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1. INTRODUCTION

This article is centered around the following question about complex reductive sub-
groups of the group $\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ}1(\mathbb{C}^{n})$ of holomorphic automorphisms of $\mathbb{C}^{n}$ :

Holomorphic Linearization Problem. Let $G\mathrm{L}_{arrow}\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ}1(\mathbb{C}^{n})$ be a complex reduc-
tive subgroup of the group $\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ}1(\mathbb{C}^{n})$ of holomorphic automorphisms of $\mathbb{C}^{n}$ . Can
one conjugate this subgroup by a single automorphism into the general linear group

$\mathrm{G}\mathrm{L}_{n}(\mathbb{C})\subset \mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ}1(\mathbb{C}^{n}),\dot{i}.e.$, is every action of a complex reductive group on $\mathbb{C}^{n}$

$l_{\dot{i}near}\dot{i}zable$ ?

It is natural to ask the same question for compact groups. These two questions are
strongly related since complex reductive groups are exactly those groups $G$ which are
the universal complexifications of its maximal compact subgroup $K$ , i.e., $G=K^{\mathbb{C}}$ .
Recall that $K$ is a totally real submanifold of half real dimension in $G=K^{\mathbb{C}}$ hence
$K$ is an identity set in $G$ for holomorphic maps. So if we have a non-linearizable
holomorphic action $\phi$ : $G\cross \mathbb{C}^{n}arrow \mathbb{C}^{n}$ of a complex reductive group $G=K^{\mathbb{C}}$ on $\mathbb{C}^{n}$ ,
then by restricting that action $\phi|_{K}$ : $K\cross \mathbb{C}^{n}arrow \mathbb{C}^{n}$ to the maximal compact subgroup
$K$ of $G$ we get a non-linearizable $K$-action. Indeed if $\phi|_{K}$ would be conjugate by an
automorphism to a linear $K$-representation, then the same automorphism conjugates
$\alpha$ to the corresponding linear representation of $K^{\mathbb{C}}$ . The aim of the first section is
to explain the equivalence of the holomorphic linearization questions for compact and
complex reductive groups. In fact we prove that the group $\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ}1(\mathbb{C}^{n})$ is a complex
group in the following sense:

Let $H$ be a real Lie group acting by holomorphic automorphisms on $\mathbb{C}^{n}$ . Then the
action extends to a holomorphic action of the universal complexification $H^{\mathbb{C}}$ on $\mathbb{C}^{n}$ .

Also we give two interesting consequences of this extension result. The first is that
some real Lie groups can not act effectively on $\mathbb{C}^{n}$ by holomorphic transformations and
the $\overline{\mathrm{s}}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}$ is $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{C}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{i}\mathrm{n}.\mathrm{g}$ Fatou-Bieberbach domains in $\mathbb{C}^{2}$ invariant under a complete
holomorphic vectorfield.

In the second section we give a short overview over the positive results known about
holomorphic linearization and in the third section we explain the method to construct
counterexamples to the holomorphic linearization problem found by DERKSEN and the
author.
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Compact and reductive subgroups of the group of holomorphic automorphisms of $\mathbb{C}^{n}$

2. COMPLEXIFYING AN ACTION OF A REAL LIE GROUP ON $\mathbb{C}^{n}$

We start with some notation.
We say that a real Lie group $G$ acts on a complex space $X$ by holomorphic trans-

formations if the action map $\phi$ : $G\cross Xarrow X$ is real analytic and for all $g\in G$ the
map $\phi(g, \cdot)$ : $Xarrow X$ is holomorphic (in fact a holomorphic automorphism). If $G$ is a
complex Lie group and the $m\mathrm{a}p\phi$ is holomorphic we say that $G$ acts holomorphically
on $X$ .
REMARK 2.1. Every continous action of a real Lie group on a complex space by holo-
morphic automorphisms is already real analytic ([2] 1.6.). So it would be sufficient to
require only continouity of the action map $\phi$ : $G\cross Xarrow X$ in the first part of the
above definition.

If $X$ is a complex manifold the compact-open topology makes the group of holomorphic
automorphisms $\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ 1}(x)$ of $X$ a topological group. The action map $\phi$ : $G\cross Xarrow X$ is
continous iff the corresponding group homomorphism of $G$ into $\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}_{0}1}(X)$ is continous.
By the above remark we see that an action of a real Lie group $G$ on $\mathbb{C}^{n}$ by holomorphic
transformations is the same as a continous group homomorphism $\alpha:Garrow \mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ}1(\mathbb{C}^{n})$ .
An effective action of $G$ on $\mathbb{C}^{n}$ is the same as a subgroup of $\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ 1()}\mathbb{C}^{n}$ which is as a
topological group isomorphic to $G$ .

Before we formulate the extension result we recall the definition of the universal
complexification of a real Lie group.

Definition. A complex Lie group $G^{\mathbb{C}}$ together with a continous (hence real-analytic)
homomorphism $\dot{i}$ : $Garrow G^{\mathbb{C}}$ is called the universal complexification of a real Lie
group $G$ if it has the following property: For any continous group homomorphism
$\psi$ : $Garrow H$ of $G$ into a complex Lie group $H$ there exists a unique complex Lie
group homomorphism $\psi^{\mathbb{C}}$ : $G^{\mathbb{C}}arrow H$ such that the diagram:

:
$G\searrow$

$arrow\psi$

$\nearrow_{\psi^{\mathrm{C}}}H$

$G^{\mathbb{C}}$

commutes.

The construction for $G^{\mathbb{C}}$ can be found in [13] in the case where $G$ is connected. If the
group $G$ is not connected the universal complexification can be easily constructed from
the universal complexification of the component of the identity of $G$ (see the proof of
proposition 2.3). We remark that in general the map $\dot{i}$ : $Garrow G^{\mathbb{C}}$ is not injective. For
the universal covering $\underline{\mathrm{g}\mathrm{r}\mathrm{o}}\mathrm{u}\mathrm{p}$ of $SL_{2}(\mathbb{R})$ the universal complexification equals $SL_{2}(\mathbb{C})$

and the kernel of $\dot{i}$ : $SL_{2}(\mathbb{R})arrow SL_{2}(\mathbb{C})$ is isomorphic to Z. There are also examples
where the kernel is of positive dimension (see [14]). We call a real Lie group extendable,
if the homomorphism $\dot{i}$ : $Garrow G^{\mathbb{C}}$ is injective. Linear groups and in particular compact
groups are extendable.

Definition. We say that a holomorphic action $\phi^{\mathbb{C}}$ : $G^{\mathbb{C}}\cross Xarrow X$ of the universal
complexification of a real Lie group $G$ on a complex space $X$ is the extension of an
action $\phi:G\cross Xarrow X$ of $G$ on $X$ by holomorphic transformations if

$\phi^{\mathbb{C}}(\dot{i}(g), x)=\emptyset(g, x)$ $\forall g\in G,$ $x\in X$ .
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2. Complexifying an action of a real Lie group on $\mathbb{C}^{n}$

The main point for our extension result is that one can complexify every one parameter
subgroup of $G$ , i.e. an action of the additive group $(\mathbb{R}, +)$ . This result is due to
FORSTNERIC [6]. Recall that a complex space $X$ is called Liouville if every bounded
from above plurisubharmonic function on $X$ is constant.

Theorem 2.2. If $\phi$ : $\mathbb{R}\cross Xarrow X$ is an action of $(\mathbb{R}, +)$ on a complex $man\dot{i}foldx$

which is Stein and Liouville, then $\phi$ extends to a holomorphic action of $(\mathbb{C}, +)$ on
X.

PROOF. We sketch only the main ideas of the proof. For a detailed proof we refer to
[6]. By $\xi_{\phi}$ we denote the globally integrable (real) vectorfield induced by $\phi$ , i.e.,

$\xi_{\phi}(x)=\frac{d}{dt}|t=0\emptyset(t,x)$

and by $J$ we denote the almost complex structure induced from the complex structure
on $X$ .

The global $\mathbb{R}$ action induces a local $\mathbb{C}$-action on $X$ which can be constructed as
follows: Fix a point $x\in X$ and extend the real-analytic map $\phi_{x}$ : $\mathbb{R}arrow X$ , $t\vdasharrow\phi(t, x)$

by analytic continuation to a holomorphic map $\tilde{\phi}_{x}$ : $R_{x}arrow X$ from some maximal
Riemann domain $R_{x}$ over $\mathbb{C}$ into $X$ . One shows that $R_{x}$ is schlicht, i.e., a domain in
C. Since the vectorfields $\xi_{\phi}$ and $J\xi_{\phi}$ commute $R_{x}$ is an $\mathbb{R}$-invariant strip in $\mathbb{C}$ containing
R. So it is of the form $R_{x}=\{\lambda\in \mathbb{C} : -b(x)<Im(\lambda)<a(x)\}$, where $a(x),$ $b(x)>0$ .
Clearly $(-b(x), a(x))$ is the maximal interval for which the vectorfield $J\xi_{\phi}$ can be
integrated starting from the $\dot{\mathrm{p}}$oint $x$ . The subset $\Omega:=\{(\lambda, x)\in \mathbb{C}\cross X : \lambda\in R_{x}\}$

is just the saturation $p^{-1}(p(\mathrm{O}\cross X))$ of $X$ under the map $p:\mathbb{C}\cross Xarrow X^{*}$ to the leaf
space $X^{*}$ of the local $\mathbb{C}$-action (for definition see [22], [10]). Hence it is open in $X$ .
This implies that $x\mapsto-a(x)$ and $x\mapsto-b(x)$ are lower semicontinous functions on $X$ .

The most important point is to show that if $X$ is Stein, then the $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}-a$ and
$-b$ are plurisubharmonic. If one of the functions $-a$ or $-b$ is not plurisubharmonic
one can find a Hartogs figure $H:\Delta\cross\Delta_{n}\llcorner_{arrow \mathbb{C}}\cross X$ not entirely contained in $\Omega$ such
that

$H$ ( $\{(w_{1},\tilde{w})\in\Delta\cross\Delta_{n}$ : $|w_{1}|< \frac{1}{2}$ or $| \tilde{w}|>\frac{1}{2}\}$)

is contained in $\Omega$ thus proving that every holomorphic function defined on $\Omega$ can be
extended to the bigger domain $\Omega\cup H(\Delta\cross\Delta_{n})$ . Since a Stein manifold admits a closed
holomorphic embedding into some linear space $\mathbb{C}^{N}$ the extension also holds for maps
into Stein manifolds. In particular the local $\mathbb{C}$-action $\tilde{\phi}$ : $\Omegaarrow X$ $(\lambda,x)\mapsto\tilde{\phi}_{x}(\lambda)$

could be extended contradicting the maximality in the definition of $\Omega$ .
Since in addition $X$ is Liouville the plurisubharmonic $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}-a$ and $-b$ which

are bounded from above by $0$ are $\mathrm{c}\mathrm{o}\mathrm{n}\dot{\mathrm{s}}$tant on $X$ . This means that the vectorfield $J\xi_{\phi}$

can be integrated in both negative and positive directions for a fixed time independend
on the starting point $x\in X$ . This implies that it is globally integrable hence $-a$ and
$-b$ are $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{u}_{\mathrm{y}-\infty}$ . $\square$

Now we are able to prove the extension result

Proposition 2.3. Let $G$ be a real Lie group acting by holomorphic transformations
on a Stein manifold $X$ which is Liouville, then the action extends to a holomorphic
action of the universal complexification $G^{\mathbb{C}}$ on $X$ .
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Compact and reductive subgroups of the group of holomorphic automorphisms of $\mathbb{C}^{n}$

PROOF. Let $\mathfrak{g}$ denote the Lie algebra of $G$ . First suppose $G$ is connected. We shortly
recall the construction of $G^{\mathbb{C}}$ in that case:

Take the universal covering group $\pi$ : $\tilde{G}arrow G$ and denote the kernel of $\pi$ by
F. Let $\tilde{G}^{\mathbb{C}}$ be the unique simply connected complex Lie group corresponding to the
complexified Lie algebra $\mathfrak{g}^{\mathbb{C}}=\mathrm{g}\otimes_{\mathbb{R}}\mathbb{C}$ and $\dot{i}_{1}$ : $\tilde{G}arrow\tilde{G}^{\mathbb{C}}$ be the Lie group homomorphism
corresponding to the inclusion homomorphism $\mathfrak{g}arrow \mathrm{g}^{\mathbb{C}}$ . Let $H$ in $\tilde{G}^{\mathbb{C}}$ be the minimal
complex normal subgroup containing $\dot{i}_{1}(\Gamma)$ . Then $G^{\mathbb{C}}=\tilde{G}^{\mathbb{C}}/H$ and $\dot{i}$ : $Garrow G^{\mathbb{C}}$ is the
group homomorphism determined by $\dot{i}_{1}$ . For details we refer to [13]. In the rest of the
proof we will use the notation introduced above.

From the $G$-action we get an infinitesimal $G$-transformation group, i.e., a Lie alge-
bra homomorphism $\alpha$ : $\mathrm{g}arrow V(X)$ from $\mathfrak{g}$ into the Lie algebra of holomorphic vector
fields $V(X)$ on $X$ by differentiating the action:

$\alpha(v)(x):=\frac{d}{dt,-}|_{t=}0\emptyset(\exp tv, X)$ $v\in \mathrm{g},$ $x\in X$ .

Here holomorphic vectorfield means a real vectorfield inducing holomorphic trans-
formations on $X(V\vdasharrow V-\dot{i}JV$ gives an isomorphism between the holomorphic
vectorfields and the holomorphic sections of the complex tangent bundle $\tau^{(1,0)}(X)$ of
$X)$ . Clearly all the vectorfields $\alpha(v),$ $v\in \mathfrak{g}$ .are globally integrable.

We define a complex Lie $\dot{\mathrm{a}}$lgebra homomorphism from the complexified Lie algebra
$\alpha^{\mathbb{C}}$ : $\mathfrak{g}^{\mathbb{C}}arrow V(X)$ into the holomorphic vectorfields on $X$ by $\alpha^{\mathbb{C}}(v+\dot{i}w)=\alpha(v)+J\alpha(w)$ .
By theorem 2.2 all vectorfields $J\alpha(v),$ $v\in \mathrm{g}$ are globally integrable. Together with
the globally integrable vectorfields $\alpha(v),$ $v\in \mathrm{g}$ they form a spanning set (as a vector
space) of the real Lie algebra underlying $9^{\mathbb{C}}$ . By a theorem of PALAIS (theorem III
of $\mathrm{c}\mathrm{h}$ . $4$ in [22] $)$ all vectorfields in the Lie algebra $\mathfrak{g}^{\mathbb{C}}$ are globally integrable and they
integrate to a (real analytic, not necessarily effective) action $\phi_{1}^{\mathbb{C}}$ : $\tilde{G}^{\mathbb{C}}\cross Xarrow X$ of the
simply connected complex Lie group $\tilde{G}^{\mathbb{C}}$ corresponding to $\mathrm{g}^{\mathbb{C}}$ . Clearly this action is
holomorphic ([2] p.25). We have

$\phi_{1}^{\mathbb{C}}(\dot{i}1(g),x)=\phi 1(g,X)$ , $x\in X,g\in G$ $(*)$

since these two $G$-actions have the same infinitesimal generator $\alpha$ . This implies that
$\dot{i}_{1}(\Gamma)$ is contained in the ineffectivity $I$ of the action $\phi_{1}^{\mathbb{C}}$ . The ineffecticity is a normal
subgroup of $\tilde{G}^{\mathbb{C}}$ and it is also a complex Lie subgroup ([2] 1.7. Prop. 1). Hence $I<H$
and the $\tilde{G}^{\mathbb{C}}$-action $\phi_{1}^{\mathbb{C}}$ factors to a $G^{\mathbb{C}}$-action $\phi^{\mathbb{C}}$ . This is the desired extension, the
property $\emptyset^{\mathbb{C}}(\dot{i}(g), X)=\phi(g, x)$ , $g\in G,$ $x\in X$ follows from $(*)$ and the definition of
$\dot{i}$ . This proves the theorem for connected groups.

If the Lie group $G$ is not connected one easily constructs the extension $\phi^{\mathbb{C}}$ from an
extension $\phi_{0}^{\mathbb{C}}$ : $G_{0}^{\mathbb{C}}\cross Xarrow X$ of the restricted action $\phi_{1}=\phi|_{G_{0}\mathrm{X}x}$ : $G_{0}\cross Xarrow X$ . Here
$G_{0}$ is the component of the identity of $G$ . For that write $G$ in the form $G\cong G\cross c_{0}G_{0}$ .
The multiplication on the right hand side is given by $[g, h]\cdot[g_{1}, h_{1}]=[gg_{1}, g_{1}^{-}hg1h_{1}]1$ .
Now $G^{\mathbb{C}}:=G\cross_{G_{0}}G_{0}^{\mathbb{C}}$ is the universal complexification of $G$ where the group multi-
plication is given by $[g, h]\cdot[g_{1}, h_{1}]=[gg_{1}, \beta_{g_{1}}(h)h_{1}]$ . Here $\beta_{g_{1}}$ is the unique Lie group
automorphism of $G_{0}^{\mathbb{C}}$ determined by the Lie group automorphism $h\mapsto g_{1}^{-1}hg_{1}$ of $G_{0}$ .
It is straightforward to check that $\phi^{\mathbb{C}}([g, h], X):=\phi(g, \phi_{0}^{\mathbb{C}}(h, X))$ defines an e.xtension
$\mathrm{o}\mathrm{f}\phi$ . $\square$

Corollary 2.4. If a real Lie group $G$ is not extendable, then it can not act effec-
tively on $\mathbb{C}^{n}$ by holomorphic transformations. For instance there is no $su\dot{b}group$ of

$\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ}1(\mathbb{C}^{n})$ isomorphic as a topological group to $S\overline{L_{2}(}\mathbb{R}$).
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2. Complexifying an action of a real Lie group on $\mathbb{C}^{n}$

PROOF. First of all note that $\mathbb{C}^{n}$ is Stein and Liouville (see for example [21] 1.38). If
$G$ acts on $\mathbb{C}^{n}$ by holomorphic transformations by proposition 2.3 the action extends
to a holomorphic action of $G^{\mathbb{C}}$ . Hence the kernel of $\dot{i}$ : $Garrow G^{\mathbb{C}}$ is contained in the
ineffectivity of the $G$-action. The second statement is only a reformulation of the first
part and uses the fact that $S\overline{L_{2}(}\mathbb{R}$) is not extendable. $\square$

REMARK 2.5. In the case where the Lie group $G$ is compact HEINZNER proved the
existence of a. universal complexification $X^{\mathbb{C}}$ of a Stein space $X$ , i.e., one embedds $X$

holomorphically and $G$-equivariantly as an open subset into some $G^{\mathbb{C}}$ space $X^{\mathbb{C}}$ so that
every holomorphic $G$-map from $X$ to some complex $G^{\mathbb{C}}$-space $\mathrm{Y}$ extends uniquely to
a holomorphic $G^{\mathbb{C}}$-map from $X^{\mathbb{C}}$ into $\mathrm{Y}$ (see [9], [10]). Proposition 2.3 implies that if
$X$ in addition is Liouville, then one doesn’t have to enlarge $X$ , i.e. $X=X^{\mathbb{C}}$ .
Corollary 2.6. The holomorphic linearization questions for compact and complex re-

ductive groups are equivalent.

PROOF. Suppose every holomorphic action of a complex reductive group on $\mathbb{C}^{n}$ is
linearizable. Given an action of a compact group $K$ by holomorphic transformations
on $\mathbb{C}^{n}$ we can extend this action by proposition 2.3 to a holomorphic action of the
complex reductive group $K^{\mathbb{C}}$ on C. By assumption this action is conjugate by an
automorphism to a linear action. The same automorphism clearly conjugates the. K-
action to the restriction to $K$ of the linear $K^{\mathbb{C}}$-action. The other direction of the
equivalence is clear (see Introduction). $\square$

For the last corollary of our ex.tension result recall that a Fatou-Bieberbach domain is
a proper open subset $\Omega\subset \mathbb{C}^{n}$ which is biholomorphic to $\mathbb{C}^{n}$ . It seems to be unknown
whether there exists a Fatou-Bieberbach domain in $\mathbb{C}^{2}$ which is invariant under the
flow of a globally integrable holomorphic vectorfield, i.e., under a $(\mathbb{R}, +)$-action by
holomorphic transformations on $\mathbb{C}^{2}([7])$ . We prove that it doesn’t exist in the special
case of a holomorphic vectorfield with periodic flow, i.e., of an action of the circle
group $S^{1}=\{z\in \mathbb{C} : |z|=1\}$ :

Corollary 2.7. Let $\Omega$ be a domain in $\mathbb{C}^{2}$ which is biholomorphic to $\mathbb{C}^{2}$ and invariant
under an $S^{1}$ -action by holomorphic transformations on $\mathbb{C}^{2}$ . Then $\Omega=\mathbb{C}^{2}$ .

PROOF. By proposition 2.3 the $S^{1}$-action extends to a holomorphic action of $S^{1^{\mathbb{C}}}=\mathbb{C}^{\star}$ .
A result of SUZUKI [25] states that $\mathbb{C}^{\star}$ -actions on $\mathbb{C}^{2}$ are linearizable. So we can assume
after a holomorphic change of coordinates that the $\mathbb{C}^{\star}$ -action on $\mathbb{C}^{2}$ is of the form

$\lambda,$ $(z, w)\mapsto\lambda^{a}\cdot z,$
$\lambda^{b}\cdot w$ , $\lambda\in \mathbb{C}^{\star},$ $(z, w)\in \mathbb{C}^{2}$

for some integers $a$ and $b$ . Applying proposition 2.3 to $\Omega\cong \mathbb{C}^{2}$ we see that $\Omega$ is not
only $S^{1}$ -invariant but also $\mathbb{C}^{\star}$ -invariant. We consider the following three cases:
Case 1: a and $\mathrm{b}$ are both nonzero and have the same sign

The action on $\mathbb{C}^{2}$ has exactly one fixed point, the point $(0,0)$ . Since a differentiable
$S^{1}$-action on $R^{n}$ always admits a fixed point (see for instance [4] IV 1.5) we conclude
that $(0,0)$ is contained in $\Omega$ . Since $\Omega$ is open it contains an open neighborhood $U$ of
$(0,0)$ . Since every $\mathbb{C}^{\star}$ -orbit in $\mathbb{C}^{2}$ has $(0,0)$ as limit point and $\Omega$ is $\mathbb{C}^{\star}$ invariant we
have $\mathbb{C}^{2}=\mathbb{C}^{\star}\cdot U\subset\Omega$ .
Case 2: one of the numbers $a$ or $b$ is zero (say $a=0$, hence $b\neq 0$)
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Compact and reductive subgroups of the group of holomorphic automorphisms of $\mathbb{C}^{n}$

Like in case 1 we conclude that $\Omega$ containes a neighborhood of some fixed point
$(z_{0},0)$ . Linearization at a fixed point shows that the actions on $\Omega$ and $\mathbb{C}^{2}$ are locally
the same. Since the $\mathbb{C}^{\star}$-action on $\Omega\cong \mathbb{C}^{2}$ is linearizable too, in some coordinates
on $\Omega\cong \mathbb{C}^{2}$ it is of the same form like that on $\mathbb{C}^{2}$ (see also remark 3.2 below). In
particular the fixed point set is biholomorphic to C. Since an injective holomorphic
map from $\mathbb{C}$ to $\mathbb{C}$ is an biholomorphism we conclude that $\Omega$ contains the fixed point
set $\{(z, 0)\in \mathbb{C}^{2} : z\in \mathbb{C}\}$ together with some open neighborhood $U$ . Again we have
$\mathbb{C}^{\star}\cdot U=\mathbb{C}^{2}$ and the desired conclusion like in case 1.
Case 3: a and $\mathrm{b}$ are both nonzero and have different signs

Consider the $\mathbb{C}^{\star}$ -invariant map $\pi$ : $\mathbb{C}^{2}arrow \mathbb{C}(z, w)\mapsto z^{|b|}\cdot w^{|a|}$ . The fibres of this
map are the closed $\mathbb{C}^{\star}$ -orbits and the cross of axis $\{zw=0\}$ . The composition of the
injection $\dot{i}$ : $\Omega\llcorner_{arrow \mathbb{C}^{2}}$ with $\pi$ is by the big Picard theorem surjective or leaves out one
point. Like in the other cases we know that $\Omega$ contains an neighborhood of the fixed
point $(0,0)$ hence the cross of axes. If $\pi\circ\dot{i}$ is surjective $\Omega$ contains points from each
$\mathbb{C}^{\star}$ -orbit in $\mathbb{C}^{2}$ so we are done. If the map $\pi\circ\dot{i}$ leaves out one point we conclude
$\Omega=\mathbb{C}^{2}\backslash$ { $\mathrm{o}\mathrm{n}\mathrm{e}$ closed $\mathbb{C}^{\star}$ -orbit}. But this contradicts the simply-connectedness of $\Omega$ .

$\square$

REMARK 2.8. For $n\geq 3$ there are clearly Fatou-Bieberbach domains in $\mathbb{C}^{n}$ invariant
under an action of $(\mathbb{R}, +)$ . Just take any Fatou-Bieberbach domain $\Omega_{1}$ in $\mathbb{C}^{2}$ and
consider the domain $\Omega:=\Omega_{1}\cross \mathbb{C}^{n-2}$ in $\mathbb{C}^{n}$ . Clearly $\Omega$ is a Fatou-Bieberbach domain
in $\mathbb{C}^{n}$ and it is invariant under any $(\mathbb{R}, +)$-action of the form $t,$ $(z, w)\mapsto z,$ $\phi(t, w)$ ,
$t\in \mathbb{R},$ $z\in \mathbb{C}^{2},$ $w\in \mathbb{C}^{n-2}$ where $\phi$ is some $(\mathbb{R}, +)$-action on $\mathbb{C}^{n-2}$ .

3. $\mathrm{P}\mathrm{o}\mathrm{S}\mathrm{I}\mathrm{T}\mathrm{I}\mathrm{E}$ RESULTS ON HOLOMORPHIC LINEARIZATION

For the convenience of the reader we first recall the notion of categorical quotient for
an action $G\cross Xarrow X$ of a Lie group $G$ on a complex space $X$ .
Definition. A complex space $X//G$ together with a $G$-invariant holomorphic map

$\pi_{X}$ : $Xarrow X//G$ is called categorical quotient for the action $G\cross Xarrow X$ if it
satisfies the following universality property:

For every holomorphic $G$-invariant map $\psi$ : $Xarrow \mathrm{Y}$ from $X$ to some complex
$G$-space $\mathrm{Y}$ there exists a unique holomorphic $G$-invariant map $\tilde{\psi}$ : $X//Garrow \mathrm{Y}$ such
that the diagram

$\pi_{X}X\searrow$

$arrow\psi$

$\nearrow_{\overline{\psi}}\mathrm{Y}$

$X//G$

commutes.

The existence of the categorical quotient in the case where $G$ is a complex reductive
group acting holomorphically on a Stein space $X$ was proved by SNOW [24] and if
$G$ is a compact group acting by holomorphic transformations on a Stein space $X$ by
HEINZNER [9]. As a topological space $X//G$ is just the topological quotient of $X$ with
respect to the equivalence relation $\mathrm{R}$ associated to the algebra $\mathcal{O}^{G}(X)$ of G-invariant
holomorphic functions on $X$ :

$R=\{(x, y)\in X\cross \mathrm{Y},$ $f(x)=f(y)$ $\forall f\in \mathcal{O}^{G}(x)$
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3. Positive results on holomorphic linearization

If $G$ is reductive and $X$ Stein, the map $\pi_{X}$ : $Xarrow X//G$ parametrices the closed G-
orbits in $X$ , i.e., every $\pi_{X}$ -fibre containes exactly one closed $G$-orbit $O$ and moreover
every $G$-orbit in the fibre contains $O$ in its closure. If $G$ is a finite group the categorical
quotient is the same as the orbit quotient $X./G$ . The following easy example will be
used in chapter 3.

EXAMPLE 3.1. Let $S^{1}$ act on $\mathbb{C}^{2}$ by the rule

$\lambda,$ $(z, w)\mapsto\lambda^{a}\cdot z,$ $\lambda^{b}\cdot w$ , $\lambda\in \mathbb{C}^{\star},$ $(z, w)\in \mathbb{C}^{2}$ .

Since $S^{1\mathbb{C}}=\mathbb{C}^{\star}$ the $S^{1}$ -invariant holomorphic functions on $\mathbb{C}^{2}$ are $\mathbb{C}^{\star}$ -invariant where
$\mathbb{C}^{\star}$ acts by the same rule. Hence they are constant on $\mathbb{C}^{\star}$ -orbits. If $a$ and $b$ have
the same sign all $\mathbb{C}^{\star}$ -orbits contain the point $(0,0)$ in its closure. So the value of a
$S^{1}$-invariant holomorphic function at some point $(z, w)$ is the same as the value at
$(0,0)$ . So the invariant functions are constant and $c^{2}//s^{1}=\mathbb{C}^{2}//C^{\star}=$ {one point}.

If $a$ and $b$ have different signs (and no common divisor to make the action effective)
all invariant holomorphic functions on $\mathbb{C}^{2}$ are functions in one variable of $z^{|b|}\cdot w|a|$ . So
$\pi_{\mathbb{C}^{2}}$ : $\mathbb{C}^{2}arrow \mathbb{C}^{2}//S^{1}=\mathbb{C}^{2}//\mathbb{C}^{\star}\cong \mathbb{C}$ is given by $(z, w)\mapsto z^{|b|}\cdot w^{1}a|$ .
The categorical quotient $X//G$ is a normal complex space if $X$ is normal and con-
tractible if $X$ is contractible [11]. So if $\mathbb{C}^{n}//G$ has dimension one it is necessarily
smooth and contractible and admits no bounded holomorphic functions, hence is bi-
holomorphically to C.

Now we formulate some positive results about holomorphic linearization.
First of all we remark that a local linearization of an action of a compact group $K$

on a manifold $X$ in a $K$-invariant neighborhood of a fixed point $x$ is easyly achieved
by averaging over the group $K$ (with respect to the Haar measure) a suitable local
biholomorpism from a neighborhood $U$ of $x$ in $X$ to a neighborhood of $0$ in the tangent
space $T_{x}X$ (see for instance [2] 2.2). For this note that differentiating the action map
$\phi$ : $K\cross Xarrow X$ with respect to the first variable one gets a $K$-action on the tangent
bundle $TX$ hence a linear representation of $K$ on the tangent space $T_{x}X$ at the fixed
point $x$ . This implies the following useful observation

REMARK 3.2. If an action of a compact group on $\mathbb{C}^{n}$ by holomorphic transformations
is linearizable, it is conjugate to the tangent representation at some fixed point.

Moreover if the reductive group $K^{\mathbb{C}}$ acts $\mathrm{a}\mathrm{n}\dot{\mathrm{d}}X$ is Stein one can extend this lo-
cal $K$-equivariant biholomorphism to a $K^{\mathbb{C}}$-equivariant biholomorphism between $K^{\mathbb{C}_{-}}$

invariant neighborhoods, which are saturated with respect to the categorical quotient
maps. This is a special case of the holomorphic version of LUNA’S slice theorem ([9]
5.5).

From this one easy deduces the classical fact that holomorphic actions of a reductive
group $G$ on $\mathbb{C}^{n}$ with zero dimensional categorical quotient are linearizable, i.e., we are
speaking about the case that $\mathbb{C}^{n}//G$ is just one point or equivalently all G-invariant
holomorphic functions on $\mathbb{C}^{n}$ are constant.

The first remarkable result is due to SUZUKI [25] who gave a classification of the
proper holomorphic $(\mathbb{C}, +)$ -actions on $\mathbb{C}^{2}$ . Here proper means that the limit set of
each $\mathbb{C}$-orbit is finite. $\mathbb{C}^{\star}$ -actions on a Stein space are proper in this sense.
Theorem 3.3. Holomorphic actions of $\mathbb{C}^{\star}$ on $\mathbb{C}^{2}$ are linearizable.
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By proposition 2.3 the same holds for $S^{1}$ -actions by holomorphic transformations on
$\mathbb{C}^{2}$ . In chapter 3 we will give examples of nonlinearizable $\mathbb{C}^{*}$ -actions on $\mathbb{C}^{n}$ for all
$n\geq 4$ . The linearization question for $\mathbb{C}^{\star}$ on $\mathbb{C}^{3}$ is open.

The complex algebraic analogue of the linearization question for reductive groups
is studied quite well. We refer the interested reader to the papers by KRAFT [18], [17].
We only remark that algebraic linearization of $\mathbb{C}^{\star}$ -actions on $\mathbb{C}^{n}$ is open in general,
but has a positive solution for $n\leq 3[16]$ . The first non-linearizable algebraic actions
were found by SCHWARZ [23]. They come from non $G$-trival $G$-vectorbundles over
representations. More concretely he proved that for some reductive groups $G$ (e.g.
$O_{2}(\mathbb{C}))$ there exist algebraic actions on $\mathbb{C}^{n}$ of the form

$g,$ $(z, w)\mapsto\alpha(g)\cdot z,$ $\varphi(g, Z)\cdot w$ , $g\in G,$ $(Z, w)\in \mathbb{C}^{n}1\mathrm{x}\mathbb{C}^{n_{2}}=\mathbb{C}^{n}$, (1)

which are not algebraically linearizable. Here $\alpha$ : $Garrow GL_{n_{1}}(\mathbb{C})$ is a linear represen-
tation and $\phi$ : $G\cross \mathbb{C}^{n_{1}}arrow GL_{n_{2}}(\mathbb{C})$ is an algebraic map satisfying tho two conditions
$\phi(e, z)=\dot{i}d$ and $\phi(g, \alpha(h)\cdot Z)\cdot\phi(h, Z)=\phi(gh, z)$, $z\in \mathbb{C}^{n_{1}},$ $g,$ $h\in G$ to make (1) an
action. All examples of SCHWARZ have one-dimensional categorical quotient. His origi-
nal aim together with KRAFT was to prove that algebraic actions with one dimensional
categorical quotient are algebraically linearizable. This turned out to be false, the first
counterexamples of the form (1) found by SCHWARZ have one dimensional quotient.
But they proved that algebraic actions with one dimensional categorical quotient are
holomorphically linearizable [20]. This result was generalized to the natural setting by
JIANG [15].

Theorem 3.4. Holomorphic actions of reductive groups on $\mathbb{C}^{n}$ with one dimensional
categorical quotient are linearizable.

Note that this result generalizes theorem 3.3.
An application of an equivariant version of $\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{u}\mathrm{e}\mathrm{r}\mathrm{t}‘ \mathrm{s}$ Oka principle implies that all

holomorphic actions of reductive groups $G$ of the above form (1) are holomorphically
linearizable. So the only up to now known method to construct counterexamples to
complex algebraic linearization does not work in the holomorphic setting. To explain
this we introduce the following setting and notations:

Let $X$ be a complex space equipped with a holomorphic action of a reductive group
$G$ . A holomorphic fibre bundle $\pi$ : $Earrow X$ over $X$ with structure group $H$ and typical
fibre $F$ is called a holomorphic $G$-bundle over $X$ if $G$ acts holomorphically on the
total space $E$ such that the projection $\pi$ is equivariant and the automorphisms of the
fibres $E_{x}arrow E_{g\cdot x}$ induced from the $G$-action are given by biholomorphic maps which
belong to $H$ . We call such bundles holomorphically $G$-isomorphic if there exists a
$G$-equivariant holomorphic bundle isomorphism between them. Let $K$ be a maximal
compact subgroup of $G$ , i.e., $G=K^{\mathbb{C}}$ . The following theorem and corollary are due
to HEINZNER and the author [12]

Theorem 3.5. Two holomorphic $G$ bundles with a complex Lie group as structure
group are holomorphically $G$ -isomorphic iff they are topologically K-isomorphic.

Corollary 3.6. Holomorphic actions of the form (1) are linearizable.

PROOF. The action (1) is an $G$-action on the vector bundle (structure group is the
complex Lie group $GL_{n}(\mathbb{C}))E=\mathbb{C}^{n_{1}}\cross \mathbb{C}^{n_{2}}arrow C^{n_{1}}=X$ over the Stein manifold
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$X=\mathbb{C}^{n_{1}}$ with linear action $\alpha$ . Since the base is $K$-equivariantly retractible to the
fixed point $0$ , an equivariant version of the covering homotopy theorem for compact
group actions implies that the bundle $E$ is topologically $K$-isomorphic to the bundle
$F=\mathbb{C}^{n_{1}}\cross \mathbb{C}^{n_{2}}arrow C^{n_{1}}=X$ equipped with the action

$g,$ $(z, w)\mapsto\alpha(g)\cdot z,$ $\varphi(g, 0)\cdot w$ , $g\in G,$ $(Z, w)\in \mathbb{C}^{n}1\mathrm{x}\mathbb{C}^{n_{2}}=\mathbb{C}^{n}$ (2).

Note that $g-\varphi(g, 0)\mathrm{i}\mathrm{s}\cdot \mathrm{t}\mathrm{h}\mathrm{e}$ linear representation of $G$ on the fibre over the fixed point
$0\in \mathbb{C}^{n_{1}}$ . By theorem 3.5 there exists a holomorphic $G$-equivarant biholomorphism
between the two bundles $E$ and $F$ . This is the automorphism of the total space $\mathbb{C}^{n}$

which conjugates the action (1) to the linear action (2). $\square$

For the last result recall that the group of overshears $\mathrm{S}\mathrm{h}_{\mathrm{n}}$ is the subgroup of $\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ}1(\mathbb{C}^{n})$

generated by affine automorphisms and automorphisms of the form

$(z_{1}, \ldots, z_{n})\mapsto(a(z2, \ldots, Zn)z_{1}+b(_{Z}2, \ldots, Zn), z2, \ldots, Zn)$

where $a,$ $b$ are arbitrary holomorphic functions on $\mathbb{C}^{n-1}$ and $a$ is invertible. By a theo-
rem of ANDERS\’EN and LEMPERT this is a dense (but proper) subgroup of $\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ}1(\mathbb{C}^{n})$

$n\geq 2[3]$ . The following theorem was proved by AHERN and RUDIN in the case of
finite cyclic groups [1] and generalized by KRAFT and the author to the present $\dot{\mathrm{f}}\mathrm{o}$rm
[19].

Theorem 3.7. Every holomorphic action of a compact goup $K$ on $\mathbb{C}^{2}$ by elements of
$Sh_{2}$ is linearizable.

In view of theorem 3.4 this result is only interesting for finite groups. By the meth-
ods explained in chapter 3 one can for instance prove that there are non-linearizable
holomorphic actions of finite cyclic groups $\mathbb{Z}/\mathbb{Z}_{n}$ on $C^{m}$ for $m\geq n+2([5])$ . The
smallest dimension in which non-linearizable holomorphic actions are known is 4. So
the linearization question for finite groups on $\mathbb{C}^{2}$ is open.

4. NoN-LINEARIZABLE ACTIONS

The first counterexamples to the holomorphic linearization problem were constructed
by DERKSEN and the author in [5]. There the following theorem is proved:

Theorem 4.1. For every complex reductive Lie group $G$ (except the trivial group)
there exists a natural number $N_{G}$ such that for all $n\geq N_{G}$ there exists an effective
non-linearizable holomorphic action of $G$ on $\mathbb{C}^{n}$ .

We will not prove this theorem here in full generality. Instead we explain the main
idea-restricting ourselves to the interesting case $G=\mathbb{C}^{\star}$ . The construction uses the
existence of holomorphic embeddings of $\mathbb{C}$ into $\mathbb{C}^{2}$ which are not equivalent to the
standard embedding proved by FORSTNERIC, GLOBEVNIK and ROSAY in [8],

Definition. A proper holomorphic embedding $\varphi$ : $\mathbb{C}^{k}arrow \mathbb{C}^{n}$ is called straightenable if
there exists a $\beta\in \mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ 1()}\mathbb{C}^{n}$ such that

$\beta\circ\varphi(z1, \ldots, Zk)=(z_{1}, \ldots, z_{k}, 0, \ldots, 0)$ .

Since every automorphism of $\mathbb{C}^{k}\cross\{0\}\subset \mathbb{C}^{n}$ extends to an automorphism of $\mathbb{C}^{n}$ this
is equivalent to the existence of $\beta\in \mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ 1()}\mathbb{C}^{n}$ with $\beta(\varphi(\mathbb{C}^{k}))=\mathbb{C}^{k}\cross\{0\}\subset \mathbb{C}^{n}$ .
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We will use the following special version of non-straightenable embeddings (see [5]
Cor.2.4)

Theorem 4.2. There exists a non-straightenable proper holomorphic embedding
$\varphi$ : $\mathbb{C}^{\mathrm{L}}arrow \mathbb{C}^{2}$ such that in addition all embeddings $\varphi_{k}$ : $\mathbb{C}\cross \mathbb{C}^{k}arrow \mathbb{C}^{2}\cross \mathbb{C}^{k}$ defined
by $\varphi_{k}(Z, y)=(\varphi(Z), y)$ are non-straightenable too for all integer $k>0$ .

In the proof of proposition 4.4 we will need the fact that if the image of an embedding
$\varphi$ : $\mathbb{C}^{k}\mathrm{L}arrow \mathbb{C}^{n}$ is contained in an linear subspace of high enough codimension this
embedding is straightenable which is made precise in the following lemma. For a proof
we refer to [5] (Lemma 2.5).

Lemma 4.3. If $\varphi$ : $\mathbb{C}^{k}arrow \mathbb{C}^{n}$ is a proper holomorphic embedding, then the embedding
$\varphi_{1}$ : $\mathbb{C}^{k}arrow \mathbb{C}^{n+k}=\mathbb{C}^{n}\cross \mathbb{C}^{k}$ defined by $\varphi_{1}(z)=(\varphi(z), 0)$ is straightenable.

From now on we fix a proper holomorphic embedding $\varphi$ : $\mathbb{C}arrow \mathbb{C}^{2}$ like in the preceeding
theorem. Also we fix a holomorphic function $f\in \mathcal{O}(\mathbb{C}^{2})$ which vanishes precisely on
the closed submanifold $\varphi(\mathbb{C})$ in $\mathbb{C}^{2}$ and the gradient of $f$ does not vanish when $f$

vanishes, in other words $f$ generates the ideal $I_{\varphi(\mathbb{C})(\mathbb{C}^{2})}$ of $\varphi(\mathbb{C})$ . Such a function
exists by the solution of the multiplicative Cousin problem.

Define
$X=\{(x, y, Z, w)\in \mathbb{C}^{4} : f(x, y)=w\cdot z\}$ .

Since the gradient of $f$ does not vanish on $\{f(x, y)=0\}=\varphi(\mathbb{C})$ the set $X$ is a smooth
submanifold of $\mathbb{C}^{4}$ . The crucial point of our construction is the following

Proposition 4.4. If $f$ is any holomorphic function on $\mathbb{C}^{2}$ , whose zero set is biholo-
morphic to $\mathbb{C}$ , and with non-vanishing gradient on its zero set, then the manifold
$X\cross \mathbb{C}$ is biholomorphic to $\mathbb{C}^{4}$ .

PROOF. We have

$X\cross \mathbb{C}=\{(X, y, Z, w, u)\in \mathbb{C}^{5} : f(x, y)=w\cdot z\}$ .

The map $x,$ $y,$ $z,$ $w,$ $u\mapsto x,$ $y,$ $w\cdot u,$ $z,$ $w,$ $u$ gives a biholomorphism $\tau_{1}$ : $X\cross \mathbb{C}arrow A_{1}$

where $A_{1}$ is the submanifold of $\mathbb{C}^{6}$ defined by

$A_{1}:=\{(x, y, v, z, w, u)\in \mathbb{C}^{6} : f(x, y)=w\cdot z, v=u\cdot z\}$

The inverse mapping $\tau_{1}^{-1}$ is given by $(x, y, v, z, w, u)\mapsto(x, y, z, w, u)$ .
By Lemma 4.3 there exists an automorphism $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{h}\circ}1(\mathbb{C}^{3})$ with

$\alpha(\varphi(\xi), 0)=(\xi, 0,0)$ . $(\star)$

The automorphism of $\mathbb{C}^{6}$ defined by $(x, y, v, z,w, u)\mapsto\alpha(x, y, v),$ $z,$ $w,$ $u$ , i.e., in the
first 3 coordinates $\alpha$ and identity in the other 3 coordinates gives if restricted to $A_{1}$ a
biholomorphism $\tau_{2}$ from $A_{1}$ to the submanifold $A_{2}$ of $\mathbb{C}^{6}$ defined by:

$A_{2}:=\{(a, b, C, Z, w,u)\in \mathbb{C}6 : (\alpha^{-}1)^{\star}f(a, b, c)=w\cdot z, (\alpha^{-}1)^{\star}v(a, b, C)=u\cdot z\}$

Because of $(\star)$ the Ideal in $\mathcal{O}(\mathbb{C}^{3})$ generated by the two functions $\mathrm{b}$ and $\mathrm{c}$ is the
same as the Ideal generated by the functions $(\alpha^{-1})^{\star}v$ and $(\alpha^{-1})^{\star}f$ , namely the Ideal
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$I_{\mathbb{C}\cross\{\}}0$ of the first coordinate axis. We can express one set of generators through the
other, that means we find holomorphic functions $a_{ij},$

$b_{ij}\in \mathcal{O}(\mathbb{C}^{3})$ $\dot{i},j=1,2$ with

$b=a_{11}\cdot(\alpha^{-1})^{\star}f+a_{12}\cdot(\alpha^{-1})^{\star}v$, $c=a_{21}\cdot(\alpha^{-1})^{\star}f+a_{22}\cdot(\alpha^{-1})^{\star}v$ (1)

and

$(\alpha^{-1})^{\star}f=b_{11}\cdot b+b_{12}\cdot c$, $(\alpha^{-1})^{\star}v=b_{21}\cdot b+b_{22}\cdot c$ . (2)

We claim that the restriction $\tau_{3}$ to $A_{3}$ of the holomorphic map $S_{1}$ : $\mathbb{C}^{6}arrow \mathbb{C}^{6}$

defined by

$S_{1}(a, b, C, z, w, u)=a,$ $b,$ $c,$ $z,$ $a_{1}1(a, b, c)\cdot w+a_{12}(a, b, c)\cdot u,$ $a21(a, b, C)\cdot w+a_{22}(a, b, c)\cdot u$

gives a biholomorphism $\tau_{3}$ from $A_{2}$ to the submanifold $A_{3}$ of $\mathbb{C}^{6}$ defined by

$A_{3}:=\{(a, b, c, z, w, u)\in \mathbb{C}^{6} : b=w\cdot z, c=u\cdot z\}$ .
We will prove that the inverse $\tau_{3}^{-1}$ : $A_{3}arrow A_{2}$ is given by the restriction of

$S_{2}$ : $\mathbb{C}^{6}arrow \mathbb{C}^{6}$ defined by

$S_{2}(a, b, c, Z, w, u)=a,$ $b,$ $C,$ $z,$ $b11(a, b, C)\cdot w+b_{12}(a, b, C)\cdot u,$ $b21(a, b, C)\cdot w+b_{22}(a, b, c)\cdot u$

to $A_{3}$ . For that consider the holomorphic maps

$\psi_{1}:\mathbb{C}^{3_{\mathrm{X}\mathbb{C}}}\stararrow \mathbb{C}^{6}$ , $a,$ $b,$ $c,$ $z\mapsto a,$ $b,$ $c,$ $z,$
$\frac{(\alpha^{-1})^{\star}f}{z},$ $\frac{(\alpha^{-1})^{\star}v}{z}$

and

$\psi_{2}:\mathbb{C}^{3}\cross \mathbb{C}^{\star}arrow \mathbb{C}^{6}$ , $a,$ $b,$ $c,$ $z\mapsto a,b,$ $c,$ $z,$
$\frac{b}{z},$

$\frac{c}{z}$ .

The submanifold $A_{2}$ is the topological closure (and therefore the holomorphic clo-
sure, i.e.,the smallest analytic set containing) of the image of $\psi_{1}$ in $\mathbb{C}^{6}$ . Also $A_{3}$ is the
closure of the image of $\psi_{2}$ in $\mathbb{C}^{6}$ .

From (1) follows $\psi_{2}=S_{1}\circ\psi_{1}$ and (2) implies $\psi_{1}=S_{2}\circ\psi_{2}$ . So we have
$\psi_{1}=s_{2^{\mathrm{O}}}s_{1^{\mathrm{O}\psi 1}}$ . This means that $S_{1}\circ S_{2}$ is the identity on the image of $\psi_{1}$ hence
it is the identity on the closure of the image of $\psi_{1}$ , on $A_{2}$ . Analogously follows that
$S_{2}\circ S_{1}$ is the identity on $A_{3}$ .

Finally the map $\tau_{4}$ : $A_{3}arrow \mathbb{C}^{4}$ , $(a, b, c, z, w, u)\mapsto a,$ $z,$ $w,$ $u$ is a biholomorphism.
The composition $\tau_{4^{\circ \mathcal{T}}3}\circ\tau_{2^{\circ}}\mathcal{T}_{1}$ provides the desired biholomorphism from $X$ to $\mathbb{C}^{4}$ .

$\square$

$\mathrm{R}\mathrm{E}\mathrm{M}\overline{\mathrm{A}}\mathrm{R}\mathrm{K}4.5$ . We do not know whether the manifold $X$ itself is biholomorphic to $\mathbb{C}^{3}$ (if
$\{f=0\}\cong \mathbb{C}$ is straightenable then this is clearly true). If for some non-straightenable
$\{f=0\}\cong \mathbb{C}$ the manifold $X$ would be biholomorphic to $\mathbb{C}^{3}$ then we would have a
non-linearizable $\mathbb{C}^{\star}$-action on $X\cong \mathbb{C}^{3}$ (see the proof of proposition 4.7 below), if it is
not biholomorphic to $\mathbb{C}^{3}$ then this would be a counterexample to the following open
problem.

Problem 4.6 (Holomorphic Zariski Cancellation Problem). Let $Z$ be a complex mani-
fold such that $Z\cross \mathbb{C}$ is biholomorphic to $\mathbb{C}^{n+1}(n\geq 2)$ . Does it follow that $Z\cong \mathbb{C}^{n}$ ?
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Now we come to the non-linearizable $\mathbb{C}^{\star}$ -actions. Since $X\cross \mathbb{C}\cong \mathbb{C}^{4}$ we have for each
$k\geq 1$ a biholomorphism $\alpha_{k}$ : $X\cross \mathbb{C}^{k}\cong \mathbb{C}^{k+3}$ . The submanifold $X\cross \mathbb{C}^{k}\subset \mathbb{C}^{4}\cross \mathbb{C}^{k}$ is
stable under the linear $\mathbb{C}^{\star}$ -action on $\mathbb{C}^{4}\cross \mathbb{C}^{k}$ given by

$\mathbb{C}^{\star}\cross \mathbb{C}^{4_{\mathrm{X}\mathbb{C}}k}arrow \mathbb{C}^{4}\cross \mathbb{C}^{k}$

$\lambda\cdot(x, y, z, w, t_{1}, \ldots,t_{k})=(x, y, \lambda Z, \lambda^{-}1t_{1}w,, \ldots, t_{k})$ .

The restriction of this action to $X\cross \mathbb{C}^{k}$ induces via $\alpha_{k}$ a holomorphic $\mathbb{C}^{\star}$ -action
$\sigma_{k}$ : $\mathbb{C}^{\star}\cross \mathbb{C}^{k+3}arrow \mathbb{C}^{k+3}$ .
Proposition 4.7. The action $\sigma_{k}$ is not linearizable $(k\geq 1)$ . So for all $l\geq 4$ there

exists a non-linearizable $\mathbb{C}^{\star}$ action on $\mathbb{C}^{l}$ .

PROOF. Suppose $\alpha_{k}$ : $X\cross \mathbb{C}^{k}arrow \mathbb{C}^{3+k}\underline{\simeq}$ is a biholomorphic $\mathbb{C}^{\star}$ -equivariant map, where
$\mathbb{C}^{\star}$ acts linearly on $\mathbb{C}^{3+k}$ . This representation of $\mathbb{C}^{\star}$ on $\mathbb{C}^{k+3}$ must be isomorphic to the
representation of $\mathbb{C}^{\star}$ on the tangent space of some fixed point of $X\cross \mathbb{C}^{k}$ (see remark
3.2). With respect to some coordinates, this action is given by

$\lambda\cdot(_{Z,w,u_{\iota},\ldots,u_{k+1}})=(\lambda z, \lambda^{-1}w, u1, \ldots, uk+1)$ .

The categorical quotient $\pi_{\mathrm{Y}}$ : $\mathrm{Y}arrow \mathrm{Y}//G$ of a $G$-invariant closed subspace $\mathrm{Y}$ of a Stein
$G$-space $Z$ is the restriction of the categorical quotient $\pi_{Z}$ : $Zarrow Z//G$ . This follows
from the fact that all $G$-invariant functions on $\mathrm{Y}$ extend to $G$-invariant holomorphic
functions on $Z$ (first extend to some holomorphic function, then average over the
maximal compact subgroup $K$ of $G=K^{\mathbb{C}}$). Using this together with example 3.1 one
sees that the categorical quotient of $X\cross \mathbb{C}^{k}$ is given by $\pi_{X\cross \mathbb{C}^{k}}$ : $X\cross \mathbb{C}^{k}arrow \mathbb{C}^{2+k}$ ,

$\pi_{X\cross \mathbb{C}^{k}}(x, y, z, w, t_{1}, \ldots, t_{k})=(x, y, t_{1}, \ldots, tk)$

and the categorical quotient of $\mathbb{C}^{3+k}$ is given by $\pi_{\mathbb{C}^{\mathrm{s}+k}}$ : $\mathbb{C}^{3+k}arrow \mathbb{C}^{2+k}$ ,

$\pi_{\mathbb{C}^{3+k}}(Z, w, u_{1}, \ldots, uk+1)=(Zw, u1, \ldots, uk+1)$ .

The fixed point set $(X\cross \mathbb{C}^{k})^{\mathbb{C}^{*}}$ is

$\{(x, y, z, w, t1, \ldots,t_{k})\in X\cross \mathbb{C}^{k}|f(x, y)=z=w=0\}$ .

Its image under $\pi_{X\cross \mathbb{C}^{k}}$ is $\varphi(\mathbb{C})\cross \mathbb{C}^{k}\subset \mathbb{C}^{2}\cross \mathbb{C}^{k}$ . On the other hand $(\mathbb{C}^{3+k})^{\mathbb{C}^{*}}$ is

$\{(z, w, u_{1}, \ldots, uk+1)\in \mathbb{C}^{3+}k|z=w=0\}$

and its image under $\pi_{\mathbb{C}^{s+k}}$ is $\{0\}\cross \mathbb{C}^{1+k}\subset \mathbb{C}^{2+k}$ . Since equivariant maps map the
fixed point set into the fixed point set, the $\mathbb{C}^{\star}$ -equivariant biholomorphism
$\alpha_{k}$ : $X\cross \mathbb{C}^{k}arrow \mathbb{C}^{3+k}\underline{\simeq}$ induces a biholomorphism $\gamma$ : $\mathbb{C}^{2+k}arrow \mathbb{C}^{2+k}\underline{\simeq}$ of the categorical
quotients such that the image of the fixed point set under $\pi_{X\mathrm{x}\mathbb{C}^{k}}$ is mapped onto the
image of the other fixed point set under $\pi_{\mathbb{C}^{\mathrm{s}+k}}$ , i.e., $\gamma(\varphi(\mathbb{C})\cross \mathbb{C}^{k})=\{0\}\cross \mathbb{C}^{k+1}$ . This
contradicts the choice of $\varphi(\mathbb{C})$ according to theorem 4.2. $\square$
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