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Introduction

Let (V, $p$) $=\{f=0\}\subset \mathrm{C}^{d+1}$ be a minimal embedding of a hypersurface isolated
singularity. For a characterization of rational singularity, Prof. M. Reid had pro-
posed the following conjecture concernin$\mathrm{g}$ weight filtrations induced from the the
weight of each coordinate variables:

Conjecture ([17,\S 4]). Let $(v,p)$ be a hypersurface isolated singularity as above.
If the condition $deg_{w}(inw(f))- \sum w_{i}<0$ hold for any minimal embedding (V, $p$)
over $\mathrm{C}$ and any weighting $(w_{1}, \ldots, w_{d+1}),$ $w_{i}>0$ on the analytic coordinates (we
call the condition $\mathrm{R}$ here), (V, $p$) would be a rational singularity , i.e., $p_{g}(V,p)=0$ .

For the 2-dimensional case,. it is known that this conjecture is true and that its proof
helps the classification of rational double points (cf. (1.4)). Here the 3 weights for
simple elliptic singularity had important roles. In [17], M. Reid had hoped that, at
least for 3-dimensional case, famous 95 weights for weighted hypersurface normal
K3 surface would play a similar important role to give an affirmative answer to the
above conjecture. (see \S 1 for more affirmative information on this conjecture. )

However, unfortunately, we will give a counter example to this conjecture by
giving the following 3-dimensional simple K3 singularity which does not belong to
usual 95 classes like quasi-homogeneous cases (cf. \S 3 in detail):

Example. Let (V, $p$) be a 3-dimensional singularity which is given as a complete
intersection in $(\mathrm{C}^{5},\mathit{0})$ as follows:

(V, $p$)$=(,$$\mathit{0})$ .

Here $q_{2},$ $g_{6}$ are weighted homogeneous of the type (1, 1, 1, 2, 3) of degrees 2, 6 and
we assume that they define a weighted complete intersection normal K3 surface
$X_{2,6}\subset P(1,1,1,2,3)$ . We assume that $h(x),$ $l(x)$ have sufficiently high order and
that $V$ has an isolated singularity at the origin $\mathit{0}$ . Then we obtain the following
conditions( \S 2, \S 3): (1) $(V,p)$ is a hypersurface simple K3 singularity of multiplicity
3 (in particular, this is non-rational) and moreover, (2) the condition $\mathrm{R}$ is satisfied.
$X_{2,6}$ can be regarded as a degeneration of $X_{6}\subset P(1,1,1,3)$ (By similar point of
views, we have 3 more simple K3 singularity of multiplicity 3. They are also comes
from certain degeneration. cf (3.11).)

On the other hand, we know the affirmative answer for Reid’s conjecture in the
case of simple K3 singularity of multiplicity ([22] and see \S 3. Hence our example
is a simplest class for which we can seek the counter example.
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Here we like to remark on the the condition $\mathrm{R}$ from more general theory of filtered
blowing up. If we do not restrict our attention about filtration to monomial weight
filtrations, then we can show the following about the characterization of rational
singularity.

Theorem (1.2) (V, $p$): normal $d$-dimensional isolated singularity over C. Then
$a_{F}(O_{V,p})<0$ holds for any filtration of ideals $F$ on $O_{V,p}$ which sa.tisfy the conditions
of \S 1 of [23] (cf. (1.1)) if and only if $p_{g}(V,p)=0$ .

Under the assumption that (V, $p$ ) is Cohen-Macaulay, the above theorem gives
a characterization of rational singularity. Here $a_{F}$ for the weight monomial fil-
tration to the minimal embedding of a hypersurface (V, $p$) $=\{f=0\}\subset \mathrm{C}^{d+1}$ is
written as $a_{F_{w}}(O_{V,p})=deg_{w}(in_{w}(f))- \sum w_{i}$ when the weighting on the coordi-
nates is $w=(w_{1}, \ldots, w_{d+1})$ . Hence, we obtain a theorem which generalizes Reid’s
principle. However, it is difficult to handle all filtration. Our next problem is to find
good classes of filtrations which are effective to calculate $a_{F}(O_{V,p})$ geometrically so
that we can find a good criterion a.bout rational singularity.

The contents of the present paper are
1. Introduction to Reid’s conjecture.

2. Existence of monomials of square of quadric polynomials and elementary
construction of counter examples.

3. Reid’s conjecture and the canonical filtration of purely elliptic singularities.

The first counter exampie to the Reid conjecture was found by S. Ishii. Her
example was 4-dimensional singularity and was studied from the points of views
on the Newton boundary. Next M. Tomari had given another proof for her result
from the theory of filtered blowing-up and also found a counter example for 3-
dimensional case by these arguments. Here we discussed all examples from each
points of views and had unified these.

Both authors heartily had received many important suggestions on this subject
from Prof. M. Reid. : A beautiful geometric proof for Ishii’s first example of 4-
dimensional , existence of monogonal K3 surfaces which gives an answer to personal
question from Tomari, and the construction of representation of normal K3 surface
by the Veroneasian subring (\S 3). We both heartily thank to Prof. M. Reid. We
also express our thanks to our collage of Waseda Tuesday Seminars for their warm
encouragements and interests.

In this paper, we also include some new results on 4-dimensional non-rational
$\sin_{\vee}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{s}$ which look like terminal. These are obtain after the $\mathrm{c}.\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{e}‘.(\mathrm{C}\mathrm{f}$.
Corollary $(1.9),\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}(2.10)(2))$ .

\S 1. Introduction to Reid’s conjecture

(1.1) In this section, we discuss Reid’s conjecture from a view point of general
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theory of filtered blowing up. Let us fix our general setting as follows:

Let (V, $p$) be a $d$-dimensional normal singularity over C. As in \S l of [23], a
filtration of ideals $F=\{F^{k}\}_{k\geq 0}$ is a sequence of ideals as follows:

$F^{0}=\mathit{0}_{V,p}\supset F^{1}=m,$ $F^{k}\supset F^{k+1}$ , and $F^{i}F^{j}\subset F^{i+j}$ . We set $\mathcal{R}=\oplus_{k\geq 0^{F^{k}}}\tau^{k}\subset$

$O_{V,p}[T]$ and assume that $\mathcal{R}$ is a finitely generated $O_{V,p}$ -algebra. We can choose an
integer $N>0$ such that $F^{kN}=F^{N}$ . . . . . $F^{N}$ ( $k\geq 0$ times), and we assume
$ht(F^{N})=d$ .

Let $\psi$ : $X=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}(R)arrow V$ the filtered blowing up by $F$ .

Then we can show the following.

Theorem (1.2). Let (V, $p$) be a normal $d$-dimensional isolated singularity
over C. Then $a_{F}(ov_{p},)<0$ holds for any filtration of ideals $F$ on $\mathit{0}_{v_{p}}$, which
satisfy the conditions (1.1), if and only if $p_{g}(o_{v_{p}},)=0$ .

Here $a_{F}(O_{V,p})$ is the $a$-invariant for the filtered rings for $d$-cohomology $H_{m}^{d}(O_{V,p})$

as follows: Let

$F^{k}H_{m}^{d}(O_{V,p})={\rm Im}\{R^{d-1}\psi_{*}Ox(k)arrow H^{d-1}(x-\psi^{-1}(P), Ox)\cong H^{d}m(o_{v_{p}},)\}$

and we set $a_{F}(O_{V,p})= \max\{k|F^{k}H_{m}^{d}(o_{V,p})\neq 0\}$ (cf. \S 1 [23]).

Proof. First, we assume that the condition $a_{F}(O_{V,p})<0$ holds for any filtration
of ideals $F$ . There is a resolution of singularities by a composition of blowing-ups
as follows (by the big theorem of Hironaka [6])

$V=V_{0}arrow V\psi_{1\psi_{2\psi 3}}$ $....\cdotarrow V\mathrm{I}_{}’’ NN$

where the center of the blowing up $\psi_{i}$ : $V_{i}arrow V_{i-1}$ is contained in the singular locus
Sing$(Vi-1)$ , for $i=1,$ $\ldots,$

$N$ . The composition $\psi_{1^{\mathrm{O}}}\psi_{2}0\ldots 0\psi_{N}$ is obtained as
a blowing up with the center ideal $\mathcal{I}$ where the support of $\mathcal{I}$ is contained in the
singular locus of $V=V_{0}$ (cf. EGA [5], or $\mathrm{H}\mathrm{i}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}-\mathrm{R}\mathrm{o}\mathrm{s}\mathrm{S}\mathrm{i}[7]$). Since $V$ is an isolated
singularity, $I$ is an $m$-primary ideal.

We introduce the filtration $F$ as the $\mathcal{I}$-adic filtration, that is $F^{n}=\mathcal{I}^{n}$ for $n\geq 0$

and $F^{n}=O_{V,p}$ for $n\leq-1$ . Now $\psi$ : $V_{N}=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}(\oplus n\geq 0\mathcal{I}^{n})arrow V$ is a resolution of
singularity. We can introduce the natural filtration on $H_{m}^{d}(o_{V,p})$ by $F$ \S 1 of [23],
and we have

$F^{0}H_{m}^{d}(o_{V,p})={\rm Im}\{R^{d-1}\psi_{*}O_{V_{N}}arrow H^{d-1}(V_{N}-\psi^{-}1(p), oV_{N})\cong H^{d}m(o_{V,p})\}$

and this is isomorphic to $R^{d-1}\psi_{*}(o_{V_{N}})$ , since by the Grauert-Riemenschneider
vanishing theorem and the relative duality for projective morphism we have

$H_{\psi(}^{d-1}-1)(pVN, O\gamma N)\wedge\cong H1(V_{N},\omega_{V})N=0$.

Hence the condition $a_{F}(O_{V,p})<0$ implies $R^{d-1}\psi_{*}(o_{V_{N}})=0$ .

Now we will show the converse direction. Assume $p_{g}(V,p)=0$ . Let $F=\{F^{k}\}$ be
a filtration of ideals of $O_{V,p}$ in the sense of \S 1 of [TW]. That is $\oplus_{k\geq \mathit{0}F^{k}}\tau^{k}\subset O_{V,p}[T]$
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is a finitely generated $O_{V,p}$-algebra. Let $N\in \mathrm{N}$ satisfy the relation $F^{kN}=F^{N}$ .
... $\cdot$ $F^{N},$ $(k\geq 0)$ . Now $F^{N}$ defines the topology of this filtration and Support of
$O_{V,p}/F^{N}$ is the exceptional locus of blowing up

$X=\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}(\oplus_{k\geq}0^{F}\tau^{k})karrow V\supset V(F^{N})$.

We assume $V(F^{N})=\{p\}$ . Let $\tau$ : $\tilde{X}arrow X$ be a resolution of singularities and
$\varphi$ : $\tilde{X}arrow V$ the composition of $\tau$ and $\psi$ . We set $E=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}(\oplus k\geq 0F^{k}/F^{k+1})$ and
$A=\tau^{-1}(E)$ , so $A=\varphi^{-1}(p)$ . We have the isomorphisms $\tilde{X}-A\cong X-E\cong V-\{p\}$

and the following commutative diagram

$0=$ $H^{d-1}(\tilde{x},O)\tilde{\mathrm{x}}$ $arrow$ $H^{d-1}(\tilde{x}-A, O_{\overline{\mathrm{x}}})$

$\uparrow$ $\uparrow\cong$

$H^{d-1}(X, O_{X})$ $arrow$ $H^{d-1}(X-E,OX)$ $\cong H_{m}^{d}(OV,p)$

Hence $H^{d-1}(X, O_{X})arrow H^{d-1}(X-E, o\mathrm{x})\cong H_{m}^{d}(OV,p)$ is a zero-map. For $k\geq 0$ ,
we have $O_{X}(k)\subset O_{X}$ , therefore

$F^{k}H_{m}^{d}(O_{V,p})={\rm Im}\{H^{d-1}(X, o_{X}(k))arrow H^{d-1}(X-E, O_{X})\cong H_{m}d(o_{V,p})\}=0$ .

Hence we obtain the condition $a_{F}(O_{V,p})<0$ .
Q.E.D

(1.3) Under the assumption that $V-\{p\}$ has only rational singularities, we have
the relations

$H^{q}(\tilde{V}, O_{\tilde{V}})\cong H_{m}q+1(OV,p)$ $(0<q<d-1)$

for any resolution of singularities $\tilde{V}arrow V$ . (This is standard. e.g. see an argument
in [28] $)$

Hence if we assume (V, $p$) is isolated singularity and the Cohen-Macaulay condi-
tion on $O_{V,p}$ , the theorem above gives the criterion for rational singularity. However,
it is difficult “to study every blowing-up ”. For the computation of $a_{F}$ , we recall the
following. By [23], $a_{F}(O_{V,p})=a(gr_{F}(OV,p))$ when $gr_{F}(O_{V,p})$ is a Cohen-Macaulay
ring (see Proposition(1.17) of [23] for more precise information).

One of most familiar blowing-ups are so called weighted blowing-up induced from
the weighting on the coordinates of minimal embedding of the singularity.

Let (V, $p$) be a hypersurface isolated singularity represented as follows:

(V, $p$) $=(\{(X_{1}, \ldots, x_{d+1})\in \mathrm{C}^{d+1}|f(x_{1}, \ldots,x_{d+1})=0\}, \mathit{0})$

where $f$ is a convergent power series and we assume this is a minimal embedding.
If we choose some weighting on the variables as $\alpha=(\alpha_{1}, .,. , \alpha_{d+1})$ , we obtain the
following relation for the weight filtration $F_{\alpha}$

$a_{F_{\alpha}}(O_{V_{\mathrm{P}}},)=a(gr_{F_{\alpha}}(O_{V,p})=deg_{\alpha}(in_{F_{\alpha}}(f))- \sum_{i=1}^{d+1}\alpha_{i}$.
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Please refere [4, Goto-Watanabe, On graded rings I] for the generalities of the
$a$-invarinats of the graded rings.

Let us recall some results for 3-variables (2-dimensional singularity). We don’t
know the first reference for the following studies in the literture. However, it is
Prof. M. Reid who stated this point of view in [17] and discussed again carefully
in [19]. We also the following here for the aim to state what the meaning of Reid’s
conjecture, and finally reduce the arguments to D. Kirby’s classical studies.

Theorem (1.4). Let us assume $\{f=0\}-\{\mathit{0}\}$ is regular and $a_{\alpha}(f)<0$ for any
positive weight $\alpha$ and any analytic coordinate $\mathrm{x}$ . Then $\{f=0\}$ defines a rational
singularity at the origin $\mathit{0}$ .

$\mathrm{n}$ fact the following arguments also provide the complete explicit classification
of the defining equation for the rational double points, that is $\mathrm{A}.\mathrm{D}$ .E. equations.
This is one of motivation to consider simillar problem in three dimensional case.
Also we will observe that we only need treat the essential three weights instead of
all weights to check our assertion.

Proof. First we set $\alpha_{1}=(1,1,1)$ . The weighted Taylor expansion is nothing but
the usual Taylor expansion: have $a_{\alpha_{1}}(f)=\mathrm{o}\mathrm{r}\mathrm{d}(f)-3<0$ , and this means that
the multiplicity of the singularity is two or one.

We can choose a suitable coordinate system $x_{1},$ $x_{2,3}x$ as $f=x_{1}^{2}-A(x_{2}, x_{3})$

times certain unit in $\mathrm{C}\{x_{1}, x_{2,3}x\}$ . Here we can easily see the unit multiplication
can be ignored essentially.

Now we set the second weight $\alpha_{2}=(2,1,1)$ . Here we have
$a_{\alpha_{2}}(f)= \min\{\alpha_{2}(x21), \mathrm{o}\mathrm{r}\mathrm{d}(A(X_{2},X_{3}))\}-(2+1+1)<0$, that is $\mathrm{o}\mathrm{r}\mathrm{d}(A(X_{2}, x_{3}))\leq 3$.

We can choose a suitable coordinate system $x_{1}’,$ $x_{2}’’,$$x_{\mathrm{s}}$ as $f=(x_{1}’)^{2}-\{(X_{2}’)^{3}+$

$B_{2}(x_{3}’)x_{2}/+B_{3}(X_{3}’)\}$ times certain unit in $\mathrm{C}\{x_{1},$ $X_{2,\mathrm{s}\}}X$ .
We set the third weight $\alpha_{3}=(3,2,1)$ . Here we have $a_{\alpha_{3}}(f)= \min\{\alpha_{3}(x_{1}^{2})=$

$\alpha_{3}((x_{2}’)3),$ $\mathrm{o}\mathrm{r}\mathrm{d}(B2(x_{3}))+\alpha_{3}(X^{J})2’ \mathrm{o}\mathrm{r}\mathrm{d}(B3(X3))\}-(3+2+1)<0$ , that is $\mathrm{o}\mathrm{r}\mathrm{d}(B_{2}(X_{3}))\leq$

$3$ or $\mathrm{o}\mathrm{r}\mathrm{d}(B_{3}(X3))\leq 5$ .

Let $C=\{(x_{2}’)\mathrm{s}+B_{2}(x_{3}’)_{X’}2+B_{3}(X_{3}’)=0\}\subset \mathrm{C}^{2}$ be the branch locus and $C_{1}$ be
the proper transform of $C$ by the blowing up at $\mathit{0}$ . One can see that the condition
$\mathrm{o}\mathrm{r}\mathrm{d}(B_{2}(X3))\leq 3$ or $\mathrm{o}\mathrm{r}\mathrm{d}(B_{3}(x3))\leq 5$ equivalent to that the multiplicity of all points
of $C_{1}$ is less than or equal two. In [12] D. Kirby had classified the equisingular class
of these curves and shown that they are equisingular rigid. In fact the resulting
classes are coincide with the famous Klein equations. D. Kirby had induced these
conditions by the absolute isolatedness of the double point $\{f=0\}$ and had shown
that the absolutely isolated double points are Klein-Du Val singularities.

Q.E.D.

The three weights in the proof are closely related to hypersurface simple elliptic
singularites. By careful studies of hierarchy of these classes by K. Saito [20] and
others, simple elliptic singularities are the next classes to rational singularities and
all non-rational singularities can be deformed into one of these.
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Now let us take our attention to 3-dimensional cases. In [17], Prof. M. Reid
proposed a strategy to classify 3-dimensional hypersurface rational singularity as
an analogy of 2-dimensional case.

And he hoped that so called the famous 95 weights of 3-dimensional analogy of
simple elliptic singularities would play important roll to solve the following conjec-
ture:

Conjecture $(1.5).$ ( $(4.2)_{0}\mathrm{f}[17]$ , M. Reid). Let $f\in \mathrm{C}\{x_{1}, X_{2}, x_{3,4}x\}$ and put
some weights on the variables $x_{i}’s$ as $wt(x_{i})=\alpha_{i}>0\in \mathrm{N}$ for $i=1,2,3,4$ . Let us
assume $\{f=0\}-\{\mathit{0}\}$ is regular and $a_{\alpha}(f)<0$ for any positive weight $\alpha$ and any
analytic coordinate $\mathrm{x}$ . Then $\{f=0\}$ defines a rational singularity at the origin $\mathit{0}$ .

So far, we have several affirmative answer to this. First, if the singularity admits
the graded structure , we have:

Theorem (1.6). (H. Flenner [2], K.-i. Watanabe [26,27]) Let $R=\oplus_{k>0}R_{k}$ be a
normal graded ring. Then $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(R)$ has rational singularity if and only $\mathrm{i}\mathrm{f}\overline{\mathrm{S}}\mathrm{p}\mathrm{e}\mathrm{c}(R)-$

{V $(R_{+})$ } is rational and $a(R)<0$ .

Hence, if $R$ is a hypersurface isolated singularity defined by a quasi-homogeneous
polynomial , the conjecture follows. For the singularities which is non-degenerate
with respect to their Newton boundary, the answer is affirmative by M. Reid $[!7]$

and M. Oka [16].

Theorem (1.7). (M. Reid [17], M. Oka [16]). Let $f\in \mathrm{C}\{x_{1}, \ldots, x_{d+1}\}$ be non-
degenerate with respect to its. Newton boundary $\Gamma_{+}(f)$ in the sense of Kushinirenko.
Then the conjecture of M. Reid is true.

And also refer an affirmative results on simple K3 double points (Theorem (3.5)).

However, we found a counter example as in Introduction. In \S we will study
the counter example from the point of views on “the theory of Newton boundary
itself”. And in \S 3, we will study its by a special interest on “simple K3 singularity
and theory of filtered rings ”.

Following the result and consequences of Theorem (1.2), we will also discuss the
behavior of $a_{F}$ in the case of terminal singularities.

Theorem (1.8). Let (V, $p$) be Gorenstein rational singularity and $F$ a filtration
of ideas as above. Suppose $G=gr_{F}(O_{V,p})$ is a Gorenstein ring with $a(G)\geq-1$ .
Then we obtain the following conditions.

(1) $a(G)=-1$ . (2) $X$ is normal and has only rational singularities. (3) $\psi$ :
$Xarrow V$ is a crepant morphism and $\psi^{-1}(\mathit{0})=E\cong \mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}(G)$ is the exceptional Weil
divisor.

Proof. By Theorem (1.2), we have $a_{F}(O_{V,p})\leq-1$ and have the relation
$a_{F}(O_{V,p})=a(G)$ by the Cohen-Macaulay property of $G([23])$ . Hence we obtain
$a(G)=-1$ . By Theorem (3.5) [23] $)$ , we have $\omega_{X}\cong O_{X}(a(G)+1)$ corresponding
to an isomorphism $\omega_{V_{\mathrm{P}}},\cong oV,p$ . Therefore $\omega_{X}\cong \mathit{0}_{X(}0$ ) $=O_{X}$ .
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Let $\tau$ : $\tilde{X}arrow X$ be a resolution of $X$ such that $\varphi=\psi 0\tau$ : $\tilde{X}arrow V$ is a

resolution of singularities of $V$ . By the identification $\omega_{V}=O_{V}\omega_{O}$ , we have $\omega_{\tilde{X}}\supset$

$O_{\tilde{X}}\varphi^{-1}(\omega_{0})\cong O_{\tilde{X}}$ , since $\varphi^{-1}(’\omega 0)$ is a holomorphic form on $\tilde{X}$ . Here there is an
injection $\tau_{*}(\omega_{\tilde{X}})\subset\omega_{X}$ by the natural trace morphism. Hence

$O_{X}\subset\tau*(O_{\tilde{X}})\subset \mathcal{T}_{*}\omega_{\tilde{X}}\subset\omega x=O\mathrm{x}$

and these are all equal. Since $G$ is a Cohen-Macaulay ring, so is $X=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}(\mathcal{R})$ (cf
$[23]\S 1)$ . Hence the relation $\tau_{*}\omega_{\tilde{X}}=\omega_{X}$ implies that $X$ has only rational singulari-
ties.

$\mathrm{Q}.\mathrm{E}.\mathrm{D}$

Corollary (1.9). Let (V, $p$) be a Gorenstein terminal singularity and $F$ a filtration
such that $G$ is Gorenstein. Then $a(G)\leq-2$ .

However, as seen in Theorem (2.10) (2), (2.11), in the case of 4-dimensional
singularity, the conditions for the terminal singularity do not follow from $a_{F}\leq-2$

for only monomial weight filtration.

\S 2. Existence of monomials of square of quadric polynomials and elementary con-
struction of counter examples

(2.1) In this section, we will discuss the definitive existence of certain monomials
of square of quadratic forms in terms of the rank. Let $k$ be an infinite field of the
characteristic char$(k)$

.
$\neq 2$ , and $q\in k[x_{1}, \ldots, x_{m}]$ be a homogeneous polynomial of

degree 2.

We can represent $q$ as a bilinear form as: $q(x)=t_{XAx}$ where $A$ is an $m\cross m$

symmetric matrix, and we call the rank of $A$ as the rank of $q$ . First we remark the
following:

Lemma (2.2). Let the notation be as above. Then the rank of $q$ is the number
of essential variable as seen the following relation:

rank of $q= \min\{s\in N|^{\mathrm{t}\mathrm{h}\mathrm{e}}1\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{e}_{1\mathrm{y}\mathrm{e}}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{e}q\in \mathrm{i}\mathrm{n}\mathrm{d}1\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{f}k\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}.\mathrm{e}.\mathrm{n}.\mathrm{t},0[l1,\mathrm{o}\mathrm{r}\mathrm{m}_{l}\mathrm{s}l_{1},\ldots,l_{s}s]\mathrm{V}\mathrm{e}\mathrm{r}k\mathrm{a}\mathrm{n}\mathrm{d}\}$.

Proof. Let $H=( \frac{\partial^{2}}{\partial x_{i}\partial x_{j}}q)$ be the Hessian of $q$ . We have $H=2A$. If the

rank of $A$ is $s$ , we can choose a suitable coordinate $y_{1},$ $y_{2}$ , ... , $y_{m}$ such that $q=$

$\alpha_{1}y_{1}^{2}+\ldots.+\alpha_{s}y_{s}^{2}$ and that $\alpha_{i}\neq 0\in k$ for $1\leq i\leq s$ . Here we need the conditions
on the base fields. Then the assertion is easy.

Conjecture (2.3). Let $\alpha\in(\mathrm{Q}\geq 0)^{m}$ be a rational weighting which satisfies the
conditions;

$\alpha(x^{I})\geq 1$ for any monomials $x^{I}\in q^{2}$ .
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Then $\sum_{i=1}^{m}\alpha_{i}\geq\frac{\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}q}{4}$ . Moreover, if $\alpha\in(\mathrm{Q}_{>0})^{m}$ then the following assertion
would be hold:

(i) If $m=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}q$ , then $\sum_{i=1}^{m}\alpha_{i}\geq\frac{\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}q}{4}$ .

(ii) If $m>\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\alpha_{i}q$ , then $\sum_{i=1}^{m}\alpha_{i}>\frac{\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}q}{4}$ .

We will prove the conjecture for the case rank $q\leq 4$ . First we will show the
following:

Lemma (2.4). Let $\alpha\in(\mathrm{Q}\geq 0)^{m}$ be a rational weighting which satisfies the con-
ditions;

$\alpha(x^{I})\geq 1$ for any monomials $x^{I}\in q^{2}$ .

Then

(i) If $x_{i}^{2}\in q$ , we have $\alpha_{i}\geq\frac{1}{4}$ .

(ii) If $x_{i}x_{j}\in q$ with $i\neq j$ , we have $\alpha_{i}+\alpha_{j}\geq\frac{1}{2}$ .

Proof. If $x_{i}^{2}\in q$ , we can easily see that $x_{i}^{4}\in q^{2}$ . Hence, we obtain the relation
$\alpha(x_{i}^{4})\geq 1$ , that is $\alpha_{i}\geq\frac{1}{4}$ . If $xixj\in q$ with $i\neq j$ , we have two cases. In the
case that $x_{i}^{2}x_{j}^{2}\in q^{2}$ , we obtain the relation $\alpha(X_{i}^{2_{X}2}j)\geq 1$ , so $\alpha_{i}+\alpha_{j}\geq\frac{1}{2}$ . On the
contrary assume that there is not $x_{i}^{2}x_{j}^{2}$ in $q^{2}$ . Then to kill the square of $x_{i}x_{j}\in q$ ,
there should exits $x_{i}^{2}$ and $x_{j}^{2}$ in $q$ . In this case we obtain the conditions $\alpha_{i}\geq\frac{1}{4}\mathrm{a}\dot{\mathrm{n}}\mathrm{d}$

$\alpha_{j}\geq\frac{1}{4}$ by the assertion (i). Hence we have proved our assertions.

To prove our Conjecture for special cases, we will introduce the notion of the
graph of monomials for the $\dot{\mathrm{q}}$uadratic forms.

Definition (2.5). Let $q\in k[x_{1}, \ldots, x_{m}]$ be a quadratic form as above. If $x_{i}x_{j}\in q$

with $i\neq j$ , then we call “
$i$ and $j$ ”is a pair and denote by

$\mathrm{b}\infty$
$\mathrm{d}$

if $x_{i}^{2}\in q$ , then we denote
$\mathrm{t}\mathrm{O}^{\langle}0$

Let $\mathcal{P}_{q}$ be the graph which consists of all wedges and vertices in $q$ defined above.
Here any subset of monomials which live in $q$ gives a subgraph of $\mathcal{P}_{q}$ .

Let $\Gamma \mathrm{b}\mathrm{e}$ a subgraph of $\mathcal{P}_{q}$ which does not contain $x_{i}^{2}$ . We introduce the notion
of “a balance subgraph ”as: $\Gamma$ is a balance subgraph when for each vertex of $\Gamma$

there are same number of pairs in F. If $\Gamma$ contains a $x_{i}^{2}$ , then we define that $\Gamma$ is
a balance subgraph when $\Gamma=\{x_{i}^{2}\}$ .
Lemma (2.6). Let $\Gamma_{1},$

$\ldots.,$
$\Gamma_{r}\subset P_{q}$ be some family of balance subgraphs such

that there have no common vertex each other. Let $\alpha\in(\mathrm{Q}\geq 0)^{m}$ be a rational
$\mathrm{w}\mathrm{e}^{\mathrm{t}}1\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ which satisfies the conditions;

$\alpha(x^{I})\geq 1$ for any monomials $x^{I}\in q^{2}$ .

Then

$\sum_{i=1}^{m}\alpha_{i}\geq\frac{1}{4}\sum_{i=1}^{r}|\mathrm{r}_{i}|$ .
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Here $|\Gamma_{i}|$ denotes the numbers of vertices of $\Gamma_{i}$ .

Proof. First we discuss on $\Gamma_{1}$ . Let $s=|\Gamma_{1}|$ and write $\Gamma_{1}$ on the variables
$\{x_{1}$ , .... , $x_{s}\}$ . Assume , in $\Gamma_{1}$ , each vertex has $t$ pairs. Then $\Gamma_{1}$ has exactly $\frac{st}{2}$

pairs. By Lemma (2.4), we obtain the relation.

$\sum_{(i,j)\in\Gamma 1}(\alpha_{i}+\alpha_{j})\geq\frac{st}{2}\cross\frac{1}{2}$ .

The left hand side is $t(\alpha_{1}+\ldots.+\alpha_{s})$ , so we obtain the relation

$s$ $|\Gamma_{1}|$

$\alpha_{1}+\ldots.+\alpha_{s}\geq\overline{4}^{=}\overline{4}$ .

SumIning up these for all $\Gamma_{i}$ , we obtain the assertion of the lemma.

By this lemma, to prove our conjecture (2.3), it is sufficient to show the following:
Conjecture (2.7). Let $s$ be an integer and $q\in k[x_{1}, \ldots.’ x_{m}]$ a quadratic form
with rank $q\geq s$ . Then there are balance subgraphs $\Gamma_{1},$

$\ldots,$
$\Gamma_{r}\subset P_{q}$ such that

there have no. common vertex each other and that

$\sum_{i=1}^{r}|\Gamma i|\geq s$ .

We shall show the following.

Theorem (2.8). Conjecture (2.7) is true for $s\leq 4$ . (Hence (2.3) is also true for
this case.)

Proof. We will show the assertion inductively on $s$ step by step.

Let us assume $s=1$ . Then the assumption is $q\neq 0$ . Hence there is a non-zero
monomial $x^{I}\in q$ . Hence $\Gamma=\{x^{I}\}$ gives a balance subgrap.h of $P_{q}$ .

Let us assume $s=2$ . If there is a balance connected subgraph $\Gamma\subset P_{q}$ with
$|\Gamma|\geq 2$ , then this agrees with our assertion. So assume that there is no such a
subgraph. Then $q$ contains only monomials of the forms $x_{i}^{2}$ . Then rank $q\geq s$

implies there should at least $sx_{i}^{2}$ in $q$ as desired.

Let us assume $s=3$ . By the assertion for the case rank $q\geq 2$ , we already know
the existence of a family of independent balance subgraphs $\Gamma_{i}’s$ in $\mathcal{P}_{q}$ , where the
summation of supports is greater than or equal 2. If it reach to 3, these sets give
affirmative answer to our assertion. So assume that we only know the existence
of independent balance subgraphs with $\sum|\Gamma_{i}|=2$ . Now there are two cases; (i)
$x_{1’ 2}^{2}x^{2}\in q,$ $(\mathrm{i}\mathrm{i})X_{1}x_{2}\in q$ . $C\mathrm{t}$ $C\searrow$

$\mathrm{c}_{\mathrm{t}})\backslash \mathrm{O}_{1}$ $\mathrm{o}_{\alpha}$
$\mathrm{C}i.|’)1$ $\infty 2$

$\mathrm{S}\dot{\mathrm{i}}\mathrm{n}\mathrm{c}\mathrm{e}$ the number of essential variables are greater than or equal to 3, there is a
monomial of the form $x_{i}x_{j}$ with $i\geq 3\mathrm{i}\mathrm{n}q$ . Furthermore if $j\geq 3$ , then the. above
$x_{i}x_{j}$ gives a balance subgraph which is independent with these of (i) and (ii). So
in this case our assertion follows. Now assume $x_{i}x_{j}$ with $i\geq 3$ should be $x_{i}x_{j}$ with
$j\leq 2$ .
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Now we will discuss the monomials of the form $x_{3}x_{i}$ with $j\leq 2$ .
In the case (i), if $x_{3}x_{1}\in q$ , then $\{x_{3}x_{1}\}=\Gamma_{1}$ and $\{x_{2}^{2}\}=\Gamma_{2}$ give desired

subgraphs. In the case $x_{3}$. $x_{2}\in q$ is.similar.
In the case (ii). Assume $x_{3}x_{1}\in q$ and $x_{3}x_{2}\in q$ . Then $\{x_{1}x_{2}, X2X3, X_{3}x_{1}\}=\Gamma_{1}$

gives a desired subgraph. Assume $x_{3}x_{1}\in q$ and $x_{3}x_{2}$ is not contained in $q$ . Then
thcre is a monomial $x^{I}\in q$ which can not bc dividcd by $x_{1}$ , becausc wc can scc
rank $q\leq 2$ when $x_{1}|q$ . Hence there is a monomial $M=x_{2}x_{j}\in q$ with $j\neq 1$ and
$j\neq 3$ . So $\{x_{1}x_{3}\}=\Gamma_{1}$ and $\{M\}=\Gamma_{2}$ give a desired subgraphs.

Let us assume $s=4$ . By the assertion for the case rank $q\geq 3$ , we already know
the existence of a family of independent balance subgraphs $\Gamma_{i}’s$ in $\mathcal{P}_{q}$ , where the
summation of supports is greater than or equal 3. If it reach to 4, these sets give
affirmative answer to our assertion. So assume that we only know the existence of
independent balance subgraphs with $\sum|\Gamma_{i}|=3$ . Now there are three cases; (iii)
$x_{1}^{222},$$X_{2},$ $X3\in q,$ $(\mathrm{i}\mathrm{v})x_{1}x_{2},x_{3}^{2}\in q,$ $(\mathrm{v})_{X_{1}xx}2,2x3,$ $X_{3^{X_{1}}}\in q$ .

$[i\iota\downarrow.)\backslash$
$0^{c\eta}$ $0^{\mathrm{D}}$ $0\llcorner \mathrm{Q}$

$(\mathrm{t}\sqrt)$ $-\mathrm{O}$
$\mathit{0}\mathfrak{q}$

$()\mathrm{a}$

Since the number of essential variables are greater than or equal to 4, there is a
monomial of the form xixj in $q$ with $i\geq 4$ . Furthermore if $j\geq 4$ , then xixj gives
a balance subgraph which is independent with these of $(\mathrm{i}\mathrm{i}\mathrm{i}),(\mathrm{i}\mathrm{v})$ and (v). So in this
case our assertion follows. Now assume $x_{i}x_{j}$ with $i\geq 4$ should be $x_{i}x_{j}$ with $j\leq 3$ .

Now we will discuss the monomials of the form $x_{4}x_{j}$ with $j\leq 3$ .
In the case (iii), if $x_{4}x_{1}\in q$ , then $\{X_{4}x_{1}\}=\Gamma_{1},$ $\{x_{2}^{2}\}=\Gamma_{2}$ , and $\{x_{3}^{2}\}=\Gamma_{3}$ give

desired subgraphs. In the cases $x_{4}x_{j}\in q$ with $j\geq 2$ are similar.

In the case (v), if $x_{4}x_{1}\in q$ , then $\{x_{4}x_{1}\}=\Gamma_{1}$ and $\{x_{2}x_{3}\}=\Gamma_{2}$ give desired
subgraphs. In the cases $x_{4}x_{j}\in q$ with $j\geq 2$ are similar.

In the case (iv). Assume $x_{4}x_{3}\in q$ . Then $\{x_{1}x_{2}\}=\Gamma_{1}$ and $\{x_{3}x_{4}\}=\Gamma_{2}$ give
dcsircd subgraphs.

Now we assume there is no $x_{3}x_{j}$ with $j\geq 4$ in $q$ .
Assume $x_{4}x_{1}\in q$ and $M=x_{j}x_{2}\in q$ with $j\geq 4$ .
Then, in the case $j=4,$ $\{x_{1^{X}2}, x2X_{4}, X_{4}X_{1}\}=\Gamma_{1}$ and $\{x_{3}^{2}\}=\Gamma_{2}$ give desired

subgraph, and, in the case $j\geq 5,$ $\{x_{1}x_{4}\}=\Gamma_{1},$ $\{M\}=\Gamma_{2}$ , and $\{x_{3}^{2}\}=\Gamma_{3}$ give
desired subgraphs.

Assume $x_{4}x_{1}\in q.\mathrm{a}\mathrm{n}\mathrm{d}$ there is no $x_{i}x_{2}$ with $j\geq 4$ in $q$ . We can write $q=x_{3}^{2}+\tilde{q}$ .
Since rank $q\geq 4$ , we have the condition rank $\tilde{q}\geq 3$ . Then there is a monomial
$x^{I}\in\tilde{q}$ which can not be divided by $x_{1}$ , because we can see rank $\tilde{q}\leq 2$ when $x_{1}|\tilde{q}$ .
Hence there is a monomial $M=x_{2}x_{j}\in q$ with $j=2$ or $j=3$ .

If $M=x_{2}^{2}$ , then $\{X_{1}x_{4}\}=\Gamma_{1},$ $\{M=x_{2}^{2}\}=\Gamma_{2}$ , and $\{x_{3}^{2}\}=\Gamma_{3}$ give desired
subgraphs.

If $M=x_{2}x_{3}$ , then $\{x_{1}x_{4}\}=\Gamma_{1}$ and $\{M=x_{2}x_{3}\}=\Gamma_{2}$ give desired subgraphs.
$\mathrm{Q}.\mathrm{E}.\mathrm{D}$

43



Hope. There are no counter examples to our conjectures (2.3), (2.7). So we will
propose to continue the studies as above.

Theorem (2.9). Let $k$ be an infinite field of the characteristic $\mathrm{c}\mathrm{h}\mathrm{a}\Gamma(k)\neq 2$ and
$q\in k[x_{1}, \ldots , x_{d+1}]$ . Let $g\in k[[x_{1}, \ldots , x_{d+1}]]$ be a formal power series of ord $g\geq 5$ .
Let $f=q^{2}+g$ .

(1) Assume rank $q\geq 4$ and $d\geq 4$ . Then, for any analytic coordinates
$y_{1}$ , .... , $y_{d+1}$ with $k[[x_{1}$ , ... , $x_{d+1}]]=k[[y_{1}$ , ... , $y_{d+1}]]$ and $\alpha\in(\mathrm{z}_{>0})^{m}$ be an
integral weighting of the coordinate as $\alpha(y_{i})=\alpha_{i}>0$ , we have the condition

$a_{F_{\alpha}}(f)=deg \alpha(in_{F_{\alpha}}(f))-\sum_{i=1}\alpha_{i}d+1\leq-1$ .

Here $F_{\alpha}=\{F^{l}\}$ is the weight filtration on $k[[y_{1}, \ldots, y_{d+1}]]$ .

(2) Let $k$ be the complex number field and $\{f=0\}$ defines an isolated singularity
at the origin. We assume ord $=2m,$ $m\in \mathrm{N}$ and $m\geq d-1\geq 3$ . Then we have the
inequality about the geometric genus $p_{g}(V,p)$ of the singularity (V, $p$) $=(\{f=0\}, \mathit{0})$

as follows:

$p_{g}(V,p)\geq+$ .

(3) Let the situation be as in (2) and further assume rank $q=d+1$ and
ord $g=2(d-1)$ . If $\{g=q=0\}$ is a smooth complete intersection of $P^{d}$ , then
(V, $p$) is a $d$-dimensional purely elliptic singularity of the Hodge type $(0, d-1)$ .

Proof. (1) Our assumption on the rank $q$ of the initial term $q^{2}$ is independent
of the choice of coordinate changes. So we will show the assertion for original
coordinates as $x_{i}=y_{i}$ for all $i$ .

First we state the following claim:

Claim (2.9.1). Let $\alpha\in(\mathrm{Q}\geq 0)^{m}$ be a rational weighting which satisfies the
conditions;

$\alpha(x^{I})\geq 1$ for any $\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{n}\dot{\mathrm{u}}\mathrm{a}1_{\mathrm{S}}x^{I}\in f$ .

Then $\sum_{i=1}^{d1}+\alpha_{i}>1$

Since any monomial $x^{I}$ of $q^{2}$ lives in $f$ , this assertion is a direct consequence of
Theorem (2.8).

Now we shall show that (2.9.1) implies the assertions of (1).

Let $\alpha\in(\mathrm{z}_{>0})^{m}$ be an integral weighting of the coordinate as $\alpha(x_{i})=\alpha_{i}>0$ .
Let $\mu=\min_{x^{I}\in f^{\alpha}}(XI)$ . Then $\mu>0$ and we can consider the rational weighting
$\alpha’=\frac{1}{\mu}\alpha=(_{\mu}^{\alpha_{\lrcorner}}-,$

$\ldots,$
$\frac{\alpha_{d+1}}{\mu})$ . We have $\alpha’(x^{I})\geq\frac{1}{\mu}\min_{x^{I}\in f^{\alpha}}(X^{I})=1$ for any

$x^{I}\in f$ . Hence by (2.9.1) , we obtain $\sum_{i=1\mu}^{d+}1\alphaarrow>1$ . This implies the relation
$a_{F_{\alpha}}(f)= \mu-\sum_{i1}d=+1\alpha_{i}<0$ .

44



(2) We have the isomorphism of rings

$O_{V,p}\cong \mathrm{c}\{X_{1}, \ldots , x_{d+1}\}/f\cong \mathrm{C}\{x1,$ $\ldots,X_{d+1,y\}}/(q+y, y^{2}+g(x_{1}, \ldots,x_{d+1}))$ .

Now let us introduce the weight filtration $\mathcal{F}$ on $\mathrm{C}\{x_{1},$
$\ldots$ , $X_{d+1,y\}}$ by the weighting

$\alpha(x_{i})=1$ for all $i$ and $\alpha(y)=m$ . Let $F$ be the induced filtration on the local ring
$O_{V,p}$ from $\mathcal{F}$ . Then we have the relation

$G=gr_{F}(O_{V,p})\cong \mathrm{C}[x_{1},$
$\ldots,$

$X_{d+1,y]}/(q, y^{2}+g_{2m}(X_{1}, \ldots, x_{d+1}))$ .

Here $g_{2m}$ is the initial part of $g$ . $G$ is a complete intersection. In particular $G$ is
a Gorenstein ring with $a(G)=2+2m-(d+1+m)=m-d+1$. By [Theorem
(4.2), Tomari-Watanabe], we obtain the following inequality

$p_{g}(V,p) \geq\sum_{k}^{a}(G)=0\dim Gk$ .

Since $\deg(y)=m>a(G)=m-d+1$ , we have the relation

$G_{k}=\mathrm{C}[x_{1}$ , ... , $x_{d+1}]_{k}/q\mathrm{C}[x_{1}$ , ... , $x_{d+1}]_{(k}-2)$ ,

hence $\dim G_{k}=-$ . So we obtain tbe assertion.

(3) We can construct the resolution of singularity (V, $p$) explicitly. Then we can
check the criterion for purely ellipticity and the Hodge type.

However, in \S 3, we will see the assertion in terms of filtered rings (Theorem
(3.6) $)$ .

We will give a similar statement which also gives an counter example even for
3-dimensional singularities.

Theorem (2.10). Let $f\in \mathrm{C}[x_{1}$ , ... , $x_{d+1}]$ be a convergent power series of the
form

$f=x_{1}^{3}+$ $(q_{2}(x_{2}, \ldots , x_{d+1})^{2}+D_{2}(x_{1}, \ldots, x_{d+1})x_{1}^{2})+h(x)$ ,

where $q_{2}\in \mathrm{C}[x_{2}, \ldots, x_{d+1}]$ and $D_{2}\in \mathrm{C}[x_{1}, \ldots, x_{d+1}]$ are homogeneous polynomial
of degree 2. Assume rank $q_{2}\geq 3$ and ord $h\geq 5$ . Then, for any analytic coordinates
$y_{1}$ , .... , $y_{d+1}$ with $\mathrm{C}\{x_{1}$ , ... , $x_{d+1}\}=\dot{\mathrm{C}}\{y_{1}$ , ... , $y_{d+1}\}$ and $\alpha\in(\mathrm{z}_{>0})^{m}$ be an

$\mathrm{i}\mathrm{n}\tilde{\mathrm{t}}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{l}$ weighting of the coordinate as $\alpha(y_{i})=\alpha_{i}>0$ , we have the condition

$a_{F_{\alpha}}(f)=deg_{\alpha}(in_{F_{\alpha}}(f))- \sum_{i=1}^{d+1}\alpha_{i}\leq-1$ .

Here $F_{\alpha}=\{F^{l}\}$ is the weight filtration on $\mathrm{C}[y_{1}, \ldots, y_{d+1}]$ .
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(2) Furthermore, if rank $q_{2}\geq 4$ (in particular, $d\geq 4$ ), we can show the condition
$a_{F_{\alpha}}(f)\leq-2$ for $\alpha\in(\mathrm{z}_{>0})^{m}$

Further, we can also show the the following criterion about non-rationality.

Theorem (2.11). Let $m\in \mathrm{N}\geq 1$ . Let $(V_{m}, \mathit{0})$ be an isolated singularity defined
as the following way:

$V_{m}=\{_{g_{6m}}^{q_{2}}(X_{1}, x2X3)(_{X_{1,2}}x’, x_{3^{+}},y,Z)+l(_{XX_{2}}1’,’,3’,y_{\backslash }z)y+h(X1X2x_{X}3y,z)==00\}\subset \mathrm{C}^{5}$ ,

where $q_{2}\in \mathrm{C}[x_{1}, x_{2,3}x]$ is a homogeneous polynomial of degree 2, and $g_{6m}\in$

$\mathrm{C}[X_{1,2,3,y,]}xXz$ is a weighted homogeneous polynomial of the type $(1, 1, 1, 3m, 2m)$

and of the degree $6m$ . Further we assume that $y^{2},$ $z^{3}\in g_{6m}$ , ord $h\geq 3$ , and
ord $l\geq 6m+1$ . Then we have the following inequality about the geometric genus
$p_{g}(V_{m}, \mathit{0})$ of the singularity $(V_{m}, \mathit{0})$ .

$p_{g}(V_{m}, \mathit{0})\geq m2$

By these theorems, we can see that the example of 3-dimensional singularity in
\S 1 gives a counter $\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}_{\mathrm{P}^{1\mathrm{f}\mathrm{o}\mathrm{r}}}\mathrm{e}$ a conjecture of Professor M. Reid.

By the way, here, we will give the proof of these theorems.

(2.12) Proof of (2.10).

First we will see the coordinate transform $y$ to $x$ as follows: $x=Ay+\mathrm{P}(y)$ where

$A=(a_{ij})\in GL(d+1, \mathrm{C})$ and $\mathrm{P}(y)=$ and $P^{[i]}\in(y_{1}, \ldots., y_{d+1})^{2}\subset$

$\mathrm{C}\{y_{1}$ , ..:, $y_{d+1}\}$ for $1\leq i\leq d+1$ . We will denote $G.(y)=f(Ay+\mathrm{P}(y))\in$

$\mathrm{C}\{y_{1}, \ldots , y_{d+1}\}$ . Here we will expand $G$ as follows:

$G=G_{3}+G_{4}+$ .....

where $G_{i}$ denotes a homogeneous polynomial of degree $i,$ $\mathrm{a}$.nd we obtain the rela-
tions: $G_{3}=( \sum_{j1}^{d+1}=a1jyj)^{3}$ and

$G_{4}=(_{j=1}^{d1} \sum^{+}a1jy_{j})^{2}(3P_{2}([1])y+D2(Ay))+q_{2}(\sum_{j=1}^{d1}a2+jy_{j},$ $\cdots,\sum_{j=1}^{d+1}a_{d}+1,jy_{j}\mathrm{I}^{2}$

where $P_{2}^{[1]}$ is the initial term of expansion of $P^{[1]}$ into homogeneous polynomials as
$P^{[1]}=P_{2}^{[1]}+P_{3}^{[1]}+$ .....

As same as in the proof of (2.8), we will concern the rational weight $\alpha\in(\mathrm{Q}\geq 0)^{m}$

be a rational weighting which satisfies the conditions;

$\alpha(x^{I})\geq 1$ for any monomials $x^{I}\in G$ .
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Case 1. There are at least three $y_{i}^{3}$ which is alive in $G_{3}$ .
Say $y_{1}^{3},$

$y_{2},$$y_{3}33\in G_{3}$ . These also live in $G$ . So $\alpha(y_{i}^{3})\geq 1$ , and we obtain $\alpha_{i}\geq\frac{1}{3}$

for $i=1,2,3$ . Hence $\sum_{i=1}^{d+}1\alpha_{i}\geq 1+\sum_{i=4}^{d+1}>1$ , because $d\geq 3$ .

Case 2. Three is exactly one $y_{i}^{3}\in G_{3}$ .

Say $y_{1}^{3}\in G_{3}$ . Then we have the relation $G_{3}=a_{11}^{3}y_{1}^{3}$ and $a_{12}=\cdots=a_{1,d+1}=0$ .
Here we obtain the relation $\alpha_{1}\geq\frac{1}{3}$ as same as in the case 1. We can represent $A$

as follows:
$A=(_{*}^{a_{11}}$ $0_{A’}\ldots \mathrm{o})$

with $A’\in GL(d, \mathrm{c})$ . Now $G_{4}$ is written as

$c_{4}=a^{2}y_{1}^{2()}113P^{1}211_{(y})+D_{2(y)}A+q_{2}(^{d+1} \sum_{j=2}a_{2j}yj,$
$\cdots,$

$\sum_{j=2}^{+}a_{d}d1+1,jyj\mathrm{I}^{2}+y1R(y)$

with $R(y)$ is a polynomial. Here $q_{2}( \sum_{j=}^{d+1}2a2jyj,$ $\cdots,$ $\sum_{j=2}^{d+1}a_{d}+1,jy_{j})=\tilde{q}_{2}\in$

$\mathrm{C}[y_{2}$ , $\cdot$ .. , $y_{d+1}]$ has rank $\tilde{q}_{2}\geq 3$ , since $A’\in GL(d, \mathrm{c})$ . All monomials of $\tilde{q}_{2^{2}}$

lives in $G_{4}$ (and hence in $G$ ), we $.0$btain the conditions

$\alpha(x^{I})\geq 1$ for any monomials $x^{I}\in\tilde{q}_{2^{2}}$ .

Hence we obtain the relation.$\sum_{i=2}^{d+}1\alpha_{i}\geq\frac{3}{4}$ . Therefore we obtain $\sum_{i=1}^{d+1}\alpha_{i}\geq\frac{1}{3}+\frac{3}{4}>$

1.

Case 3. Three are exactly two $y_{i}^{3}\in G_{3}$ .

Say $y_{1}^{3},$ $y_{2}^{3}\in G_{3}.\cdot$ Then we have the relation $G_{3}=(a_{11}y_{1}+a_{12})^{2}$ and $a_{13}=$

$...=a_{1,d+1}=0$ . Here we obtain the relation $\alpha_{1}\geq\frac{1}{3}$ and $\alpha_{2}\geq\frac{1}{3}$ as same as in the
case 1. By Laplace expansion of $det(A)=a_{11}det(A11)-a12det(A12)$ , where $A_{ij}$ is
$\mathrm{c}\mathrm{o}$-multiple factor of the matrix $A$ . Here $det(A_{11})\neq 0$ or $det(A_{12})\neq 0$ . Now we
will assume the condition $det(A_{11})\neq 0$ .

Now $G_{4}$ is written as

$G_{4}=(a_{1}1y_{1}+a_{12}y2)^{2}(3P^{[1]}(2y)+D_{2}(Ay))+q_{2}(d \sum_{j=2}^{1}a2+y_{j}j,$ $\cdots,$
$j \sum_{=2}^{d}a_{d+1},jyj)+112+yR(y)$

with $R(y)$ is a polynomial. Here $q_{2}( \sum_{j=}^{d+1}2a2jyj,$ $\cdots,$ $\sum_{j2}^{d+1}=a_{d1}+,jyj)=\tilde{q}_{2}\in$

$\mathrm{C}[y_{2}, \cdots, y_{d+1}]$ has rank $\tilde{q}_{2}\geq 3$ , since $A_{11}\in GL(d, \mathrm{C})$ .

By Theorem (2.8), we may assume , essentially, the one of the followings happen:
(a) $y_{2}y3,$ $y_{4}^{2}\in\tilde{q}_{2},$ $(\mathrm{b})y_{2}^{2},y_{3}y_{4}\in\tilde{q}_{2},$ $(\mathrm{c})y_{2}y3,$ $y3y4,$ $y4y_{2}\in\tilde{q}_{2}$ , and (d) $y_{2}^{2},$

$y_{3},$
$y_{4}22\in\tilde{q}_{2}$ .

Subcase 1. $y_{3}y_{4}\in\tilde{q}_{2}$ or $y_{3}^{2},$ $y_{4}^{2}\in\tilde{q}_{2}$ happens.

Then the monomials on $y_{3},$ $y_{4}$ of degree 4 in $\tilde{q}_{2^{2}}$ lives in $G_{4}$ . So we have the
condition $\alpha_{3}+\alpha_{4}\geq\frac{1}{2}$ . Hence we obtain the relation $\sum_{i=1}^{d1}+\alpha_{i}\geq\frac{2}{3}+\frac{1}{2}>1$ .
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. Subcase 2. Suppose the conditions of the subcase 1 does not happen. For the
cases $(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$ and (d), we can assume that $y_{4}^{2},$ $y_{2}y_{3}\in\tilde{q}_{2}$ and $\tilde{q}_{2}$ does not contain
$y_{3}y_{4}$ and $y_{3}^{2}$ .

Let us study the existence of the monomial $y_{4}^{2}y_{2}y_{3}$ . Here $y_{4}^{2}\cdot y_{2}y_{3}=y_{3}y4^{\cdot}y_{2}y_{4}$ .
But in $\tilde{q}_{2^{2}}$ there is only one possibility for getting this monomial as $y_{4}^{2}\cdot y_{2}y_{3}$ .
Therefore this lives in $\tilde{q}_{2^{2}}$ and also in $G_{4}$ . Hence we obtain the relation $\alpha(y_{4}^{2}\cdot y2y3)\geq$

$1$ , and $2\alpha_{4}+\alpha_{2}+\alpha_{3}\geq 1$ .

Here if $\alpha_{1}>\alpha_{4}$ , then $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}>2\alpha_{4}+\alpha_{2}+\alpha_{3}\geq 1$.

Or if $\alpha_{4}\geq\alpha_{1}(\geq\frac{1}{3})$ , then $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\geq\frac{1}{3}+\frac{1}{3}+\alpha_{3}+\frac{1}{3}>1$ .
$\mathrm{T}\dot{\mathrm{h}}$erefore we obtain the assertion of (1).

Proof of (2) of (2.10).

First we state the following claim:

Claim (2.12.1). Let $\alpha\in(\mathrm{Q}_{>0})^{m}$ be a rational weighting which satisfies the
conditions;

$\alpha(x^{I})\geq 1$ for any $\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{I}\dot{\mathrm{m}}\mathrm{a}1_{\mathrm{S}}x^{I}\in G$.

Let us denote $\alpha_{i}=\frac{p_{i}}{q_{i}}$ with $p_{i},$ $q_{i}\in \mathrm{N}$ and $(p_{i}, q_{i})=1$ for $i=1,$ $\cdots,$ $d+1$ . Let $\nu$

be the least common multiple of $q_{1},$ $\cdots,$ $q_{d+1}$ . Then $\sum_{i=1}^{d1}+\alpha_{i}>1+\frac{1}{\nu}$

We will show that this claim implies our assertion of Theorem $(2.10)(2)$ .
Let $\alpha\in(\mathrm{z}_{>0})^{m}$ be an integral weighting of the coordinate as $\alpha(x_{i})=\alpha_{i}>0$ .

Let $\mu=\min_{x\in f}I\alpha(x^{I})$ . Then $\mu>0$ and we can consider the rational weighting
$\alpha’=\frac{1}{\mu}\alpha=(\frac{\alpha_{1}}{\mu},$

$\ldots$ , $\frac{\alpha_{d+1}}{\mu}$ ). We have $\alpha’(x^{I})\geq\frac{1}{\mu}\min_{x^{I}\in f}\alpha(X^{I})=1$ for any $x^{I}\in f$ .

Hence by (2.9.1) , we obtain $\sum_{i=1\mu}^{d+}1\alphaarrow>1+\frac{1}{\nu}$ . By definition, $\mu$ is divided by $\nu$ , so
we have $\mu\geq\nu$ . This implies the relation

$a_{F_{\alpha}}(f)= \mu-\sum_{i=1}\alpha i<\mu-\mu d+1(1+\frac{1}{\nu})=-\frac{\mu}{\nu}\leq-1$ .

Now we will show the claim.

(2.13) Let us employ the notations of (1) ; e.g. let us assume $x=Ay+\mathrm{P}(y)$ and
$G=G_{3}+G_{4}+\ldots.$ . as in (1).

Case 1. There are at least three $y_{i}^{3}$ which is alive in $G_{3}$ .
Say $y_{1}^{3},$ $y_{2’ y_{3}}^{3}3\in G_{3}$ . These also live in $G$ . So $\alpha(y_{i}^{3})\geq 1$ , and we obtain $\alpha_{i}\geq\frac{1}{3}$

for $i=1,2,3$ . Hence $\sum_{i=1}^{d1}+\alpha_{i}\geq 1+\alpha_{4}+\alpha_{5}\geq 1+\frac{2}{\nu}$ , because $d\geq 4$ .

Case 2. Three is exactly one $y_{i}^{3}\in G_{3}$ .
Say $y_{1}^{3}\in G_{3}$ . Then we have the relation $G_{3}=a_{11}^{3}y_{1}3$ and $a_{12}=\cdots=a_{1,d+1}=0$ .

Here we obtain the relation $\alpha_{1}\geq\frac{1}{3}$ as same as in the case 1. We can represent $A$
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as follows:
$A=(_{*}^{a_{11}}$ $0_{A}$

.
$.\mathrm{o}’\cdot)$

with $A’\in GL(d, \mathrm{c})$ . Now $G_{4}$ is written as

$G_{4}=a_{1}^{2}y_{1}^{2()}13P^{[11)}2(y)+D2(Ay+q2(_{j=2}^{d+} \sum a_{2j}yj1,$ $\cdots,\sum_{j=2}^{d1}a_{d}++1,jyj\mathrm{I}^{2}+y1R(y)$

with $R(y)$ is a polynomial. Here $q_{2}( \sum_{j=}^{d+1}2a2jyj,$ $\cdots,$ $\sum_{j=2}^{d+1}ad+1,jy_{j})=\tilde{q}_{2}\in$

$\mathrm{C}[y_{2}$ , $\cdot$ .. , $y_{d+1}]$ has rank $\tilde{q}_{2}\geq 4$ , since $A’\in GL(d, \mathrm{c})$ . AH monomials of $\tilde{q}_{2^{2}}$

lives in $G_{4}$ (and hence in $G$ ), we obtain the conditions

$\alpha(x^{I})\geq 1$ for any monomials $x^{I}\in\tilde{q}_{2^{2}}$ .

Hence we obtain the relation $\sum_{i=2}^{d+1}\alpha i\geq\frac{4}{4}$ . We obtain $\sum_{i=1}^{d+1}\alpha i\geq\frac{1}{3}+1$ . If
$\nu>3$ , we have done. If $\nu=3$ , then $\alpha_{i}\geq\frac{1}{3}$ holds for all $i$ . In this case we have
$\sum_{i=1}^{d+}1\alpha_{i}\geq\frac{5}{3}$ . Further if $\nu=2$ , the arguments are more easy.

Case 3. Three are exactly two $y_{i}^{3}\in G_{3}$ .

Say $y_{1}^{3},$ $y_{2}^{3}\in G_{3}$ . Then we have the relation $G_{3}=(a_{11}y_{1}+a_{12})^{2}$ and $a_{13}=$

... $=a_{1,d+1}=0$ . Here we obtain the relation $\alpha_{1}\geq\frac{1}{3}$ and $\alpha_{2}\geq\frac{1}{3}$ as same as in
the case 1. Our subclaim is.$\cdot$

Subclaim (2.13.2). There are indecis $i,$ $j\geq 3$ with $i\neq j$ and $\alpha_{i}+\alpha_{j}\geq\frac{1}{2}$ .

Assume we have shown the subclaim and say $i=3,j=4$. Then we obtain the
relation $\sum_{i=1}^{d1}+\alpha_{i}\geq\frac{2}{3}+\frac{1}{2}+\alpha_{5}>1+\frac{1}{\nu}$ . So we have done.

We will show the subclaim. As same as in the proof of (1), we can assume that
Now we will assume the condition $det(A_{11})\neq 0$ and $G_{4}$ is written as

$G_{4}=(a_{11}y_{1}+a1 \mathrm{z}y_{2})^{2}(3P^{[1]}(2y)+D_{2}(Ay))+q_{2}(_{j=2}^{d1}\sum^{+}a_{2j}yj,$ $\cdots,$
$\sum_{j=2}^{+}a_{d}+1,jyj\mathrm{I}^{2}d1(+y_{1}Ry)$

with $R(y)$ is a polynomial. Here $q_{2}( \sum_{j=}^{d+1}2a2jy_{j},$ $\cdots,$ $\sum_{j=2}^{d+1}a_{d1,j}+y_{j})=\tilde{q}_{2}\in$

$\mathrm{C}[y_{2}, \cdots, y_{d+1}]\mathrm{h}\mathrm{a}\dot{\mathrm{S}}$ rank $\tilde{q}_{2}\geq 4$ , since $A_{11}\in GL(d, \mathrm{c})$ .

-By Theorem (2.8), there are different 4 indecis $i,j,$ $k,$ $l\geq 2$ and one of following
6 cases occur: (a) yiyj, $y_{i}y_{k},y_{i}yl,$ $y_{j}y_{k},$ $y_{j}y_{l},$ $y_{ky_{l}}\in\tilde{q}_{2},$ $(\mathrm{b})y_{i}y_{j},$ $y_{j}y_{k},y_{k}y_{l},$ $ylyi\in$

$\tilde{q}_{2},$ $(\mathrm{c})y_{i}y_{j},$ $y_{j}yk,$ $y_{k}yi,y_{l}^{2}\in\tilde{q}_{2},$ $(\mathrm{d})y_{i}y_{j},$ $yky_{l}\in\tilde{q}_{2},$ $(\mathrm{e})y_{i}y_{j},$ $yk’ y_{l}^{2}2\in\tilde{q}_{2}$ , and (f)
$y_{i}^{222},$

$y_{j},$ $y_{k},$
$y^{2}l\in\tilde{q}_{2}$ .
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Hence there indecis $m,$ $n\geq 3$ with $m\neq n$ where either $y_{m}y_{n}\in\tilde{q}_{2}$ or $y_{m}^{2},$ $y_{n}^{2}\in\tilde{q}_{2}$

hold. Since the monomials of variables $y_{i}(i\geq 3)$ in $\tilde{q}_{2^{2}}$ still live in $G_{4}$ , we can
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{c}\mathrm{l}\dot{\mathrm{u}}\mathrm{d}\mathrm{e}$ that $\alpha_{m}+\alpha_{n}\geq\frac{1}{2}$ by Lemma (2.4).
Theorem (2.14). Let $m\in \mathrm{N}\geq 1$ . Let $(V_{m}, \mathit{0})$ be an isolated singularity defined
as the following way:

$V_{m}=\{_{g_{6m}(_{X_{1}x_{2,3}}}^{q_{2}(}x1,,X2,$$X3,,x4)Xx4,y+,y_{Z}+h)+l(X_{1},x_{2},X_{3}’,4,y(_{X_{1234}},x,Xx_{X},y,,\mathcal{Z})=0z)=0\}\subset \mathrm{C}^{6}$ ,

where $q_{2}\in \mathrm{C}[x_{1,2,3,4}Xxx]$ is a homogeneous polynomial of degree 2, and $g_{6m}\in$

$\mathrm{C}[X1, X2, x3, x4, y, z]$ is a weighted homogeneous polynomial of the type
$(1, 1, 1, 1, 3m, 2m)$ and of the degree $6m$ . Further we assume that $y^{2},$ $z^{3}\in g_{6m}$ ,
ord $h\geq 3$ , and ord $l\geq 6m+1$ . Then we have the following $\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}\backslash$ about the
geometric genus $p_{g}(V_{m}, \mathit{0})$ of the singularity $(V_{m}, \mathit{0})$ .

$p_{g}(V_{m}, \mathit{0})\geq\frac{m(m-1)(2m-1)}{6}$

Proof. We have

$O_{V,p}\cong \mathrm{C}\{x1, \ldots, x_{4}, y, z\}/(q+y+h, g\dotplus l)$ .

Now let us introduce the weight filtration $\mathcal{F}$ on $\mathrm{C}\{x_{1}, \ldots, x_{4}, y, z\}$ by the weighting
$\alpha(x_{i})=1$ for all $i,$ $\alpha(y)=3m$ , and $\alpha(z)=2m$ . Let $F$ be the induced filtration on
the local ring $O_{V,p}$ from $\mathcal{F}$ . Then we have the relation

$G=gr_{F}(o_{V,p})\cong \mathrm{C}[X1, \ldots, x_{4,y}, Z]/(q,g_{6m})$ .

$G$ is a complete intersection. In particular $G$ is a Gorenstein ring with $a(G)=$
$2+6m-(4+2m+3m)=m-2$. By [Theorem (4.2), 23], we obtain the following
inequality

$p_{g}(V,p) \geq\sum_{k=0}\dim G_{k}a(c)$ .

Since $\deg(y)=3m>\deg(Z)=2m>a(G)=m-2$ , we have the relation

$G_{k}=\mathrm{c}[X_{1}, \ldots, x_{4}]_{k}/q\mathrm{c}[X_{1}, \ldots, x_{4}]_{(k-2})$ ,

50



hence $\dim G_{k}=-$ . So we obtain the assertion.

\S 3. Reid’s conjecture and the canonical filtration of purely elliptic singularities.

Definition (3.1). A normal isolated singularity (V, $p$) is purely elliptic if $\delta_{m}(V,p)=$

$1$ for every integer $m\geq 1$ . Here $\delta_{m}$ ia the $L^{2}$-plurigenus which can be computed as

$\delta_{m}(V,p)=\dim\omega_{V}^{[m1}/\varphi_{*}(\omega\tilde{V}[m]((m-1)Ad)re)$

for a good resolution $\varphi$ : $(\tilde{V}, A)arrow(V,p)$ . In the case (V, $p$) is Gorenstein, this
class is not canonical but $\log$ canonical. Further we can introduce the notion of
maximal rank of Hodge type for these class by means of the Deligne canonical
Mixed Hodge Structure on the exceptional locus [Ishii, 8,9], and divided into $d$

cases $(0,0),$ $(0, d-1),$ $\cdots,$ $(0, d-1)$ . For 2-dimensional case, the purely elliptic of
$(0,1)$ is nothing but a simple elliptic singularity. For 3-dimensional case, [10,Ishii-
Watanabe] defines a simple K3 singularity as Gorenstein purely elliptic singularity
of type $(0,2)$ .

It has a geometric characterization in terms of minimal model of a resolution of
singularities.

Theorem $(3.2)$ ( $\mathrm{I}_{\mathrm{S}}\mathrm{h}\mathrm{i}\mathrm{i}$-Watanabe [10]). Let (V, $p$) be a 3-dimensional normal
isolated singularities. Then the following two conditions are equivalent:

(1) (V, $p$) is a simple K3 singularity.

(2) There is $\mathrm{a}.\mathrm{Q}$ -factorial terminal modification $\psi$ : $(W, E)arrow(V,p)$ such that
$\psi^{-1}(p)=E$ is a normal K3 surface with rational double points and $\omega_{W}$ is relative
$\psi- \mathrm{n}\mathrm{e}\mathrm{f}$ .

(3.3) This class is also characterized by the existence of a special filtration.

Theorem (3.3.1) ([Tomari, 21 ( $4.\mathit{2}\rangle$ ] $)$ . Let (V, $p$) be a normal d-dimensional
isolated singularity such that the canonical sheaf $\omega_{W}$ is trivial. Then the following
two conditions are equivalent.

(1) (V, $p$) is a purely elliptic singularity of type $(0, d-1)$ and the relative canonical
algebra of (V, $p$) is finitely generated.

(2) There is a filtration $\{F^{k}\}_{k\in \mathbb{Z}}$ on the local ring $O_{V,p}$ which satisfies the fol-
lowing conditions:
(2)$- 0$ . $\mathcal{R}=\oplus_{k\geq}\mathrm{o}Fk\tau^{k}\subset O_{V,p}[T]$ is finitely generated over $\mathit{0}_{V,p}$ and satisfies the
conditions of [Tomari-Watanabe, \S 1].
(2)$- 1$ . $G=\oplus_{k\geq 0}Fk/F^{k+1}$ is a normal domain.
In a representation $G=R(E, D)$ by the theorem of Pinkham-Demazure, we have
(2) $- 2$ . $E=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}(G)$ has only rational singularity,
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(2)$- 3$ . $D$ is an ample integral Weil divisor, and
(2)$- 4$ . $\omega_{E}\cong O_{E}$ .

Under these two equivalent conditions, we have the relations

$H_{m}^{q}(O_{V,p})\cong H_{c_{+}}^{q}(G)\cong H^{q-1}(E, \mathit{0}_{E})$ for $2\leq q\leq d-1$ .

In particular, under the assumption of the Gorenstein condition of (V, $p$), we
have the vanishing $H^{q-1}(E, \mathit{0}_{E})$ for $1\leq q\leq d-2$ .

The filtration in the above is unique and induced from the canonical model of
a $\mathrm{r}\mathrm{e}\mathrm{s}\dot{\mathrm{o}}1\mathrm{u}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ of singularity. We call it the canonical filtration. In this situation we
have the condition $a(gr_{F}(O_{V},)p)=0$ . So we can see the following:

Theorem $(3.3.\mathit{2})(\S 4,\S 5$ of [Tomari, 21]. Let (V, $p$) be a normal d-dimensional
Gorenstein isolated singularity over C. Let us assume (V, $p$) is a purely elliptic
of the Hodge type $(0, d-1)$ . Let $F–\{F^{k}\}_{k>0}$ be the canonical filtration such
that the associated Rees algebra $\mathcal{R}=\oplus_{k\geq 0^{F^{\overline{k}}}}\tau^{k}\subset O_{V,p}[T]$ is a finitely gener-
ated $O_{V,p}$-algebra. Further assume the associated graded ring $G=gr_{F}(O_{V,p})$ is a
hypersurface.

Then we have the following conclusions;

(1) (V, $p$) is a hypersurface.

(2) There is a minimal embedding (V, $p$) $\subset(\mathrm{C}^{d+1},\mathit{0})$ with an analytic coordinate
$(x_{1}, \cdots, x_{d+1})$ with positive weighting $(q_{1}, \cdots, q_{d+1})$ which induces the canonical
filtration $F$ .

(3) Let us represent $\{f=0\}=V\subset \mathrm{C}^{d+1}$ with $f\in \mathrm{C}\{x_{1}$ , $\cdot$ .. , $x_{d+1}\}$ . In
the weighted Taylor expansion of $f$ : $f= \sum_{i>\rho}f_{i}$ with respect to the weight
$(q_{1}, \cdots, q_{d+1})$ , the initial term $f_{\rho}$ is a $\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{e}\mathrm{d}^{-}$homogeneous polynomial which
satisfies the followings:

(3-1) $\rho=\sum_{i}=1qid+1$ ,

(3-2) $\{f_{\rho}=0\}-\{\mathit{0}\}$ has only rational singularities, and

(3-3) the Newton boundary $\Gamma(f_{\rho})\subset \mathrm{R}^{d+1}$ of $f_{\rho}$ is $d$-dimensional an.$\mathrm{d}$ contains
$(1, \cdots, 1)\in \mathrm{R}^{d+1}$ in its relative interior.

Remark (3.4). (1) In the case $d=3$, the weight $(q_{1}, q_{2,q_{3}}, q_{4})$ and the degree $\rho$

is one of famous 95 weights. These are classified by M. Reid, $\mathrm{A}.\mathrm{N}$ . Fletcher and T.
Yonemura. [17, 2, 29] (also see [21]).

(2) We have stated Reid’s conjecture as a criterion for rational singularity in the
introduction of the present paper. Also we can regard the conjecture suggest the
existence of certain good minimal embedding with weighting for non-rational singu-
larity where $a_{F}\geq 0$ . The above theorem says that, for purely elliptic hypersurface
singularity of a special type, a sufficient condition to check Reid’s hope is to show
that the associated graded ring of the canonical filtration is a hypersurface.
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In view of Remark (3.4) (2), we will review the the following:

Theorem (3.5) (ltomari, 22]). Let (V, $p$) be a simple K3 singularity of mul-
tiplicity two. Let $F=\{F^{k}\}_{k\geq 0}$ be the canonical filtration. Then $gr_{F}(O_{V,p})$ is a
hypersurface of $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}_{\mathrm{V}}$. two.

Hence we can not construct counter examples to Reid’s conjecture for the simple
K3 singularity of multiplicity two. However we have obse.rved in \S 2, that there are
non-rational hypersurface which look like canonical by means of monomial weight
filtrations of their minimal embeddings. In what follows, we will give some examples
of purely elliptic singularities which give counter example for Reid’s conjecture by
the theory of filtered blowing-ups (by using Theorems (3.2), $(3.3.1),(3.3.2)$ ).

Now let us consider the situation as follows:

Theorem (3.6). Let $d\geq 4$ . Let

(V, $p$) $=\{_{g_{2(d1)}}-(X_{1}1q(_{X},, \cdot.\cdot.\cdot. ’,X_{d+1})X_{d+}1)+y+h=0+y=02\}\subset \mathrm{C}^{d+2}$

be an isolated singularity at $\mathit{0}$ where $q,$ $g2(d-1)\in \mathrm{C}[x_{1}, \cdots, x_{d+1}]$ are homogeneous
of degree 2, $2(d-1)$ respectively. We assume $h\in \mathrm{C}\{x_{1}, \cdots , x_{d+1}, y\}$ has the order
$\geq 2(d-1)+1$ . If

$\{_{g_{2(d-1)}(_{X_{1}},\cdot\cdot,)=0}q(X1,\cdots,.Xd+1xd+1)=0\}\subset \mathrm{P}^{d}$

has only rational singularities, then (V, $p$ ) is a $d$-dimensional hypersurface purely
elliptic singularity of type $(0, d-1)$ . Moreover (V, $p$) gives a counter example of
Reid’s conjecture.

Proof. To use Theorem (3.3.1) : criterion for purely ellipticity of the singularity,
we shall introduce a filtration of ideals on the local ring as follows.

Let us represent the local ring $O_{V,p}$ as $O_{V,p}=\mathrm{C}\{x_{1},$ $\cdots,$ $X_{d+1,y\}}/(q+y,g_{2}(d-1)+$

$y^{2}+h)$ and introduce the filtration $F=\{F^{k}\}_{k\geq 0}$ by the following weighting
$wt(x_{i})=1,1\leq i\leq d+1,$ $wt(y)=d-1$ .

We can see that

$G=gr_{F}(O_{V,p})=\mathrm{C}[x_{1,d+}\cdots, X1, y]/(q, g_{2(-}d1)+y^{2})$

and this is a Gorenstein ring with $a(G)=2+2(d-1)-(d+1)-(d-1)=0$. By
our assumption, $G$ is a normal graded ring with the Demazure construction $G=$

$R(X_{2,2()}d-1, D)$ where $X_{2,2(1)}d-=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}(G)$ and $D$ is an ample divisor which cor-
responds to a homogeneous element of $G$ of degree 1. Here we know that $X_{2,2(1)}d-$

is a double covering of $P^{d}$ branched along $\subset \mathrm{P}^{d}$ .
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We can choose $D$ is the pull back of the hyperplane of $\mathrm{P}^{d}$ . So $X_{2,2(1)}d-$ has only
Gorenstein rational singularities. By Theorem (3.3), we can conclude that (V, $p$) is
a Gorenstein purely elliptic singularity of the Hodge type $(0, d-1)$ and $F$ is the
canonical filtration.

Theorem $(3.7)(\mathrm{T}\mathrm{o}\mathrm{m}\mathrm{a}\Gamma \mathrm{i}[\mathit{2}1, (4.10),(4.13)]$ . Let (V, $p$) be a normal $d- \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}\iota$

hypersurface purely elliptic singularity of type $(0, d-1)$ . Let $F_{\alpha}$ be a monomial
filtration on $O_{V,p}$ induced from certain weight $\alpha$ for a minimal embedding. Suppose
$a(gr_{F_{\alpha}}(O_{V,p}))\geq 0$ . Then $F_{\alpha}$ is the canonical filtration.

We $\mathrm{h}\mathrm{a}\mathrm{V}\mathrm{e}$ seen that the associated graded ring of the canonical filtration is not a
hypersurface. So any monomial filtration $F_{\alpha}$ induced from a minimal embedding
is not the canonical filtration. Hence $a_{F_{\alpha}}(O_{V,p})<0$ by Theorem (3.7). Now we
conclude that (V, $p$) is a counter example to Reid’s. conjecture.

$\mathrm{Q}.\mathrm{E}.\mathrm{D}$

Now the following theorem gives a counter example to Reid’s conjecture for
3-dimensional simple K3 singularity of multiplicity three.

Theorem (3.8). Let

(V, $p$) $=\{_{g_{6}(X_{1}}q(x_{1},’ X2,X3)+z=\mathrm{o}x2,x3,y,Z)+h=0\}\subset \mathrm{C}^{5}$

be a 3-dimensional isolated singularity at $\mathit{0}$ where $q\in \mathrm{C}[x_{1}, x_{2,3}x]$ is homogeneous
of degree 2, and $g_{6}\in \mathrm{c}1X_{1,2}X,$ $X_{3,y,]}Z$ a weighted homogeneous polynomial of de-
gree 6 with respect to $wt(x_{i})=1,$ $i=1,2,3,$ $wt(y)=2,$ $wt(z)=3$ respectively. We
assume $h\in \mathrm{C}\{x_{1},$ $\cdots,$ $X_{d+1,y,z\}}$ has the order $\geq 7$ . If $\mathrm{C}[x_{1},$ $\cdots,$ $X_{d+1,y]}/(q, g_{6})$

is normal and

$X_{2,6}=\{q(x_{1},x_{2,3}x)=0g_{2(d-1)}(X1, X2, x_{3}, y, z)=0\}\subset P(1,1,1,2,3)$

has only rational singularities, then (V, $p$) is a 3-dimensional hypersurface simple
K3 singularity. Moreover (V, $p$) gives a counter example of Reid’s conjecture.

Proof. The arguments are similar as in (3.6).

Let us represent the local ring $O_{V,p}$ as $O_{V,p}=\mathrm{C}\{x_{1},$ $\cdots,$ $X_{d+1,y\}}/(q+z, g_{6}+h)$

and introduce the filtration $F=\{F^{k}\}_{k\geq 0}$ by the following weighting $wt(x_{i})=1,$ $i=$

$1,2,3,$ $wt(y)=2,$ $wt(z)=3$.

We.can see that

$G=gr_{F}(o_{V,p})=\mathrm{C}[x_{1}, \cdots , x_{d+1}, y]/(q, g_{6})$

and this is a Gorenstein ring with $a(G)=2+6-(1+1+1+2+3)=0$ . By our assump-
tion, $G$ is a normal graded ring with the Demazure construction $G=R(X_{2,6}, D)$
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where $X_{2,2(1)}d-=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}(c)$ has only Gorenstein rational singularities. By Theorem
(3.3), we can conclude that (V, $p$) is a Gorenstein purely elliptic singularity of the
Hodge type $(0,2)$ and $F$ is the canonical filtration.

We have seen that the associated graded ring of the canonical filtration is not a
hypersurface. So any monommial filtration $F_{\alpha}$ induced from a minimal embedding
is not the canonical filtration. Hence $a_{F_{\alpha}}(O_{V,p})<0$ by Theorem (3.7). Now we
conclude that (V, $p$) is a counter example to Reid’s conjecture.

Q.E.D

Example (3.9). A normal K3 surface of the conditions of Theorem (3.8) is given
by the following explicit equation.

$X_{2,6}=\subset P(1,1,1,2,3)$ .

The second author had learned the existence of this K3 surface from Prof. M. Reid
as “monogonal $K\mathit{3}$ surface ”which is an important phenomena in the theory of
family of polarized K3 surfaces of degree two. In fact, this is a limit of nonsingular
K3 surface of degree 2 as follows:

$X_{t}=\{_{x_{1}^{6}+}^{X_{2^{-}1^{X}}^{2}}x_{3^{+y^{3^{+t=0}}0}}^{6}X3+Z=y2\}\subset P(1,1,1,2,3)$ where $t\in \mathrm{C}$ .

If $t\neq 0$ , then $X_{t}$ is embedded in $P(1,1,1,3)$ as

$X_{t}=\{x_{1}^{6}+x_{3}^{6}+(x_{1}x_{3}-x^{2})^{3}2+z^{2}=0\}$ .

Hence we can also observe the degeneration of simple K3 singularities as follows:

$(V_{t}, \mathit{0})=(\{x_{1}^{6}2^{-XX+}+x^{2}x_{3^{+y}}^{6}133+Z^{2^{+}}+=tyz_{h0}=0\},$ $\mathit{0})\subset(\mathrm{C}^{5},\mathit{0})$ where $t\in \mathrm{C}$ .

(In [13], S. Mori already had constructed a certain degeneration of K3 surfaces of
a different type in certain weighted projective space, where the weighted degree
changes by specialization.)

In this family, the filtration $F$ induced from the weight $wt(x_{i})=1,1\leq i\leq$

$3,$ $wt(y)=2,wt(z)=3$ gives the canonical filtration for all $t$ . Hence the simulta-
neous filtered blowing-up of this family gives a simultaneous canonical model. In
particular this family has the constant $\gamma_{m}\cdot$ . The singularity $(V_{0},\mathit{0})$ stands outside
of famous 95 classes from the view of the Newton boundary. But this is a limit of
one class of $95\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{S}\mathrm{S}\mathrm{e}\mathrm{s}$ which has simultaneous canonical models.

A natural question is

Question (3.10). Let (V, $p$) be a hypersurface simple K3 singularity of multi-
plicity 3 such that the associated graded ring of the canonical filtration is not a
hypersurface. (Hence this gives a conjecture of Reid as in Theorem (3.8).) Then is
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it a limit of simple K3 singularity of multiplicity 2 which has simultaneous canonical
model?

(3.11) We will give three more similar example of simple K3 triple points in the
below. Our approach heavily depend on the following observation of Prof. M. Reid.
Let us consider $(\{x^{12}+y^{12}+z^{3}+w^{2}=0\}, \mathit{0})$ . This is an simple K3 singularity. We
can consider the normal graded ring $R=\mathrm{c}[x, y, z, w]/x^{12}+y^{12}+z^{3}+w^{2}$ . Here
we can represent $R=R(X, D)$ as Demazure’s construction, where $X=\mathrm{p}_{\mathrm{r}\mathrm{o}}\mathrm{j}(R)$ is
a normal K3 surface and $D$ an integral ample Weil divisor. Let $R^{[2]}$ be the second
Veronesian subring of $R$ . We obtain

$R^{[2]}=\mathrm{C}[X^{22},xy, y, Z, w]/x^{12}+y12+Z^{3}+w^{2}$

$\cong \mathrm{c}[S, t, u, Z, w]/(s^{6}+t^{6}+z^{3}+w^{2}, t^{2}-su)$.

Hence we obtain the defining equation of $X_{2,6}$ by the second Veronesian of $X_{12}\subset$

$P(1,1,4,6)$ .

By the similar procedure, we can obtain the following three examples:

(3.11.1) $X_{4,12}\subset P(1,2,3,4.’ 6)$ as the second Veronesian of $X_{24}\subset P(1,3,8,12)$ .

(3.11.2) $X_{6,18}\subset P(1,3,5,6,9)$ as the second Veronesian of $X_{36}\subset P(1,5,12,18)$ .

(3.11.3) $X_{8,24}\subset P(3,4,5,8,12)$ as the second Veronesian of $X_{48}\subset P(3,5,16,24)$ .

For these three cases, we can attach hypersurface simple K3 triple points where
the associated graded ring of the canonical filtration is not a hypersurface. Hence
these three singularities also give counter example to Reid’s conjecture.
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