongly
monotone, and V : H — 2% be I'-Lipschitz continuous,
g : H — H be Lipschitz continuous and strongly monotone,
and A,m : H — H be Lipschitz continuous. Suppose that

there exists a constant p > 0 such that p€T'(t) < 1—k and

for all t € [0, 00)

L= (1= (k4 T + (0} < 20(0) < -+ 920

(3.1)
and

k=2(v1—-2640%+p) <1

where 6 is a strong monotonicity constant of g and &, o, 1
are Lipschitz constants of A, g, and m, respectively. Tben
(2. 1) has a solution.

Proof. Define a mapping F : H — 2¥ as

F(u) = Uper(u) Uyev(w [v — g(u) + m(u)
+ P (g(w) — p(w + Ay) — m(u))]

for each v € H. By Theorem 3.1, it suffices to prove that
F has a fixed point in H. For any uj,us € H, w; € T(u,),
wy € T(u2), y1 € V(u1), and y2 € V(uy), by Lemma 2.2,

174



175

J.Y. Park and J. U. Jeong.

we have

(w1 — g(u1) + m(u1) + Pr(g(u1) — p(w1 + Ay1) — m(u1)))
— (ug — g(ug) + m(uz) + Pr(g(uz) — p(ws + Ayz) — m(u2)))|
< lug — uz = (g9(u1) — g(uz)) + m(u1) — m(uz)|
+ || Px (g(u1) — p(wy + Ay1) — m(uq))
— Pr(g(u2) — p(wz + Ayz) — m(uz))|
< 2llur — uz — (g(wa) — g(uz)) + m(ur) — m(uz)|| |
+ [lug — ug — p(wr — wa)|| + pl| Ay — Aya]l. (3:2)

Since T is ®-Lipschitz continuous and W-strongly mono-
tone, it can be obtained that

lur = up — p(w1 — w2)||”
= |luy — ug||> — 2p < w1 — W, uy — ug > +p°||wy — wall?
< lug — ue|® = 2pllus — ol T (|lur — uall) + p*6*(T(ur), T(uz))
< lus = ual* = 2pflur — ua|[*¥(Jlur — ua])
+ 0 [Jur = 2| *@*([lur — uell)
= [1 - 2p¥(Jlux — ) + P?@*(flur — wz|)]llur — uall*. 653

By using the Lipschitz coritinuity of ¢ and m, and the
strong monotonicity of g, we easily see that
lur — up — (g(u1) — g(uz)) + m(u1) — m(us)|
< lur = uz = (g(ur) — g(u2)) || + |lm(us) — m(uz)]l
< (V1=264 0%+ p)|lug — uzl|- T (3.4)
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Further, since A is Lipschitz continuous and V is I'-Lipschitz
continuous, we have

| Ay1 — Aya|| < &llyr — w2l
| < E6(V (1), V(u2))

< Elur — ua||T(J|lus — uzl])-
(3.5)

From (3.2)-(3.5), it follows that

5(F(wr), F(uz)) < [2(VT 25 702 + 1)
+ (1 = 2p¥(Jlur — us)) + p°@*(||u1 — us)))*
+ pEL(JJu1 — uz|)]||lua — 2|
< @(lur - ual)

for all uq,us € H, where

p(t) = tlk + (1 — 2pW(2) + p0%(8))F + pET(1)]

and k = 2(v/1 — 26 + 02 + p).

Clearly, each Hilbert space is a metrically convex metric
space and by (3.1), ¢(t) < t for each ¢ € [0,00). By Theo-
rem 2.1, F' has a fixed point « in H and hence (2.1) has a
solution u € H, y € V(u), and w € T(u).

THEOREM 3.3. Let K be a closed convex subset of H,
T : H — 29 be ®-Lipschitz continuous and W-strongly
monotone, and V : H — 2H be I'-Lipschitz continuous,
g : H — H be Lipschitz continuous and strongly monotone,
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and A,m,: H — H be Lipschitz continuous. Suppose that
there exists p > 0 and h € [0, 1) such that for all t € [0, c0),

0 < [1—2p0(t) + p*@*(1)]? < R fF(t) (3;6)

lim ®(t) # oo, lim I'(t) 75 0.

t—0t t—0t

and

kE=2(v/1-26+02+p) < h,

where 6 is a strong monotonicity constant of g and &, o
and p are Lipschitz constants of A, g, and m, respectively.
Then for any ug € H, the iterative scheme defined by

Ung1 = (1 = an)tin + Aty — g(un) +m(uy)

+ Pr(g(un) — p(wn + Ayn) —-m(un))],
' (3.7)

0<a, <1 foreach Z Q. - diverges,

n=0

satisfies that {u, } converges to u strongly in H, {w,} and
{yn} converge to w and y strongly in H, respectively, and
u€ H,y € V(u), and w € T(u) is a solution of the problem

(2.1).

Proof. By the assumption (3.6), for each t € [0, oo)., we
have

2=l (kDO + 580} < 2(0) < 4970,
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By Theorem 3.2, the problem (2.1) has a solution v € H,
y € V(u), wET( ), and

u=u—g(u) + m(u) + Pg(g(u) — p(w + Ay) — m(u)).
Hence, by Lemma 2.2, we have

|unt1 — uf|

<(1- a’n)““n — ul|
+an{|lun —u = (g(un) — g(u)) + m(us) — m(u)
+ | P (9(un) — p(Wa + Ayn) — m(uy))
— Pr(g(u) — p(w + Ay) — m(u))||}

< (1 —an)llun - U” |
+ani2lun = u ~ (g(un) = 9(u)) +m(un) — m(u)]
+ [[un — u— p(wn — w)|| + pl| Ayn — Ayl(}.

(3.8)

Since T is @—Lipschitz continuous and U-strongly mono-
tone, it can be obtained that
lun = u — p(wn — w)||?

< (1= 2p(|tn — ) + P22 ([l — ul))lfun — >
| (3.9)

By using the Lipschitz continuity of g'a,nd m, and the
strongly monotonicity of g, we easily see that

lun — u = (g(un) = g(u)) +m(us) — m(u)|
< (\/1 — 204 0% + p)|un — ul.

(3.10)
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Further, since A is Lipschitz continuous and V' is I'-Lipschitz
continuous, we have

14yn — Ay|l < &0 (Jlun — wl)llun = ull- (3.11)
It follows from (3.8)-(3.11) that

|tny1 — ul|
< (1= an)llun — ull + @ {2(V1 - 26 + 6% + 1)
+[1 = 209 (|fun — ull) + p*@*(||un — ull)]?
+ pET (|t — ) Hlun — ull
< (1= a)l[un — ull + onhllun — ul
= (1 — (1 - h)an)”un - u“
< I7_p(1 — (1 = h)ay)luo — ull.

Since ).~ «; diverges and 1 — h > 0,
II520(1 = (1 = h)aj) =0,

and hence {u,} convérges u strongly. Since w, € T(u,),
w € T(u), and T is ®-Lipschitz continuous, we have

lwn = w|| < 6(T(un), T(w))
< O(lJun — ul)llun — ull
and hence {w,, } converges to w strongly. Similarly, we can

prove {v,} converges to v strongly. This completes the
proof.

REMARK. For a suitable choice of the operators T', V,
A, g, and m, we obtain several known results[8,9,11] as
special cases of Theorem 3.3.
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