GENERALIZED STRONGLY NONLINEAR QUASI-VARIATIONAL INEQUALITIES

JONG YEOUL PARK AND JAE UG JEONG

ABSTRACT. In this paper, we introduce and study a new class of variational inequalities, which are called the generalized strongly nonlinear quasi-variational inequalities. An algorithm for finding the approximate solution of generalized strongly nonlinear quasi-variational inequalities is also given. These variational inequalities include the previously known classes of variational inequalities as special cases.

1. Introduction

Variational inequality theory introduced by Stampacchia [12] has enjoyed vigorous growth for the last thirty years. Variational inequality theory describes a broad spectrum of interesting and important developments involving a link among various fields of mathematics, physics, economics, and engineering sciences [1,6].

In recent years, various extensions and generalizations of the variational inequalities have been proposed and analyzed. An important one is the quasi-variational inequality introduced and studied by Bensoussan and Lions [2]. For the recent applications, and numerical methods, see [4,5].

Key words and phrases. Variational inequalities, iterative algorithms.

In this paper, we obtain an existence theorem of solutions of a generalized strongly nonlinear quasi-variational inequality and construst a new iterative algorithm, which includes many known algorithms as special cases to slove variational inequalities and quasi-variational inequalities. Further, we prove the convergence of the iterative sequences generated by this algorithm. Our main results extend and improve the earlier and recent results of Noor[8,9,10], Siddiqi and Ansari[11].

2. Preliminaries

Let H be a Hilbert space. We denote by $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$ the inner product and norm on H, respectively. Let $K \subset H$ be a closed convex subset of H. Given mappings $m: H \to H, A: H \to H, g: H \to H, T: H \to 2^H$, and $V: H \to 2^H$, we consider the problem of finding $u \in H$, $y \in V(u)$, and $w \in T(u)$ such that $g(u) \in K(u)$ and

$$\langle v - g(u), w + Ay \rangle \ge 0 \tag{2.1}$$

for all $v \in K(u)$, where K(u) = m(u) + K.

The problem (2.1) is known as the generalized strongly nonlinear quasi-variational inequality.

If $g \equiv I$, the identity operator, the problem (2.1) is equivalent to finding $u \in K(u)$, $y \in V(u)$, and $w \in T(u)$ such that

$$\langle v - u, w + Ay \rangle \ge 0 \tag{2.2}$$

for all $v \in K(u)$. The problem (2.2) is called the multivalued strongly nonlinear quasi-variational inequality (see Noor[10]).

If $K(u) \equiv K$, the problem (2.2) is equivalent to finding $u \in K$, $y \in V(u)$, and $w \in T(u)$ such that

$$\langle v - u, w + Ay \rangle \ge 0 \tag{2.3}$$

for all $v \in K$, which is called the multivalued strongly nonlinear variational inequality(see Noor[10]).

If $T: H \to H$ is a single valued operator and $V: H \to H$ is the identity operator, the problem (2.3) is equivalent to finding $u \in K$ such that

$$\langle v - u, T(u) + A(u) \rangle \geq 0$$

for all $v \in K$, which is called the strongly nonlinear variational inequality(see Noor[10]).

LEMMA 2.1[6]. If $K \subset H$ is a closed convex set and $z \in H$ is a given point, then $u \in K$ satisfies the inequality

$$\langle u-z,v-u \rangle \geq 0$$

for all $v \in K$ if and only if

$$u = P_K z. (2.4)$$

LEMMA 2.2[6]. The mapping P_K defined by (2.4) is nonexpansive, that is,

$$||P_K u - P_K v|| \le ||u - v||$$

for all $u, v \in H$.

LEMMA 2.3[7]. If K(u) = m(u) + K and $K \subset H$ is a closed convex set, then for any $u, v \in H$, we have

$$P_{K(u)}(v) = m(u) + P_K(v - m(u)).$$

Let (X,d) be a metric space, 2^X be the family of all nonempty subsets of X. For any $A,B\in 2^X$, define

$$\delta(A,B) = \sup\{d(x,y) : x \in A, y \in B\}.$$

Let $P = \{d(x,y) : x,y \in X\}$, \bar{P} denotes the closure of P. A mapping $F: X \to 2^X$ is said to be the φ -contraction mapping if

$$\delta(Fx,Fy) \leq \varphi(d(x,y))$$

for all $x, y \in X$, where $\varphi : \bar{P} \to [0, \infty)$ satisfies $\varphi(t) < t$ for $t \in \bar{P} - \{0\}$.

By the proof of Theorem 1 and 2 of Boyd and Wong [3], it is easy to see that the following theorem holds.

THEOREM 2.1. Let (X,d) be a complete metrically convex metric space and $F: X \to 2^X$ be a φ -contractive mapping. Then F has a fixed point and for any $x_0 \in X$, $x_n \in F(x_{n-1}), n \geq 1, \{x_n\}$ converges to a fixed point of F in X.

DEFINITION 2.1. Let D be a nonempty subset of H, $T: D \to 2^H$ and $\Phi, \Psi: [0, \infty) \to [0, \infty)$. We call

(1) T is Φ -Lipschitz continuous if

$$\delta(Tx, Ty) \le ||x - y|| \Phi(||x - y||)$$

for all $x, y \in D$.

(2) T is Ψ -strongly monotone if

$$< u - v, x - y > \ge ||x - y||^2 \Psi(||x - y||)$$

for all $x, y \in D$, $u \in T(x)$, and $v \in T(y)$.

DEFINITION 2.2. An operator $g: H \to H$ is said to be

(i) strongly monotone if there exists a constant $\delta > 0$ such that

$$(g(u) - g(v), u - v) \ge \alpha ||u - v||^2$$
 for all $u, v \in H$;

(ii) Lipschitz continuous if there exists a constant $\sigma > 0$ such that

$$||g(u) - g(v)|| \le \sigma ||u - v||$$
 for all $u, v \in H$.

3. Main Results

THEOREM 3.1. Let K be a nonempty closed convex subset of H. Then $u \in H$, $y \in V(u)$, and $w \in T(u)$ are a solution of problem (2.1) if and only if, for some given $\rho > 0$, the mapping $F: H \to 2^H$ defined by

$$F(u) = \bigcup_{w \in T(u)} \bigcup_{y \in V(u)} [u - g(u) + m(u) + P_K(g(u) - \rho(w + Ay) - m(u))]$$

has a fixed point.

Proof. Let $u \in H$, $y \in V(u)$, and $w \in T(u)$ be a solution of problem (2.1). Then we have $g(u) \in K(u)$ and

$$< w + Ay, v - g(u) > \ge 0$$

for all $v \in K(u)$, and hence for any given $\rho > 0$,

$$< g(u) - (g(u) - \rho(w + Ay)), v - g(u) > \ge 0$$

for all $v \in K(u)$. By Lemma 2.1 and Lemma 2.3, we have

$$g(u) = P_{K(u)}(g(u) - \rho(w + Ay))$$

= $m(u) + P_K(g(u) - \rho(w + Ay) - m(u)).$

Hence we get

$$\begin{split} u &= u - g(u) + m(u) + P_K(g(u) - \rho(w + Ay) - m(u)) \\ &\in \cup_{w \in T(u)} \cup_{y \in V(u)} \left[u - g(u) + m(u) \\ &+ P_K(g(u) - \rho(w + Ay) - m(u)) \right] \\ &= F(u), \end{split}$$

i.e., u is a fixed point of F.

Now let u be a fixed point of F. By the definition of F, there exist $y \in V(u)$ and $w \in T(u)$ such that

$$u = u - g(u) + m(u) + P_K(g(u) - \rho(w + Ay) - m(u))$$

Therefore

$$g(u) = m(u) + P_K(g(u) - \rho(w + Ay) - m(u))$$

= $P_{K(u)}(g(u) - \rho(w + Ay)).$

Hence

$$g(u) \in K(u)$$

and by Lemma 2.1,

$$< g(u) - (g(u) - \rho(w + Ay)), v - g(u) > \ge 0$$

for all $v \in K(u)$. Note $\rho > 0$, and we have

$$< w + Ay, v - g(u) > \ge 0$$

for all $v \in K(u)$. i.e., $u \in H$, $y \in V(u)$, and $w \in T(u)$ are a solution of problem (2.1).

Theorem 3.2. Let K be a closed convex subset of H, $T: H \to 2^H$ be Φ -Lipschitz continuous and Ψ -strongly monotone, and $V: H \to 2^H$ be Γ -Lipschitz continuous, $g: H \to H$ be Lipschitz continuous and strongly monotone, and $A, m: H \to H$ be Lipschitz continuous. Suppose that there exists a constant $\rho > 0$ such that $\rho \xi \Gamma(t) < 1 - k$ and for all $t \in [0, \infty)$

$$\frac{1}{\rho} \{ 1 - [1 - (k + \rho \xi \Gamma(t))]^2 + \rho^2 \Phi^2(t) \} < 2\Psi(t) < \frac{1}{\rho} + \rho \Phi^2(t)$$
(3.1)

and

$$k = 2(\sqrt{1 - 2\delta + \sigma^2} + \mu) < 1,$$

where δ is a strong monotonicity constant of g and ξ , σ , μ are Lipschitz constants of A, g, and m, respectively. Then, (2.1) has a solution.

Proof. Define a mapping $F: H \to 2^H$ as

$$F(u) = \bigcup_{w \in T(u)} \bigcup_{y \in V(u)} [u - g(u) + m(u) + P_K(g(u) - \rho(w + Ay) - m(u))]$$

for each $u \in H$. By Theorem 3.1, it suffices to prove that F has a fixed point in H. For any $u_1, u_2 \in H$, $w_1 \in T(u_1)$, $w_2 \in T(u_2)$, $y_1 \in V(u_1)$, and $y_2 \in V(u_2)$, by Lemma 2.2,

we have

$$||(u_{1} - g(u_{1}) + m(u_{1}) + P_{K}(g(u_{1}) - \rho(w_{1} + Ay_{1}) - m(u_{1})))| - (u_{2} - g(u_{2}) + m(u_{2}) + P_{K}(g(u_{2}) - \rho(w_{2} + Ay_{2}) - m(u_{2})))||$$

$$\leq ||u_{1} - u_{2} - (g(u_{1}) - g(u_{2})) + m(u_{1}) - m(u_{2})||$$

$$+ ||P_{K}(g(u_{1}) - \rho(w_{1} + Ay_{1}) - m(u_{1})) - P_{K}(g(u_{2}) - \rho(w_{2} + Ay_{2}) - m(u_{2}))||$$

$$\leq 2||u_{1} - u_{2} - (g(u_{1}) - g(u_{2})) + m(u_{1}) - m(u_{2})||$$

$$+ ||u_{1} - u_{2} - \rho(w_{1} - w_{2})|| + \rho||Ay_{1} - Ay_{2}||.$$

$$(3.2)$$

Since T is Φ -Lipschitz continuous and Ψ -strongly monotone, it can be obtained that

$$||u_{1} - u_{2} - \rho(w_{1} - w_{2})||^{2}$$

$$= ||u_{1} - u_{2}||^{2} - 2\rho < w_{1} - w_{2}, u_{1} - u_{2} > +\rho^{2}||w_{1} - w_{2}||^{2}$$

$$\leq ||u_{1} - u_{2}||^{2} - 2\rho||u_{1} - u_{2}||^{2}\Psi(||u_{1} - u_{2}||) + \rho^{2}\delta^{2}(T(u_{1}), T(u_{2}))$$

$$\leq ||u_{1} - u_{2}||^{2} - 2\rho||u_{1} - u_{2}||^{2}\Psi(||u_{1} - u_{2}||)$$

$$+ \rho^{2}||u_{1} - u_{2}||^{2}\Phi^{2}(||u_{1} - u_{2}||)$$

$$= [1 - 2\rho\Psi(||u_{1} - u_{2}||) + \rho^{2}\Phi^{2}(||u_{1} - u_{2}||)]||u_{1} - u_{2}||^{2}.$$
(3.3)

By using the Lipschitz continuity of g and m, and the strong monotonicity of g, we easily see that

$$||u_{1} - u_{2} - (g(u_{1}) - g(u_{2})) + m(u_{1}) - m(u_{2})||$$

$$\leq ||u_{1} - u_{2} - (g(u_{1}) - g(u_{2}))|| + ||m(u_{1}) - m(u_{2})||$$

$$\leq (\sqrt{1 - 2\delta + \sigma^{2}} + \mu)||u_{1} - u_{2}||.$$
(3.4)

Further, since A is Lipschitz continuous and V is Γ -Lipschitz continuous, we have

$$||Ay_{1} - Ay_{2}|| \leq \xi ||y_{1} - y_{2}||$$

$$\leq \xi \delta(V(u_{1}), V(u_{2}))$$

$$\leq \xi ||u_{1} - u_{2}||\Gamma(||u_{1} - u_{2}||).$$
(3.5)

From (3.2)-(3.5), it follows that

$$\delta(F(u_1), F(u_2)) \leq \left[2(\sqrt{1 - 2\delta + \sigma^2} + \mu) + (1 - 2\rho\Psi(\|u_1 - u_2\|) + \rho^2\Phi^2(\|u_1 - u_2\|))^{\frac{1}{2}} + \rho\xi\Gamma(\|u_1 - u_2\|)\right]\|u_1 - u_2\|$$

$$\leq \varphi(\|u_1 - u_2\|)$$

for all $u_1, u_2 \in H$, where

$$\varphi(t) = t[k + (1 - 2\rho\Psi(t) + \rho^2\Phi^2(t))^{\frac{1}{2}} + \rho\xi\Gamma(t)]$$

and
$$k = 2(\sqrt{1 - 2\delta + \sigma^2} + \mu)$$
.

Clearly, each Hilbert space is a metrically convex metric space and by (3.1), $\varphi(t) < t$ for each $t \in [0, \infty)$. By Theorem 2.1, F has a fixed point u in H and hence (2.1) has a solution $u \in H$, $y \in V(u)$, and $w \in T(u)$.

Theorem 3.3. Let K be a closed convex subset of H, $T: H \to 2^H$ be Φ -Lipschitz continuous and Ψ -strongly monotone, and $V: H \to 2^H$ be Γ -Lipschitz continuous, $g: H \to H$ be Lipschitz continuous and strongly monotone,

and $A, m, H \to H$ be Lipschitz continuous. Suppose that there exists $\rho > 0$ and $h \in [0, 1)$ such that for all $t \in [0, \infty)$,

$$0 < \left[1 - 2\rho\Psi(t) + \rho^2\Phi^2(t)\right]^{\frac{1}{2}} \le h - k - \rho\xi\Gamma(t), \qquad (3.6)$$

$$\overline{\lim}_{t \to 0^+} \Phi(t) \ne \infty, \quad \overline{\lim}_{t \to 0^+} \Gamma(t) \ne \infty.$$

and

$$k = 2(\sqrt{1 - 2\delta + \sigma^2} + \mu) < h,$$

where δ is a strong monotonicity constant of g and ξ , σ , and μ are Lipschitz constants of A, g, and m, respectively. Then for any $u_0 \in H$, the iterative scheme defined by

$$u_{n+1} = (1 - \alpha_n)u_n + \alpha_n[u_n - g(u_n) + m(u_n) + P_K(g(u_n) - \rho(w_n + Ay_n) - m(u_n))],$$
(3.7)

$$w_n \in T(u_n), \quad y_n \in V(u_n),$$

$$0 \le \alpha_n \le 1$$
 for each $n \le 0$, $\sum_{n=0}^{\infty} \alpha_n$ diverges,

satisfies that $\{u_n\}$ converges to u strongly in H, $\{w_n\}$ and $\{y_n\}$ converge to w and y strongly in H, respectively, and $u \in H$, $y \in V(u)$, and $w \in T(u)$ is a solution of the problem (2.1).

Proof. By the assumption (3.6), for each $t \in [0, \infty)$, we have

$$\frac{1}{\rho}\{1-[1-(k+\rho\xi\Gamma(t))]^2+\rho^2\Phi^2(t)\}<2\Psi(t)<\frac{1}{\rho}+\rho\Phi^2(t).$$

By Theorem 3.2, the problem (2.1) has a solution $u \in H$, $y \in V(u)$, $w \in T(u)$, and

$$u = u - g(u) + m(u) + P_K(g(u) - \rho(w + Ay) - m(u)).$$

Hence, by Lemma 2.2, we have

$$||u_{n+1} - u||$$

$$\leq (1 - \alpha_n)||u_n - u||$$

$$+ \alpha_n \{||u_n - u - (g(u_n) - g(u)) + m(u_n) - m(u)||$$

$$+ ||P_K(g(u_n) - \rho(w_n + Ay_n) - m(u_n))$$

$$- P_K(g(u) - \rho(w + Ay) - m(u))||\}$$

$$\leq (1 - \alpha_n)||u_n - u||$$

$$+ \alpha_n \{2||u_n - u - (g(u_n) - g(u)) + m(u_n) - m(u)||$$

$$+ ||u_n - u - \rho(w_n - w)|| + \rho||Ay_n - Ay||\}.$$

$$(3.8)$$

Since T is Φ -Lipschitz continuous and Ψ -strongly monotone, it can be obtained that

$$||u_n - u - \rho(w_n - w)||^2 \le (1 - 2\rho\Psi(||u_n - u||) + \rho^2\Phi^2(||u_n - u||))||u_n - u||^2.$$
(3.9)

By using the Lipschitz continuity of g and m, and the strongly monotonicity of g, we easily see that

$$||u_{n} - u - (g(u_{n}) - g(u)) + m(u_{n}) - m(u)||$$

$$\leq (\sqrt{1 - 2\delta + \sigma^{2}} + \mu)||u_{n} - u||.$$
(3.10)

Further, since A is Lipschitz continuous and V is Γ -Lipschitz continuous, we have

$$||Ay_n - Ay|| \le \xi \Gamma(||u_n - u||) ||u_n - u||.$$
 (3.11)

It follows from (3.8)-(3.11) that

$$||u_{n+1} - u||$$

$$\leq (1 - \alpha_n)||u_n - u|| + \alpha_n \{2(\sqrt{1 - 2\delta + \sigma^2} + \mu) + [1 - 2\rho\Psi(||u_n - u||) + \rho^2\Phi^2(||u_n - u||)]^{\frac{1}{2}} + \rho\xi\Gamma(||u_n - u||)\}||u_n - u||$$

$$\leq (1 - \alpha_n)||u_n - u|| + \alpha_n h||u_n - u||$$

$$\leq (1 - (1 - h)\alpha_n)||u_n - u||$$

$$\leq \Pi_{j=0}^n (1 - (1 - h)\alpha_j)||u_0 - u||.$$

Since $\sum_{j=0}^{\infty} \alpha_j$ diverges and 1-h>0,

$$\Pi_{j=0}^{\infty}(1-(1-h)\alpha_j)=0,$$

and hence $\{u_n\}$ converges u strongly. Since $w_n \in T(u_n)$, $w \in T(u)$, and T is Φ -Lipschitz continuous, we have

$$||w_n - w|| \le \delta(T(u_n), T(u))$$

 $\le \Phi(||u_n - u||) ||u_n - u||$

and hence $\{w_n\}$ converges to w strongly. Similarly, we can prove $\{v_n\}$ converges to v strongly. This completes the proof.

REMARK. For a suitable choice of the operators T, V, A, g, and m, we obtain several known results[8,9,11] as special cases of Theorem 3.3.

References

- 1. C. Baiocchi and A. Capelo, Variational and quasi-variational inequalities, John Wiley and Sons, New York (1984).
- 2. A. Bensoussan and J. L. Lions, Applications des inequations variationelles en control et en stochastiques, Dunod, Paris (1978).
- 3. D. W. Boyd and J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
- 4. S. S. Chang and N. J. Huang, Generalized strongly nonlinear quasi-complementarity problems in Hilbert spaces, J. Math. Anal. Appl. 158 (1991), 194-202.
- 5. J. Crank, Free and moving boundary problems, Clarendon Press, Oxford (1984).
- 6. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York (1980).
- 7. M. A. Noor, An iterative scheme for a class of quasi-variational inequalities, J. Math. Anal. Appl. 110 (1985), 463-468.
- 8. M.A. Noor, On the nonlinear complementarity problem, J. Math. Anal. Appl. 123 (1987), 455-460.
- 9. M. A. Noor, Iterative methods for a class of complementarity problems, J. Math. Anal. Appl. 133 (1988), 366-382.
- 10. M. A. Noor, Multivalued strongly nonlinear quasi-variational inequalities, Chinese J. Math. 23 (1995), 275-286.
- 11. A. H. Siddiqi and Q. H. Ansari, An iterative method for generalized variational inequalities, Math. Japonica 34(3) (1989), 475-481.
- 12. G. Stampacchia, Form es bilinearies coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.

Department of Mathematics Pusan National University Pusan 609-735, South Korea

Department of Mathematics

Dong-Eui University Pusan 614-714, South Korea