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Introduction

Given a real Gelfand triple E C H C E* let O(E; H) denote the group of all linear
homeomorphisms of E which preserve the norm of H. This O(F; H), called the infinite
dimensional rotation group, was first introduced by Yoshizawa around 1961 in a series of
his lectures (see [10], [29]) and has offered an interesting aspect in analysis of Brownian
functionals, or more generally, of white noise functions. That O(FE;H) is the group of
automorphisms of the original Gelfand triple is to be in contrast to the full orthogonal group
O(H). The complex case is considered similarly and the infinite dimensional unitary group
plays a role in analysis of complex white noise.

Our discussion here is mostly concerned with the particular Gelfand triples:

E=SR)CcH=IL*R)C E*=S'R), : (0:1)

where S(R) is the space of rapidly decreasing functions, L*(R) the Hilbert space of square-
integrable functions, and S'(R) the space of tempered distributions; and its “second quan-
tization” known also as a white noise triple: ' ‘

WCI¥E",p) 2 T(Hc) C W', (0.2)
where u is the Gaussian measure on E* defined by | | |
e-l€lh/2 = /E @O (dz),  £eB.
The space W* consists of generé,lized Gaussian random variables or white noise distributions.

The underlying manifold R of the Gelfand triple (0.1) plays a role of time; the white noise
process is realized in W* as Wy(z) = (z, é;) and the family of L?-random variables

t
B$=_/0Ws'd37 tZO,

is a (realization) of the Brownian motion.
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In 1969 Hida-Kubo-Nomoto—Yoshizawa [10] investigated a group-theoretical interpreta-
tion of the projective invariance of Brownian motion by constructing a finite dimensional
subgroup of O(E; H); in fact, one-parameter subgroups of O(E; H) arising from the shift
and the dilation of R played an essential role. More generally, one-parameter subgroups of
O(E; H) arising from one-parameter diffcomorphism groups of R, which were named whiskers
by Hida [8], have been expected to be a clue to study structure of the infinite dimensional
rotation group, for some attempts see [12], [25], [26]. On the other hand, the idea of whiskers
is also applied to a study of multi-parameter Brownian motion, see [9], [27], [28]. Thus it
is interesting to characterize those whiskers among one-parameter subgroups of O(E; H);
however, this question is not yet solved and we report some preliminary consideration in this
note.

Transformations on white noise functions have been also discussed from somewhat different
aspects, e.g., in connection with Cauchy problems [2], [3], [4]; group-theoretical properties of
the Kuo-Fourier-Mehler transforms [16] and infinite dimensional Laplacians [11], [18], [20].

General Notation For locally convex spaces X, %) let £(X,92) be the space of continuous
linear operators from X into %) equipped with the topology of bounded convergence. Let
GL(X) C L(X,X) be the group of all linear homeomorphisms from X onto itself. In this
note no topology of GL(X) is considered. When X is a real space, we denote by X¢ the
complexification.

1 One-parameter diffeomorphism groups of R

The group of diffeomorphisms of R is denoted by Diff(R). Each v € Diff(R) is a R-valued
function defined on R such that
(i) v is a C*®-function;
(ii) v(R) = R;
(iii) 4" does not vanish on R.
For any € Diff(R) the derivative v’ is always positive or always negative. Put

Difff(R) = {y € Diff(R); ¥'(z) > 0 for all z € R}.

Then Diff* (R) is a normal subgroup of Diff(R) and Diff(R) = Diff*(R) U Diff*(R), where
T is the inversion, i.e., 7(z) = —z. , '

By a one-parameter diffeomorphism group of R we mean a map 6 — ~, € Diff(R), § € R,
or simply {vs} C Diff(R), such that -

(i) (8, 1) > vs(z) is a C®-map from R x R onto R;

(ll) Y61+62 = 76, © Yo, for any ela 62 € R;

(iii) 7o is the identity diffeomorphism.
By continuity any one-parameter diffeomorphism group is a subgroup of Diff "(R). With a
oné—parameter' diffeomorphism group {7} we associate a vector field -

F(z)— = F(z)D = — 4 )
(z) o (z) g where F(z) ), Yo(). (1 1)
Since R is not compact, not all vector fields are obtained in the above manner. We shall
investigate a necessary and sufficient condition. '
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Consider a vector field F(z)D, where F' € C°(R). Then {z € R; F(z) # 0} is a countable
union of mutually disjoint open intervals (o, 3,), where the end points are possibly +oo.
On each (an, 8,), F(z) is always positive or always negative. Choosing an arbitrary point
Yn € (Qn, Bn), we put

n P— -, E T n/
"in(2) 7 Fy) 7 € (n fn)
and | | ‘
_ o dy _ ﬁn dy
melpm)=-[ry  e=lpne =g

Then 7, is a diffeomorphism from (an, 8,) onto (p,, gn) or onto (g, p,) according as F(z)>0
or F(z) < 0 on (an,B,). In particular, 7, is a diffeomorphism from (ay, 8,) onto R if and
only if

Tn dy . Bn dy
=— | =L = ()= [+ %Y _ .
dmm@) == | Fpy =T  Imn L Fly) ~ (1-2)

where Foo and +co are taken according as +£F(z) > 0 on (ay, 5,).

Proposition 1.1 Notations being as above, a vector field F(z)D is obtained from a one-
parameter diffeomorphism group as in (1.1) if and only if (1.2) holds for all n.

PROOF. Suppose that (1.2) holds for all n. Then for any 6,z € R we may define

Tn' ((z) +6), 2 € (an,6r), |
Y(z) = (1.3)

T, otherwise.

It is then easy to check that (6, z) = 74(z) is continuous; for any fixed 6, the map z +» Yo ()

s surjective; and yp1¢ = Yp07¢. Namely, {7y} is a one-parameter group of homeomorphlsms
of R. Since

L) = Fln(@),  s€R,

we see that 6 +— yp(z) is a C®-function. We need show that z — 7,(z) is also a C*-function.
To this end it is sufficient to show the identity:

0@ =00 = [“ew [ Flutsha, moer g

This is proved step-by-step following the argument of Sato (26, Proposition 2], where the
discussion was carried out under the assumtion that F'(z) is bounded and F(z) = 0 though
these are redundant only to prove (1.4). It then follows that {vs} is a one-parameter diffeo-
morphism group satisfying (1.1).
Conversely, suppose we are given a one-parameter diffeomorphism group {7}. Since the
argument is similar, assuming that F(z) > 0 on (ay, 8,) and that
Bn dy

n—l n = YRy
Gn = lim 75 (z) / Fy) <

we shall show contradiction. Put

Fo(z) = 05 (na(z) + 0), for p, <mu(z)+6<q,.
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Suppose  is fixed and put ¥(6) = F»(z). By group property 1 (0) satisfies the differential
equation: . B . _ . .

| P'(0)=F((0), ¢(0)=z

Then by the uniqueness of a local solution we obtam F9(z) = v9(z), from which contradiction
follows by letting 8 — g — (). | i

Remark Relation (1.3) appears also in a discussion of ceratin functional equations, see 1,
Chapter 6]. If a/(z) is bounded, condition (1.2) is satisfied, see [26, §1].

There are two basic examples of one-parameter diffeomorphism groups For § € R we
define the shift and dilation respectively by
og(z) =+, 19(z) = €’z,

and their corresponding vector fields are given by

d ' d
D — mem—— D - e
dz’ o T
respectively. Proposition 1. 1 has many applications and we here mention the following

Proposition 1.2 Let {v} be a one-parameter diffeomorphism group of R associated with
a vector field F(z)D. Then {vs} is conjugate to the shift {os}, i.e., there exists A € Diff(R)
such that ¥9 = A" Yog) for all § € R, if and only if F(z) does not vanish on R, that is,
F(z) >0 for allz € R or F(z) <0 for allz € R.

Proposition 1.3 Let {7} be a one-parameter diffeomorphism group of R associated with
a vector field F(z)D. Then {vs} is conjugate to the dilation {7} if and only if (i) there
ezists a unique To such that F(zo) = 0; (i) F(z) > 0 for z > zo and F(z) < 0 for z < o,

or conversely; (iii) the integral
dy

1 F(y)
is divergent for the intervals I = (—00,z9 — 1), (2o — 1, %0), (Zo, To + 1), (zo + 1, +00).

2 Transformations on S(R)

The topolog& of S(R) is given by the family of norms:
”E”a,ﬁ = Sup ]xaé‘(ﬁ)(‘r)la a,ﬂ= O)1a2y"" - (21)

A function f : R'— R is called of poiynomzal growth if there exist p > 0 and C > 0 such
that |

|f($)| <C@1+|zfP) forallz€R.

A C®-function fk is called slowly increasing if it is of polynomial growth together with all
its derivatives f(™, m =0,1,2,--
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Proposition 2.1 For v € Diff(R) put

Gé(z) =€(v7'(2)), €€ SR).
Then G € GL(S(R)) if and only if both v and v~! are slowly increasing.

PRrROOF. Assume that G € GL(S(R)). In view of G € L(S(R), S(R)), we choose a > 0
and Cj > 0'for 0 < j,k < a such that

H G¢ ”1,0 < Z Cjk ” £ “j,k' \ (2-2)

0<sk<a

By definition || G¢ ||, o = sup,er [2€(7™ (z))| = sup,er |[7(2)¢(2)], hence (2.2) becomes

@@ < Y Culéle, z€R (2.3)

0<jk<a

We shall obtain an estimate of v by taking a particular function £. Choose p € C®(R)
satisfying

R T

and set

Mk = Sup lp(k)(x)l < o9, k=0;1127
zeR

For T > 0 consider ¢ = &1 € S(R) defined by

L 0< [z < T,
ér(z) =1 Pz =T), T<|z[<T+1,
0, T+1< |zl

For this & we have ‘ .
lerle= sup |o€”(@)| < (T + 1) M.
le|ST+1 ~
Hence (2.3) becomes -

Iy(@)ér(z)| < >0 Ciu(T+ 1M < C’(T +1)%, zeR, T>0, (24)

0<j k<a
where C = o< k<a Cjt My Since (2.4) is valid for any z € R and T > 0, we come to
(@) <C(lz] +1)*, z€R,

which shows that v is of polynomial growth.
~ Next we start with G™' € L(S(R),S(R)). Choose 8 > 0 and Cj, > 0 for 0 < j,k < 8
such that

167% M < 3 Chell€llye- (2:5)
0<5,k<B
In view of
1G € o = sup | £ £(+(a))| = sup € (x(@)¥' (&) = sup € @ (v @),
zeR [GT zeR zeR
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In view of (2.5) we obtain

EE@Y @< Y Cullély, zeR | (2.6)

0<5,k<B

For T > 1 define nr € S(R) by

—po(1 - z), 0<z<1,
-1, 1<z<T,
nr(z) =< —p(z), T<z<T+1,

0, T+1Lz,

—77”1‘(_1:)7 z S 0.
Then, . .

lnrll;e= sup |20 (@) < (T +1) sup [nP(2)]. - (@27)
la|<T+1 la|<T+1 |

It is obvious that for k > 1,

k A —
sup [P (z)] = sup |p* D(z)| = My_s,
jz|<T+1 0<z<1

and for k£ = 0 we have

0
sup [nr(z)l =mr(0)= [ np(e)ds <T+1.
|zI<T+1 —(T+1)

Hence (2.7) becomes
‘ (T + l)ij—h -k > 1,
” 17T “J k =

(T + 1)3+1, k=0.
Thus, setting £ = nr in (2.6) we come to

@ (@) < CT+1,  ceR, T>1, (28)

where C' = o< k<p CleMi-1 and M_; = 1. Since (2.8) is valid for any z.€ R and T > 1,
we easily obtain _ ,
V(@) < C'(lv(@)| + D, |v(=)| > 1, | (2.9)

from which we see that 7' is of polynomial growth for {z € R; |y(z)| < 1} is compact.

Now we show that v(™(z) is of polynomial growth by induction. Suppose that 7*)(x) is
of polynomial growth up to £ = n — 1. Note that y~!(z) is also of polynomial growth as is
easily seen from the first half of this proof. Hence 7(’°)(fy 1(z)) is of polynomial growth for
0 <k <n—1. On the other hand, ' S :

dr
dz™

(v(x)) =€ (@)™ (@) + Z 5(’°’ nk (7 (), 7" (@),

k=2

where P, is a polyhomial. Since G~1¢(z) = &(v(x)),

€' (v(@)7™(z)] < 1 G~ lfllo,n+Zi£('°’ () Pa (7' (@), -, 7D ().

k=2
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Then, by the continuity of G~! and the assumption we obtain an estimate of the form:

€ @M@ < Y Cyllély,;, <R

0<i,j<a

Setting £ = nr and repeating the above argument, we see that 7" is of polynomial growth.

Let f be a R-valued measurable function on R and let M 7 be the corresponding multipli-
cation operator acting on functions. For such a multiplication operator we have the following
result, the proof of which is similar, see also [24, Chapter V]. -

Proposition 2.2 M; € L(S(R),S(R)) if and only if f is slowly increasing. In particular,
My € GL(S(R)) if and only if both f and 1/f are slowly increasing.

3 One-parameter transformation groups on a locally convex space

Throughout this section let X denote a locally convex space with defining seminorms
{ll - ll.}aca and the canonical bilinear form on ¥* x X is denoted by ((-, -)). A one-parameter

subgroup {Gg}ger C GL(X) is called differentiable if there exists an operator X € L(X, X)
such that

L GeE —
X¢ =lim "fe 5, £€X, | (3.1)

where the convergence of the right hand side is understood in the sense of X. As usual,
this operator X is called the infinitesimal generator of {Gg}. A differentiable one- parameter
subgroup is uniquely determined by its infinitesimal generator.

Remark If the Banach-Steinhaus theorem holds for X, (for example, if X is a Barreled
space, in particular, a Fréchet space), the existence of limy_,o(Gg& — £)/0 for any & € X with
respect to the topology of X ensures that the infinitesimal generator X is continuous, i.e.,
X € L(X,X). Moreover, the convergence (3.1) is uniform on every compact subset of X,
namely, '
Ge — &
9 [0
for any o € A and any compact subset K C X. When X is a nuclear Fréchet space, every

bounded closed subset of X is compact. Therefore, in that case (3 2) is valid for any bounded
subset K C X.

In general, not every X € L(X,X) can be an infinitesimal generator of a differentiable
one-parameter subgroup of GL(X), e.g., consider X =1+ 2% — (d/dz)? on X = S(R).

" lim sup
§—0. ¢eK

- X¢ - (3.2)

Proposition 3.1 (Hida-Obata-Sait6 [12]) Let X € L(X, %) and assume that there ezists
R > 0 such that {(RX)"/n!}3, is equicontinuous, namely, for every o € A there exist
C=C(a) >0 and 8 = B(a) € A such that

.’
sup — | (RX)"€[l, < Cll€lls, €€
n20 T « :

" Then there ezists a differentiable one-parameter subgroup {Gg}gER of GL( ) with infinites-
imal generator X. '
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An outline of the proof is as follows: By assumption, the series

00911.

Got =3, X", €€x Jl<R (33)

is convergent in X and || Ge€ ||, < C(1 = |8]/R)™" || €5, namely, Gy € L(X, %) for |6] < R.
Furthermore, Gy = I and Gy, 19, = Gy, Gg, whenever |8,], |62], |61 + 02] < R. We now define
Gy for all # € R. For a given § € R choose a positive integer n such that |§/n| < R and
put Gg = (Gg/n)". As is easily seen, this definition is mdependent of the choice of n, and
therefore Gy, 19, = Gy, Gs, for all 0, 92 € R. Finally, from the estimate

n—1
Gt e <50 o

-1 ' o
n -2 1~
3 S i, <wor (1-B) pel,. pi<

it follows that {Gg}geR is a differentiable one-paramete'r subgroup of GL(X) with infinitesi-
mal generator X. ‘

Being based on the power series (3.3), the above argument is more natural in the complex
context. Suppose that X is a locally convex space over C and consider a “complex” one-
parameter subgroup {(2,},cc of GL(X), i.e., 2, € GL(X) for any z € C and

£2,,82,, = 2,42, 21,20 € C; 2y =1 (identity operator).
It is called holomorphic if there exists an operator = € L(X, X) such that
2,6 -
St tim 26 €

lim ——,  {ex. (34)

Again Z is called the infinitesimal generator of {£2,}.

Lemma 3.2 (Obata [22]) For = € L(X,X) the following four conditions are equivalent:
(i) there exists some R > 0 such that {(RZ)"/n!; n=0,1,2,---} is equicontinuous;
(ii) {(R=)*/n!; n=10,1,2,-- -} is equicontinuous for any R > 0;
(iii) = 4s the infinitesimal generator of some holomorphic one-parameter subgroup {12,} of
GL( X) such that {£2;; |z] < R} is equicontinuous for some R > 0.
(iv) £ is the infinitesimal generator of some holomorphic one-parameter subgroup {12, } of
GL(X) such that {2, ; |z] < R} is equicontinuous for any R > 0.
Moreover, in that case, for any o € A there exists § € A such that

lim sup z ""¢ z € C,'
N=voo u¢1|,,<1 1&2=:0
lim sup {|2:6 -4, =0,
=0)iglle<
lim sup 26-9¢ _ Zel =0. f o (85)
el LY PE<Y B la | A
In particular,
— 2" _, . ,‘ . 82,1 _
.QZ—E;!-_ , 2€C; lx_rg.(),-[, lim =z,

n=0 z—0 z

with respect to the topology of L(X, X).
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An operator = € L(X,X) satisfying one of the conditions in Lemma 3.2 is called an
equicontinuous generator: A one-parameter subgroup {{2,} is called locally equicontinuous
if {{2,; |z] < R} is equicontinuous for any R > 0. Obviously the idea of an equicontinuous
generator is a variant of the standard terminology of an equicontinuous semigroup (see e.g.,
Yosida [30]), and our main consequence is the establishment of a one-to-one correspondence
via the exponential map between the equicontinuous generators and the locally equicontin-
uous holomorphic one-parameter subgroups. :

Note that the convergence in the sense of (3.5) is somewhat stronger than (3.2). If for
any a € A there exists 3 € A such that (3.5) holds, the one-parameter subgroup {{2,},cc is
called regular. This notion is used also for a differentiable one-parameter subgroup {Gg}scr,
see [12]. However, algebraic operation for equicontinuous or regular generators has not been
investigated satisfactorily. '

4 Cochran-Kuo-Sengupta space — White noise triple

Following Cochran-Kuo-Sengupta [5] we review the construction of white noise triples,
see also [23]. For a positive sequence {a(n)}2, we consider the following three conditions

(A1) @(0) =1 and v = supa~i(n) < oo;

(A2) the associated exponential generating function:

a(n
CGa(t) =] Qt” (4.1)
n=0
is entire holomorphic, i.e., has an infinite radius of convergence;

2

A3) li
(43) vy (nla(n))t/n

) Ga (t)l/n )
{%I;g r < 00, or equivalently

n=0

T e

. has a positive radius of convergence.

Given such a sequence {a(n)}, with a Hilbert space H one may associate a variant of (Boson)
Fock space:

Io(H) = {(fn); fn € H®™, in!a(n) | fal? < oo} .

Obviously, I'y(H) becomes a Hilbert space with the norm

N I = 3 nla(n) | fal?
n=0 ‘
By definition (and our convention, e.g., [17], [19]) the usual Fock space, denoted by I'(H),
is the case of a(n) = 1 for all n. By condition (A1), C is isometrically isomorphic to the
zero-particle space of I'y(H), and [, (H) is contmuously imbedded in I'(H).
We now go back to the Gelfand triple:

E=SR)C H=IL*R)C E*=S'(R). | (4.3)
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Recall that F is a countably Hilbert nuclear space with the defining Hilbertian norms:
|€ 1, =1 AP€|,, where A = 1+¢%—d?/dt*. For p € R let E, be the completion of S(R) with
respect to the norm |- |,. By definition we put : :

I'o(E) = projlim I, (E,).

p—oo

The topology is given by the family of norms:

1) 2, = S nla(m)| fal?, 20
n=0
We say that I',(E) is the Fock space over E associated with {a(n)}. The dual space of I',(E)
is described easily. The space I,-1(E_,) is defined in a similar manner as above, the norm
of which is given by

1D, = St n>|f,,|_,,,  px0

n=0

It is proved by a standard argument that

IW(E)* 1nd lim I —x(E_p)

where I',(E)* carries the strong dual topology. Finally, taking the complexification, we
obtain a chain of Fock spaces: [,(Ec) C I'y(Hc) C I'(Hc) C [.(He)* C I4(Eg)*. Since
| A= ||%s = 2520(27 + 2)7 can be less than one for a sufficiently large ¢ > 0, the space
T'y(Ec) is nuclear and

A Fa(EC) - F(HC) - FQ(EC)* « (4‘4)

is a Gelfand triple, see [5].
Let 4 be the standard Gaussian measure on E* and L?(E*, u) the Hilbert space of C-
valued L2-functions on E*. Then through the Wiener-It6-Segal isomorphism (4.4) gives rise
to a Gelfand triple: :
W C L¥E*, u) 2 T'(Hg) c W, - (4.5)

which is referred to as the Cochran-Kuo-Sengupta space. In particular, (4.5) is called the
Hida-Kubo-Takenaka space [15] or the Kondratiev-Streit space [13] according as a(n) = 1 or
a(n) = (n!)%, 0 < B < 1, see also [17]. The canomcal bilinear form on W x W* is denoted
by (-, -). Then we have

=S g, e~ EW', b~ () €W.

A non-trivial example of a sequence {a(n)} satisfying (A1)-(A3) is the Bell numbers of
degree k defined by the generating function:

k times

L explep(em( @) | Ealm) ., .
GBell(k)() explexp(exp(- (¢Xp0)---)'))_,§Tt’ - (4.6)

for more details see [5], [14]:
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5 Infinite dimensional rotation group and Fock representation
Let X € L(Ec, Ec) be given. For ¢ ~ (f,) € W we put |

(L(X)9) ~ (X®fa),  (dT(X)$) ~ (n(X @ %)) o). (5.1)

‘Tt is easily verified that both I'(X) and dI'(X) belong to L(W, W). Their symbols are easily
obtained:

T(X)(E1) = (T(X)de, $n)) = X6 dT(X)(€,m) = (XE n)e®™, €€ B,

where ¢¢ ~ (£¥"/n!) is an exponential vector.

Theorem 5.1 Let {Gp}ocr be a regular one-parameter subgroup of GL(E) with infinites-
imal generator X. Then, {I'(Gg)}ecr is a regular one-parameter subgroup of GL(W) with
infinitesimal generator dI'(X).

Theorem 5.2 Let {G,},cc be a holomorphic one-parameter subgroup of GL(Ec) with
equicontinuous generator X. Then, {I'(G.)},ec is a holomorphic one-parameter subgroup
of GL(W) with equicontinuous generator dI'(X). .

The proof is a simple modification of the arguments in [12], [19]; however, it is rather long
and is omitted here. ' ,

Let g € O(F;H). Then g* becomes a topological isomorphism of E* and the Gaussian
measure 4 is kept invariant under the action of g*. Therefore, (I, L*(E*, y)) is a unitary
representation of O(E; H) and it holds that

(T'(9)¢)(z) = ¢(¢’z), ¢ € L*(E*,p), ze€E"

Note also that I'(g) € GL(W).
As is easily seen, if X is the infinitesimal generator of a dlfferentlable one-parameter
subgroup of O(E; H), it is skew-symmetric in the sense that

(Xf, 77>=—(57 Xn>7 f,WE_E-' (52)

In general, if X e L(E,E) is skew-symmetric in the sense of (5.2), there exists a skew-
symmetric distribution x € F ® E* such that

df’(X) =/ k(s,t)(aa; — atas) dsdt. (5.3)
, RxR . o
In fact, k € (F ® E)* defined by
L
("3777@():5(7],)(0, 777C€Ea
has the desired property. Moreover, using ‘the notion of én integral kernel operator, we have
dF(X) = 251,1(,“{,).

For a comprehensive account of integral kernel operators see [19]. Combining the above
discussion we come to '
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Theorem 5.3 Let X be an infinitesimal generator of a regular one-parameter subgroup
{Go} of O(E; H). Then, {I'(Gg)} is a regular one-parameter subgroup of GL(W) with the
infinitesimal generator dI'(X). Moreover, dI'(X) is given by

dr(X) = /RxR k(s,t)(aja; — ajas) dsdt = /RxR k(s, t)(Wsa, — Weas) dsdt,

where k € E® E* is a skew-symmetric distribution and {W,;} is the white noise.

Now consider a one-parameter difeomorphism group {7s}scr of R and put

(Ga)(x) = (v (@) 75(x)-

Assume that {Gy} is a one-parameter subgroup of GL(E). For example, this holds if vo(z)
is slowly increasing for all # € R, see Propositions 2. 1 and 2. 2. (This condition seems also
necessary but we have no proof.) Then {Gs} is a one-parameter subgroup of O(E; H) and
is called a whisker after Hida [8]. The infinitesimal generator of {Gg} is given by

X = F(z)D + %F'(m), | | (5.4)

where F(z)D is the vector field corresponding to {7s}. Using the symbol M for the multi-
plication operator by F(z), we have

1
X = 5(DMg + MyD).

In the early 1970’s Goldin [6], Grodnik- Sharp [7] and others introduced the particle flux
density (or the momentum density)

1. . | d d

ﬂ{az(Vaz) - (Val)as}, V= (—

L5 R", 5.5
d&?l’ ,dl'n) ’ RS ( )

in connection with unitary representation of diffeomorphism groups, or more precisely, of
Lie algebras of vector fields. Now we consider the case of R™ = R for notational simplicity.
For ( € E¢ define an integral kernel operator '

J(O) =Z,1(-(1® Qo+ ((® 1)8,7),
where O is the partial derivative with respect to the k-th coordinate variable and 7 €

(E ® E)* is defined by (1, £®n) = (£, n). By partial integration in an integral kernel
operator [21] we may write

JQ) = /Rc(x>{a;(v%) - (Va2)as} ds.
We first note the following

Proposition 5.4 J(() € L(W, W) for any ( € EC, i.e., the particle fluz density (5. 5) is
a L(W, W)-valued dzstrzbutzon
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In fact, the above assertion is proved in [21] for the case of Hlda—Kubo—Takenaka space,
but the proof for the general case is similar.
- Let K € L(E, E) be the corresponding operator to k = —(1 ® ()07 + (¢ ® 1)0y7 under
the canonical isomorphism (E ® E)* & L(E, E). Then, as is easily seen, we have

K = —(DM;+M.D) and J(¢)=E11(x) = d['(K).

Hence from Theorem 5. 1 it follows that J (€) is an infinitesimal generator of a regular one-
parameter subgroup of GL(W) if and only if K is an infinitesimal generator of a regular
one-parameter subgroup of GL(F). Summarizing the above discussion we state

Proposition 5.5 Let {75} be a one-parameter diffeomorphism group of R such that v4(z)
is slowly increasing for all§ € R and let {Gy} be the corresponding whisker. Then {I'(Gg)} is
a regular one-parameter subgroup of the infinite dimensional unitary group U(W, L*(E*, 1))
if and only if {Gg} is a regular one-parameter subgroup of O(E;H). In that case, the
infinitesimal generator of I'(Gy) is given by

1 . .
=5 Jp FE){a(Vas) - (Vay)os} do. (5.6)

Remark It is an interesting open question to find a necessary and sufficient condition for
F € C*(R) in order that (5.6) is regular, or equivalently, in order that X in (5.4) is regular. -
. As is expected from below, J(¢) seldom happens to be an equicontinuous generator. The
shift {og} gives rise to a whisker {Sp} of which infinitesimal generator is the differential op-
erator D. If D were an equicontinuous generator, every £ € S(R) should have a holomorphic
extension. On the other hand, the regularity is obvious from the direct estimate:

Sp€ — &
0

which is verified by the mean value theorem in elementary calculus.

6
_D§ 'é'“f”aﬁ-ﬂa SEE‘;
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