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In this paper, we study asymptotic stability of the zero
solution of systenm
(1)  x(t)=ax(t)+Bx(t—r), r >0,
where B is an nXn matrix. |
The necessary and sufficient condition for the zero solution
of the scalar differential-difference equation
x(t)=ax(t)+bx(t—-r), r>0.
to be asymptotically stable is well-known. (See [1], [2].) Recently
in [3], Hara and Sugie gave stability criteria for the system
x(t)=Bx(t—r),
and also in [4], Godoy and dos Reis discussed stability for the
2-dimensional system
x(t)=—Ax(t)+ABx(t—1).
Our purpose is to give a necessary and sufficient condition for
. the zero solution of system (1) to be asymptotically stable. It is
an extension of the above results ([1]1~[4]).
~ The zero solution of (1) is asymptotically stable if and only
if all roots of

(2) |AI—-aI-Be 7|

=0
have negative real parts ([2]). This cha:acteristic equation is

equivalent to
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| (A-a)e* T I-B| =0.
Therefore, A is a root.of (2) if and only if A is a root of
3) A=a+(a+Bide T,
where a+ B i are a eigenvalue of B We can find a 6 € (-, 7w ]
such that
a+Bi=be Y, b= al +82.
So, equation (3) may be written as equation
(4) A=a+be ATTUE
associated with. 6. Then A is a root of (4) if and only.if the
cohjugate of A is a root of the equation
)\=a+be_kr_i6
associated with — 9: Hence, for given 6 € [—m,n ], all roots
of equation (4) associated with 6 have negative real parts if
and only if all roots A=x+y i with y 20 of (4) associated
with = 6 have negative real parts. Therefore, in what follows,

we consider only the roots with nonnegative imaginary parts.

We first discuss real roots of (4).

Lemma 1. Let b >0. Then characteristic equation (4) has a
real root only wh,en. 6=0o0or 6 == 7, and the following hold.
(a) If =0, then (4) has one and only one reél root. Moreover,
this root is negative if and only if e <—-1b.
(b) 1If 6 = in’., then (4) has at most two real roots. Also, there

are three cases as follows. First, (4) has no real root if and

only if e ar _1< b r. Second, (4) has only negative roots

ar—1

if and only if ar<bdvtre <1. Finally, (4) has a

" nonnegative root if and only if l<ar<bdr=e ar-—1 or
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a b.

Proof. Suppose A=x + ¥y ¢ is a real root of (4). Then y =10

xXr

and so (4) implies b e sin@ =0, which yields either 6 =0 or

6:= :tr7r. First, we consider thevéase' 6 =0.)Then (4) is reduced to

x=a+be x t
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Put A(t)=¢t —-(a+be t r). Then R (¢t ) is a striectly increasing

function from (—oo0,o0) onto (—00,00), and hence (4) has only one

real root. Since 2 (0)=—(a + &), there exists a negative root of

(4) if and only if a + & <0. Second, we consider the caSe 6==xm.

Then, (4) is reduced to
x=a-be *T

Put £(t)=¢t—(a—be ° 7). Then, since # (¢) is decreasing

on (—w,lr,—log(b r)) and increasing on (lr—log(b r),o), (4) has

at most two real rooté. Also, k£ (t) tends to oo as t -+ oo, This

implies that when %2 (0)= b — a <0, there exists a nonnegative root

of (4). Since % (¢ ) attains its minimum L llogb—r_
: : _ r e T 1

1, then %mg(b r)<0

at t =

-lr—log(br), if ar<br§ear_1<

br £0, so that each real root of (4) is negative.

1
and 3 log;—ﬁ—_—l =

If 1<gr<bbre ar _1, then (4) has avnonnegative root. If

e @7 ~1y r, then (4) has no real root. Now, noting that for

a'r-—1=1, ar—1

each a, any one of ar =e ar<e <1l or 1<

ar<e®’ 1 holds, we have the conclusion of Lemma 1.

We next consider the distribution of roots of (4) with positive
imaginary parts. In what follows, we assume & >0 and introduce

differentiable functions defined in (0,c0)



f(p)= ar —¢gcot(g —0)
and
— b rsin(g —0)
[

g8(g)= log

Put x = 17;~f (¢) and y = 17¢. Then x and y fulfill the system
of equétions | |

x=a+be *Tcos(yr-o),

X

y= —be *Tsin(yr-0),

if and only if there exists a ¢ such that f (¢)= g (@), because

—brsin(yr—06)
yr
for y >0. Therefore the following remark holds.

xr = log

Remark. Let A = lr—f(¢)+ ilr—qs and ¢ >0 . Then A is a
root of (4) if and only if f(@¢)=8(¢).

We neéd to find the domain D on which f (¢ ) and g (¢ ) are
both defined. Put, when 0< 6.-<_- T,
| IO(G)=(0,6),
1.(6)=(0+ (21w, 6+2mm),
and when — 7 =6 £0,
IO(G)=(6+7E,6+27I),
In(9)=(6 + (2n+1) 9+(2n+2)7;),
where n is any poéiﬁive integef. Thén it is easy to see that g (¢)
is defined only on EJZ()IH(G)’ and so D=EJZOIH(6). In what
follpws, we denote the set {g € In(e)l f(s)=01 by Zn(f ,0)
and each ¢ € Zn(f ,8) by ¢ﬁ' Also, for fhe sake of convehience,

we may write (c¢ n,dn) instead of I n(6\).

Lemma 2. Let ¢* be a constant in (0,06 ¥2£), determined by |

2¢*=sin2(¢*— 6 ). Then the following hold.
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(a) If any one of (i) 0< 6 < 25— and a 20, (ii) ZE_ <0<rm
and e r >cos2(¢*—-9),.or (iii) 6 =+ 7 and e r 21 holds,
then Zo(f,e) is empty.

() 1f £ <6<z and 0<ar<cos’(4*-6), then Z (f,6)
contains just two elements.

(c) Except for the above cases, Zo(f ,0) is a singleton.

(d) For ahy positive integer' n, Zn(f ,0) is a singleton.

Proof Suppose that — 7 < 6 =0 and n=0, or that —~ w0«
and n is any positive integer. Then f (¢ ) is a strictly increasing
function from In(G) onto (—oo0,00), and so Zn(f ,0) is a singleton.
Next, suppose 0< 6 = 27-[— . Since f(0)=ar, f(¢) is a strictly
increasing function from I 0(6)=(0,9) onto (a r ,). Hence, if
ar 20, then Zo(f ,0) is empty. On the other hand, if a r <0,
then Zo(f ,0) is a singleton. When E”—— <6 <m, an elementary
calculation shows

01}11¢n<6(¢) =ar - cos2(¢*—6).
Since f(0)=a r, and since f (¢) is strictly decreasing on (0,¢*}
and strictly increasing on [¢*,6),‘ the following ( (a) ~ (c) )
are satisfied:
(a) If ar >cosz(¢*— 6 ), then Z.o(f ,0) is empty.
(b) If 0<ar <cos’(¢*—6), then Z (f,6) contains two elements.
(¢) If ars0orar =cos2(¢*— 6), then Zo(f ,6) is a singleton.
Finally, suppose 6 =x 7. Then f(¢) tends to a 7 —1 as ¢ —+0.
Since f (¢ ) is a strictly increasing function from I 0(6 )=(0,7m)

onto (¢ r —1,00), if ar =1, then Zo(f,G) is empty. Also, if

ar <1, then Zo(f ,0) is a singleton. Thus the proof is completed.
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Lemma: 3. For every nonnegative integer n, I n(6?) contains -
one and only one ¢. such that F(¢) =8(¢), exéep.t for the case

that 6 =+ 7, n=0 and br<e ®7 “ 1 hold.

Proof. We shall divide the proof by three cases. Case I:
0<6<m and n = 0. Since'f(0)=ar and f(¢) — oo as
¢—>—0, a’nd‘ sihce g(g) is a strictly }decreasing function from

(0,6) onto (—00,60), there exists a ¢ € 10(6) such that

f(g)= g(9).
C-ase II: 6 =xm and n=0. Let € (@) be the numerator of
»g"(.¢)=9—-:c;ﬂ—_—l—. . Then g (¢) tends to 0 as ¢ —>+0, and it’s"

derivative is negative on (0,7 ). Hence g '(¢)<0 on (0,7), and
so g (¢) is a strictly decreasing function from I (6)=(0,7)
onto (—oo, log b7 ). Since f (¢ ) is an increasing function from
(0,7) onto (@ 7 —1, o), there exists a ¢ € IO(G) such that
f($)=2g($) if and only if

_br>ea_r_1.

Case [I: ne N, or —7<B6Z0 and n=0. It is easy to show that
8(g) .
ey TV

where I n(G )=(cn,‘dn), and so there exists a é‘n>0 such that

as ¢—>¢ n+0,

F($)<8(8)<0 on (¢ ,c +6 ).
Since f (@) — oo and g (¢ ) - —oo as ¢'—>dn—0, there exists
agel (€ ) such that

f(g)= g(g).
Finally, it will be proved that I (6) contains o'nvly one ¢ such

that f (@)= g (¢). Differentiating f (¢ ) and g (@), we have

2_ 4 qi _ (g —
F(d)—g’'(9)= @ (1531112(¢2 6)+sin“(¢ —0)
$sin“(¢ — 6)



Put F(¢)= ¢%— ¢sin2(¢ — 6)+sin’(g —6). Then
F/(¢)= 2¢ {1~ cos2(¢—6)} >0 on I (6),
and so F(@#) is strictly i'ncreasin}g on In(e). Since F(0)=0
and since o |
F(O+(2n+1)7) ={6+ (2n+1)m}’ 20
for any n, it follows that
f’(8)=8°(#)>0 on I _(6).

Therefore, for every nonnegative integer n, f(¢)— g (@) is

strictly increasing on I (6). This implies that f (¢)- & (g)

vanishes at only one ¢ in In.(e ). Thus the proof is completed.

Lenma 4. Let f(¢)=8(0) and @ é‘In(G), n20. Assume

that either of the following conditions (a) or (b) holds:

(a) Zo(f ,0) contains a ¢ , such that g(¢0)<0 and fv(¢)<0
on (co,¢o), where IO(G)=(cb,d0).

(b) Zo(f,G) contains two elements ¢o,¢(') such that ¢(’)< ¢0v
andvg(¢o)-<0<g(¢(') ).

Then f (@)<0. Therefore, all imaginary roots of (4) associated

with 6 have negative real parts.

Proof. Suppose there exists a ¢ € I 0(6) such that f (@)
=g (¢). By Lemma 3, such a ¢ is unique. According to the proof

of Lemma 3, the function f (¢ )— g (@) is strictly increasing on

I (6), and so ¢ < 8, because f (¢ )—g (g )>0. If (a) holds,
the~nrit is obvious thatv f(4)<0. On the other hand, if (b) holds,

then it follows from Lemma 2 that ZE— <O<m and 0<arc<

cos2(¢*—6). Since g(¢(’) )>0 for some ¢(’) E(co,¢0), clearly

F(8,)—8(8,)<0<f (4 )-8(s)
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and hence
9. <9<g .
Then it is easily seen that f (#)<0. Thus the conclusion of
Lemma 4 is valid for n=0. In order to show that 7 (@ )<0 for
n21, we first consider the case a #0. Since
f (¢0+2n7r)= f (¢0)—2n7tcot(¢0-6)
= —2n7rcot(¢’0— 0),

it follows that
3

f (¢ +2nm)>0 vhen ¢0€(6—ér_"6)u(9+2_7[,6+27f)
and '
f(,+2nm)<0 vhen ¢OE(0,9—§”—)U(9_'+75,6+3— ).

Let a <0. When 0< 6 = m, according to the proof of Lemma 2,

F(8)<0 on (0,8,)

and
| f($)>0 on (g ,6),

~and so

_ T

‘6 2 <¢0<6,

which follows from
F(O— 3-) =ar<0.

When —m £ 60 £0, since

f(¢)<0  on(6+m,¢ )
and
f(g)>0 on(¢0,6+27r),
and since f(9+§—7r)=a r, it follows that
3
6 + 2—7t<¢0<9+27r.

Thus, for any 6 € [— w, 7] and any positive integer n,

f(G—-—27L+2nn')=a r<.2o0 <f(¢0+2n7r),

and hence
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T
6 — 7 +2n'n'< ¢n<¢0+2n7r.

This'implies
0<cos(¢n—9)<cos(¢6—9).

On the other hand, letting a >0, we have

0<¢0<9—2£ wvhen 0< @< &

and

9+7r<¢0<6+ ;’—n wvhen — 7 £ 6 £0.

Hence, when 0< 8 £ 7, for any positive integer n,
F(o +2m)<f (¢ )<f(6—F+mm)
and so '
T
¢O+2n7c< ¢n< 6 — 2 +2nrw.
This implies
cos(¢o—9)<c_os(¢n—6)<0,

which is valid also when — 7 <6 £0. Thus, for a #0, since

¢ncot(¢n—‘9)=a_r,

—bcos(p,—6)
g(¢n)=log p
<log
a
:g(¢o) <0
and hence

(5) g(s ) < (g ).
IWe next consider the case a =0. From Lemma 2, if 0< @ ézlr- ,
then Zo(f,G) is empty. So, let 2£‘< 6 =m. Since

| F(o— F)=Ff(0- F +mm)=ar =0,
therequalities

hold. Thén clearly,
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br br _ -

o <log

8 (¢n)=log
that is,

g(¢n) < f(¢n)- | | |
Similarly, it is seen that (5) is fulfilled when — 7 < 6 0. Thus,
(5) is valid for any real a.. On fhé other hand, there exists a
6n>0 such that

f(g)<g(g) on(cn,cn+6n).

This, together with (5), implies that there exists a ¢ € (¢ p® )

n
such that

f(s)=28(g)< 0,

because F (¢ )<0 for ¢ €(c n’¢.n)‘ Now the proof is completed.

The above lemmas verify the following the_orem.

Theoren. All roots of (4) have negative real parts if and
only if any one of the following conditions holds.
(a) cf<0 and b =0.
(b) é=0anda<—b<0.
(c) 0<O=m, a<0<b and bcos(¢—6)<la!. for ¢ such
“that gcot(¢p —6)=a r and max{0,0 — 21}<¢<9.‘
(d) 2£<9§_7rénda=0<br<6—2£.

() O=m,0<ar<min{br,1} and bcosg <a ‘for ¢ such that
pcotg=ar and 0<¢ < zl?

(f) 2£<9<7r,0<ar<cosz(¢*—6)and—bcos(¢—-6)<a<
—bcos(p’'—6) fbr ¢ and ¢ ° such that @ cot(g —6)=
¢ cot(¢g’—0)=ar and 0< ¢’< ¢ <0 — zi,where ¢* is

the same one as in Lemma 2.
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Proof. (Necessity) Suppose all roots of (4) have negative
real parts. We first show that Zo( f,0) contains a ‘¢ 0 satisfying
(6) g (¢ 0) < 0, |
whenever .Zo(f ,0) is not empty. If it is false, then

g(¢ )20 for ¢ = max{g | €2 (f,6)}.
Since f (¢ ) is strictly increasing on (¢0,d0), and since
g(¢)>-o as ¢—>d —0, I (6) contains a,a_such that
f(a)———_g(a)% 0.
This implies that there exists a root of (4) with nonnega‘t'ive real
part, a contradictioq. Therefore, there exists a ¢ OE ZO( f,0)
which satisfies (6). For such a o clearly

¢Ocot(¢0—-9)=a r,
and so ‘

—bcos(¢0—6)
a

?

g(¢0)=log

whenever a #0. From the above, if ZO(f,G) is not empty, then

_ —bcos(g,—6)
(7) log - .
Now we divide the proof by six cases as follows. Case I:5 =0.
It is trivial that o <0. Case I1:9 =0 and b >0. Lemma 1
implies e < — b < 0. Case M:0< 0= m and a <0< b. It

follows from Lemma 2 that Zo(f ,0) is not empty, and hence from (7)
bcos(¢0—6)< e l.
Also, the proof of Lemma 4 shows that %, belongs to the interval
(max{O,G—zl},G). Case V:0< @ =m and a =0<bd. If 0<
Gézl , then f (¢)>0 for ¢ €I (6). Hence, from Lemma 3,
there exists a ¢ € I ,(0) such that
f(3)= e(3)z 0,

which is a contradiction. Thus 6@ must belong to ( 21 ,m]. Then it



170

follows from Lemma 2 that Zo(‘f ,0) is a singleton. Also, it is

clear from the assumption on ¢ that Z.o-(f«,e y=1{6 —21 } . This

and (8) imply

and hence

; _
br<e 7 -

Case V:0=m, a>0 and b >0. Let’b'r.>'ear_1.

Then by

Lemma 3, there exists a gel o(m)=(0,7) such that
F(g)=28(6).

Since all roots have negative real parts, f (¢ )<0. Then, since

f(¢) > o as ¢>m—0, Z (f,6) is not empty. Hence

b cosg —bcos(g,—m)
boost, 0 <1

a a

and so

bcos¢0< a,

T
2

Lemma 2. Now, let & r<e

where 0< ¢ 0< . Moreover, the inequality a r <1 follows from

ar-—1 Then, by Lemma 1, (4) has real

roots. Since these roots must be negative,' the inequalities

ear<brze®’ lea g

hold. On the other hand, since
sing 4

it follows that

= >
ar cosq&0 cosqﬁ0

co‘s¢0
beosg | < —~ < a.
Case VI:0< @ <7m, a >0 and b >0. By Lemma 3, there exists a

¢ € IO(G) such that
f(8)=2g(8). o
If 0<@ = 2”—, then f(¢)>0 on IO(G)=(0,9)., Hence
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F(g)=8(9)> 0,
a contradiction. So, 6 must belong to ( 21 7). For such a 6,
if ar gcos2(¢*—6), then f (¢)20 on IO(G). Hence there
exists a ¢ € I _(6) such that

F(g)=g(g)2 0,
a contradiction. Thus, a r <cos2(¢*— 6). Then, from Lemma 2,

Zo(f ,9) cotains two elements ¢0 and ¢(’) , and they satisfy

T
5

Since f(#)>0 on (0,¢6 )U(¢0,6), and since - g (¢ ) is

0<¢(’)< ¢0<9—

strictly decreasing on I 0(9), it follows that
g(¢0)<0 <g(¢0 ).

This implies

—brsin(¢0——6) —brsin(¢6—9)

log 5, < 0 < log 57 ,
that is '
—bcos(¢0—6)<a<—bcos(¢(’)—~6).
Thus, the proof of necessit& is completed.
(Sufficiency) Sﬁppose any one of conditions (a) through (f)

holds. When (a) holds, A =a <0 is the unique root of (4). When
(b) holds, by Lemma 1; real root of (4) is negative. On the other
hand, according to Lemma 2, Zo(f,G) has only one ¢, 1 0(0)=
(7,27). Since bcos¢0< b<lal,

——bc_:os¢0 < 0

g(¢ )=1log
Also, it is clear that Ff (¢ )<0 on (7z:,¢0). Hence Lemma 4 assures
that all roots of (4) have negative real parts. When (c) holds, by
Lemma 2, <Zo(f ,60) and Zo(f ,— 6) are both singletons. Since

T
9-2—'<¢0<6 fOI' ¢Oezo(f’9),'
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it is obvious that
—bcos(¢o—Q)

< 0.
a

(8)  8(s )= log
Let Z (f,- 6)= {6 } . Then it follows that
¢0=artan(¢o+6)
and of course
‘ ¢0=‘artan(¢o—6).
Now, note that '

3 " _
5T 6<¢ <2m 6
or
T 5 _
—3 <¢o:%-6 2w <0,

and consider the zeros of the functions ¢ —a r tan(¢. — 6) and
¢ —artan(g+6). Then it is easily seen that
— <8 +t6-2m<g —6<0,
which yields ”
b cos (¢ oF 6:)< blcos(¢ o~ ¢ ).
This implies _
bcos((?i0+6)< lal,
so that the inequality |
 &(8 <0
holds. Since f (¢)<0 for ¢ <¢ in IO(G) and for ¢<¢o in
I'O(— 6), it folllows from Lemma 4 that all imaginary roots of (4)
associated with £ 6 have negative real parts. On the other hand,
from Lemma 1, (4) has real roots only when 6 =7 and
br<e®’ 1
hold. Then, since a <0,
ar-—1

ar<bdbrse < 1.

Hence Lemma 1 assures that real roots of (4) are negative. When (d)
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holds, according to Lemma 2, Zb(f ,+ 6) are both singletons. Also,

_ ._L- ; g i on
¢0—6 3 for ¢Oezo(f,6)

and

_3 7 0r
6, = 37 6 for¢OEZO(f, 6).

Since @ -2”— s 2”— < %——71'—9, it follows that

T <3
br<e Zézz e,

which yields

C oy br .

for ¢, € Zo(f ,+ 6). Moreover, it is clear that f (4 )<0 on
(c 0,(750). Hence all imaginary roots of (4) associated with £ 6
have negative real parts. On the other hand, from Lemma 1, (4) has

real roots only when 6 = and

bréear_1

hold. Then, since a =0,.

br<ed’ 1 <1i,

IIA

and so real roots of (4) are negative. When (e) holds, by Lemma 2,

Zo(f ,t m) are singletons and

T
¢OE(0’ 2_) for ¢0€Zo(f$in)s

because [ ( _;_r_ )> 0. Hence

becosg o

g(¢0)=log —g < 0.

This implies that all imaginary roots of (4) associated with * &
have negative real parts. On the other hand, if there exist real
roots of (4), then

| brse®’ 1

follows from Lemma i, and hence

ar<br§ear—1< 1,
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because a r <1. It follows again from Lemma 1 that all real roots
of (4) are negative. Finally, suppose (f) holds. Then from Lemma 2,

Zo( f,0) contains two elements ¢ o and ¢(’) with

0<¢; <9 ,<6- 25

Hence (8) and -
— bcos(g ;—0)

g(¢(’))=log p - >0

hold. Then, Lemma 4 assures that all imaginary roots of (4)

associated with 6 have negative real parts. On the other-hand, it

follows from Lemma 2 that Zo(f , 6) contains only one 50 which
satisfies
_ p 3 —_
T 6<¢0< g7 6.
In the analogous way to the case of (c),
- _ o — T
0<¢0 (6 7r)<¢0+(9 7r)<2 ,
and so
~cos(ao+-9)= cos(ao+-6—-n)
< mm(¢o—9-+n)
=_COS(¢0_9)’
which implies ,
—bcos(&0+6) <—bcos(¢0—9) <a‘.
Then it is easy to show the inequality |
g(¢0) < 0.
Thus, it follows from Lemma 4 that all imaginary roots of (4)

associated with £ 6 have negative real parts. From Lemma 1, it

is clear that (4) has no real root. Now the proof is completed.
The following result is an immediate consequence of Theorem.

Corollary. The zero solution of system (1) is asymptotically
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. stable if and only if every eigenvalue b e’ eof B with 6 20

satisfies one of conditions (a) through (f) in Theorem.
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