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Quantum Calogero models and the
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Saburo KAKEr* ( ‘\‘7%5 = ar’)

Department of Mathematical Sciences, University of Tokyo,
Komaba 3-8-1, Meguro-ku, Tokyo 153-0041, Japan

Abstract

Algebraic structure of Ca,logerb—Sutherla,nd-type models is reviewed. Each of the
models is related to representations of a degenerate version of the double affine Hecke
algebra. From this viewpoint, wavefunctions of the models can be treated in unified
manner.

1 Introduction

There are intimate relations between quantum mechanics and special functions. Wave-
functions for some models can explicitly be written in terms of suitable special functions.
Recent studies on integrable quantum many-particle systems reveal that wavefunctions of
some special cases can be written in terms of multivariable analogue of classical orthogonal
polynomials. Furthermore, in those cases, properties of the wavefunctions can be treated
in unified manner by using their algebraic structure.

An example of such models is the Sutherland model, Wthh describes interacting particle
on a unit circle [Sul, Su2, OP]:

N o2 _
Z 0 1 Z : 2,B(ﬂ 1) : (1.1)
692 <1 sin” [(0; — 0,)/2]
where 3 is coupling constant and we assume S is a non-negative positive integer. In this
case, wavefunctions can be written by the so-called Jack polynomials. 7

Another example is the quantum Calogero model confined in harmonic potential [Cal,

Ca2, Sul, OP]:

Jj=1 J<k

N 2 _ :
HA=%Z(—%+ )+E 'B(ﬁ_xl)z, (1.2)
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The subscripts “A” signify that this Hamiltonian is invariant under the action of the Weyl
group of Ay_;-type. There also exists the model invariant under the action of the By-type
~ Weyl group [OP, Y]:

HB:;%{ ;ﬁﬁ +7('7 1)}+Z{ﬁ(ﬂ—1)+ﬂ(ﬁ-1)}_, (13)

j=1 z} i<k (zi —z)* (2 + =)?

(For the latter convenience, we use the letter “z” as the coordinates of the By-type model.)
We remark that the model associated with the Cy-type Weyl group is equivalent to the
By case, and Dy-type model is obtained by setting v = 0.

In these cases,‘ polynomial part of wavefunctions can be regarded as multivariable gen-
eralization of the Hermite (Ay_; case) and Laguerre (By case) polynomials and has been
studied by several authors [BF1, BF2, BF3, vD, Kal, Ka2, So, UW]. In fact, these three
models share the same algebraic structure, the degenerate double affine Hecke algebra.
From this viewpoint, each of the models corresponds to individual representation of the
degenerate double affine Hecke algebra. Furthermore, by using the intertwining operators
‘between representations of the degenerate double affine Hecke algebra, several known re-
‘sults on the Jack polynomials can be mapped directly to those of the multivariable Hermite
and Laguerre polynomials. As applications, we will construct raising operators and shift
operators for such polynomials.

2 Dunkl-type operators and multivariable orthogo-
nal polynomials

2.1 Jack polynomials and the Sutherland model

In this subsection, we define our notation and review the theory of symmetric and non-
symmetric Jack polynomials [M1, O, KS]. There are several ways to characterize the Jack
polynomials; Here we define them as eigenfunctions of some operators. We note that we
restrict ourselves to the case associated with the Ay_;-type Weyl group since we only use
such case. ’

In the paper [Dul], Dunkl has introduced differential-exchange operators, now called
“Dunkl operators”, which are associated with root systems. For the Apn_1-type root system,
the operators are defined as

8 — Sjk

D} = o; ﬂk(‘%) py——

where s;; are elements of the symmetric group &y. An element s;; acts on functions of z;,

-» ZN as an operator which permutes arguments z; and z;. We remark that the operators

D; preserve the space of polynomials of variables z;,. .., zx which we denote Clz]. These
operators satisfy the following properties: |

[D;‘;’D;l] = 0) sijD_;f1 = DcAsij, sij-D.lj;1 = Dllgsij (k7é7".7),

[Df,z;] = &; (1 + 8 Z s,-k) — (1 = &;)Bs;.

k(1)
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Heckman introduced “global” Dunkl operators [Hel], which are written as z;D# in our
notation. Heckman’s operators do not commute each other. Cherednik introduced another
version of Dunkl operators that mutually commute [Ch1] (see also [BGHP, KS]):

Df = IL‘JD:‘,4 + ﬂ Z sjk-
k(<3)

The algebra generated by the elements :v;-ﬂ, f)f and s;; is isomorphic to the degenerate
double affine Hecke algebra §’ associated with the Ay_;-type root system [Chl, Ch2]. We
remark that the elements :cfl, DJ-A and s;; also generate §)’ since D;f1 and ﬁf are related
through (2.1).

We denote by 3 subalgebra of §)' generated by ﬁf and s;;, which is isomorphic to the

degenerate affine Hecke algebra. We further denote by 5I subalgebra of £’ generated by
zj, D# and s;;. In terms of generators, the defining relations are

[f);-“,Df] = [xiazj] =0, ' TiSij = SijTj, T;8jk = S;kTi (3 # 4, k),
si=1 sisins;=sisisiy,  [sisi]=0 (li—jl#1), |
Diasi—siDf = B, siDf —Dfs; = B,  [s,Df]=0 (j#4,i+1),
—Pz;jsi; (z>J),
[bf,xj]_: z; + B (Z TSik + Z misik) (t=1),
k(<) k(>i)
—Bzisi; (i <),
where s; = s;41 (j = 1,-++,n — 1) are the simple transpositions.

Since the operators Df commute each other, they can be diagonalized simultaneously
by suitable choice of bases of C[z] [BGHP, O, KS]. Such basis is called non-symmetric
Jack polynomials. To define the non-symmetric Jack polynomials, we first introduce the
ordering ~<; For two pairs (A, w), (g, w') where A, p are partitions and w,w’ € &y, we
define the ordering < as follows:

, (i) p<od
(') < (Aw) <= { (i) if g = A then w' < w,

where <, is the dominance ordering for partitions [M1], and < is the Bruhat ordering for
the elements of G (see, for example, [Hu)).

Definition 2.1 ((BGHP, O, KS]) An non-symmetric Jack polynomial E}(z), labeled

with the partition A = (Ay,...,An) and the element w € Sy, is characterized by the
following properties:

() Ex(e) =z, + X wiah,
(mw")=(Aw)
(ii) E)(x) is joint eigenfunction for the operators bf,

AN

where we have used the notation z}) = w:\”‘(l) s Tl
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We note that our definition of the non-symmetric Jack polynomials is slightly different
from the one in the references cited above.
Since the action of Df on monomials =) are given by

(rw)<(Aw)

with 6 = (N —1,N — 2,---,0), the action of 15;4 on the non-symmetric Jack polynomials
can be evaluated as follows [BGHP, O, KS]:

DAEA (@) = (w() + &), EA(@) (22)

From physical viewpoint, the operators DA are related to the Sutherland model (1.1).
To see the relation, we introduce ga.uge—tra.nsformed Hamiltonian Hs:

7 - Res (i{bf_ew_u}“’)

j=1

_ T; + T i) B2
- g ( 5:83) 'BZ ( Tdz; a:ck> + 12N(N -1

i<k T

where Res X means that action of X is restricted to symmetric functions of the variables

Z1,...,ZN. If we make a kind of gauge transformation and a change of variables z; =
exp(if;), Hs reduces to the Sutherland Hamiltonian (1.1):

N 2 .
8 oHso () =3 (xb‘q‘) BB 1) Y s = e
. J

i=1 i<k (117_7 - a:k)2

where ¢(sﬁ)(:r) = [L<k |25 — :1:k|‘G HJ =1 Z; TAN=1/2 35 the ground state wavefunction of the

model. The symmetric Jack polynomials appear as polynomial part of wavefunctions for
excited states.

Definition 2.2 ([M1]) The symmetric Jack polynomials J; (8 )( ) are characterized by the
following properties:

(1) Ir(2) =ma(z) + 3 wmu(z) ,

#(<pA)
(ii) Jr(z) are eigenfunctions of the transformed Hamiltonian Hs,
where my are the monomial symmetric functions.

The symmetric Jack polynomials are obtained by symmetrizing E2, i.e.,

T (B,

J =
A(x) #6?\’ vGGN

where G, is a subgroup of Gy that preserve A. This relation follows form the fact that
the right hand side satisfies both of the defining properties of the Jack polynomials.
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As wavefunctions of the Hamiltonian Hg, the following scalar. product is naturally
introduced:

()@ = §-- f F(2)g(z)P (2)gP (z-1) 2L ... daw

b
271'13:1 omiz N

where the integration contour is the unit circle in. the complex plane. This scalar product
can alternatively be written as

(f(@),9(2)) = (-1)PNW-D2 [15(4P)7] (2.3)

where | - ], stands for the constant term and § = g(z~!). By a direct calculation, we see
that the operators f)f are self-adjoint with respect to the scalar product (2.3).

Proposition 2.3 ([M1]) The Jack polynomial.é Jx(z) are pairwise orthogonal with respect
to the scalar product (2.3).

Proof. We first introduce generating function of symmetric commuting operators [BGHP,
Kal]:

As(w) = [[(u+ DP).
If we expand Aj(u) as polynomial in u, the coefficients form a set of symmetric commuting

operators which contains Hs. Using (2.2), we can evaluate the action of Aj(u) on the Jack
polynomials:

As(w)JP(e) = ﬁ {u+ Avj + BG — 1)} I (). (24)

7=1

Since all the eigenvalues of Aj(u) are distinct and the operator Aj(u) is self-adjoint, we

conclude that the Jack polynomials J(z) are pairwise orthogonal with respect to the scalar
product (2.3). : 0

The property below follows from the fact that the Jack polynomials form an orthogonal
basis of the space of symmetric polynomials C|z]S¥
(J§ﬁ)(m),mu(x))gﬂ) =0 forall p<p A
One can use this relation instead of the second property of Definition 2.2.

2.2 Multivariable Hermite polynomials and Ay_;-type Calogero
model

We introduce an analogue of the creation and annihilation operators:

T_ Ao 0= (DA 4 2.
(—D7 + ), j ﬁ(DJ‘F i)

&l
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The commutation relations of these operators are the same as those of z; and D{ by

construction. We then make a gauge transformation on a;-( and a;:

- ~ ~ 1 0 1-—-
a:[ = ¢Aloa:[0¢,4=ﬁ( 8 +2z; — ﬂk(é:) 3;’;),
¥
N ~_ ~ 1
@ = ¢3'oaj0¢, = \/i(a,+ﬂ (Z) mk)
prmn

with ¢4 = [IV, exp(—z2/2). Since this transformation leaves the commutation relations
unchanged, we can introduce the following isomorphism:

p*(z;) = Zi;[, p*(D;) = @, pi(si;) = 8ij-

It should be remarked that this mapping has already been appeared implicitly in [UW],
however, treated only as an isomorphism of the algebra. To construct eigenstates of Ha,
we should introduce intertwiner between two representations which will be discussed in the
followings.

We can obtain a set of commuting operators by applying p* to b;-‘:

k(<3)

The mapping p“ gives another fepresentation of 5%, on C[z]. We then introduce intertwining
operator o4, which is a linear operator on C|[z] such that

o (f(z1,...,2N)) = f(’d:[, e ,Ei;(,) .1 forall f(zi,...,zn) € Clz].
The intertwiner 04 enjoys the following property.

Theorem 2.4 o4(Qf(z)) = pA(Q)oA(f(z)) for all Q € ), f(z) € Clz].

Proof. Since both @ and f(z) are elements of 5’, it suffices to prove o4(P-1) = pA(P) -1
~1 ~

for all P € ). We then note that every element P of fo, can be represented in the following

form:

P=Y"S5 pau(z)(D)™ - (DAY w, (2.5)

n ’WEGN

where py, ,,(¢) are some polynomials. Considering the action of (2.5) on 1, we have

P-1= 37 3 pau(2)™--((N-1)8)™,

n(n1=0) weSy

sincew-1 =1 for all w € Gy and f)f -1 =p(j =1) for all j. On the other hand, applying
p? to (2.5), we have '

AP =Y Y puu@EY™ - () w.

B weSy

Since 7134 1= B(j — 1) for all j, we conclude that o4(P-1) = pA(P)-1forall P € §'. O
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The representation p4 is related to the Ay_;-type Calogero model. If we define H, as

Hy = (2 hA) - —N(N ~1)

J=1

n a 0
= -—E( 82+2xﬂa ) ﬂz k(axj_al'k),

.7<k

we can obtain the Ay_;-type Calogero Hamiltonian (1.2) via gauge transformation:

~ N
Ha= ¢ oHao (D) + 5T gN(N —-1),
with ¢ff) =TT« |5 — 2P T, exp(—x?%/2) ground state wavefunction.
We then introduce scalar product for this case:

= [ [ f@e@)(#f) ey - dew (26)

By a direct calculation, we see that the operator 5} is adjoint of @; with respect to the

scalar product (2.6) for all j = 1,...,N. Note that z; (= (pA)"l(ﬁ;r)) is not adjoint of
Dj(= (p*)~%(@;)) for the Jack case.
Multivariable Hermite polynomials are defined by using this scalar product [BF1, vD].

In fact, the definition in [BF1] and that in [vD] are slightly different. Here we shall follow
[vD]:

Definition 2.5 ([vD]) Multivariable Hermite polynomials Hiﬁ ) (z) are characterized by
the following properties:

@) BP@) =my@) + Y uhm,(o),
‘ u(<pA)
(i) (HP (z),m ()Y =0 for all 1<y A.

A

Using the intertwiner 0, we can construct an operator representation of H) @ )( )-

Proposition 2.6 ([Kal, UW]) Multivariable Hermite polynomials H (ﬁ)( ) are related to
the Jack polynomials as follows:

HY(z) =274 (JP(@) = 27270 1.

Proof. We can easily see that 2\/2J ,\(61L yeo ,Ejv) - 1 satisfy the condition (i) of Definition
2.5. Hence it suffices to show (ii). Applying o4 to (2.4), we have

N
Ba(IP @], ak) - 1= TT {u+ Awoyua +8G - D3OG ah) -1,
7j=1
where we denote Ay (u) = J4 A(Ay(u)) = TT, (u+h). Since all the eigenvalues of Ag(u) are
distinct and the operator AH(u) are self-adjoint with respect to the scalar product (2.6), we
conclude that the polynomials J @ )( 1) 1 are orthogonal with respect to the scalar product
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(2.6). On the other hand, one may know that the polynomials J (6 )(af) 1 form an orthogo-
nal basis of C[z]S» by considering the leading term. It follows that (J} J# )( ]L) )(ﬂ )=0
for all ¢ <p A, which proves the theorem. a

It should be noted that Ujino and Wadati [UW] have shown that J. J# )(at) 1 diagonalize
the first two of the family of commuting operators that contains Ha. The proof given here
is essentially the same as that given in [Kal]. l

The scalar product (-, )g’ ) induces another scalar product on C[z]:

(F(=) g(@)))a = (F@) - 1,9@) - 1P

This gives another example of scalar product which makes the Jack polynomials orthogonal.
On the other hand, Dunkl [Du2] introduced the scalar product [ f (DA)g(:c)]O. These scalar

products coincide up to a constant factor:

({f(2),9(z)))a = (1, f(@)g(@") - 1)@
= 1 @) 1] = 4.0 [0t

We shall evaluate the value (1, 1)('6 ) in section 4.2. (See Proposition 4.8 below.)

2.3 Multivariable Laguerre polynomials and By-type Calogero
model

Dunkl operators associated with the By-type root system are defined as follows [Dul, Y}:

1 - tjtijk 1 - tj
; 2.7
.7 azj + /8 Z ( Zk ) +7 ) (2.7)

k() % T 2 %

where s;; and t; are elements of the By-type Weyl group. An element s;; acts as same as
in the Ay_;-case and t; acts as sign-change, i.e. replaces the coordinate z; by —z;. The
commutation relations of the By-type Dunkl operators are

[DP,DP]=0,  s;DP =DPsij,  s;Df = Dfsy (k#4,j),
t;DP = DBt t;DB = DBt; (k # j),

[DE, 2] = 6; {1 + B Y (sik + titesi) + 27tj} — (1 — 6;;)B(si; — titksi)-
K

We then define Cherednik-type commuting operators associated with (2.7):

D? = ;:J-DJI-a + B Y (st + titesi).
k(<3)

Note that the operators DB do not coincide with the Cherednik operators associated with
the Bn-type Weyl group.

Lemma 2.7 All of the operators ﬁf, sij, t; and z;‘-' preserve (J22,. .., 2%].
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Proof. Only f)B need to prove. We introduce the notation Res®)(X) which means the
action of the operator X is restricted to the functions with the symmetry t;f(z) = f(2).
Under this restriction, Res(t)(DB) is equivalent to 2D‘4 if we make a change of the variables
z; = 22/2. Since DA preserve (C[a:], the operators DB preserve C[2?]. a

From these facts, we can define representation ¢ of § on Cl=%:
1
L(CI)J’) = 52‘?, L(DA) = —DB I,(S,'j) = 3,'_1'.
We now introduce creation and annihilation operators for the By case:
1 1

The commutation relations of these operators are the same as those of z; and DP by

construction. We then make a gauge transformation on b;[ and b;:

. . . 1 [ o Lot | 1-4
bj. = ¢Elobj 0¢B = 75 {—5;—+2Z] IB Z ( Zk ] ksjk) +7 .7},
2

KE9) Zi+ 2 %

~ ~_ ~ 1 1—t~tks-k 1-—t;
b' = 1 b = E J J 7
’ ¢BO]0¢B \/5{8,_*_'6,:(#)( zk z; + zg )+7 z; }’

with g = [T 1€xp(—z2/2). Since this transformation leaves the commutation relations
unchanged, we can define the following algebra isomorphism:

K(z;) = Z}L, K(DP)=1b;,  &(si) =si,  Klt;) =

We then define the operators Tzf as follows:

RB = k(DB) =55 + B 3 (sn + Litusie).
k(<3)

Lemma 2.8 The operators 71? and ('51)2 preserve (J022,..., 23]

Proof. Since the operators D preserve Uzy,...,2n], it is clear that both TzB and (ﬁ)2

also preserve (Jz,,...,2y]. Then it suffices to prove [t;, J] = [t,,(b )?] = 0 for all 4,7,
which can be proved by a direct calculation. O

Using both ¢ and &, we introduce another representation of ' on Clz%:
1 ~
PP(es) = slela) = 5 BD%  PP(DF) = s(DP) = 5K, pP(si) = 5ir
We introduce a linear map of C[z] to C[2?] by using p?:

oB(f(ar,- .. 2n)) = F(EDY2, ..., (BL)?/2) -1 forall f(ay,...,zn) € Cla).

As in the Ay_;-case, the intertwiner o2 enjoys the following property.
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Theorem 2.9 08(Qf(x)) = pP(Q)o?(f(2)) - 1 for all Q € Hy, f(1,...,n) € Cla].

Proof is given in the same fashion as Theorem 2. 4, so we omit details.

The operators bJ[ and b; are related to the By-type Calogero Hamiltonian (1.3); If we
define Hp as

— N~
Hs = Res (th’)—ﬂN(N—l)
13 [ & o 290 d d
- 52( 91 T ips; 70—4)‘2"22 (azj a—")

Jj=1 i<k %
)

we can obtain the Hamiltonian (1.3) via gauge transformation:
~ 1
Ha = ¢ 0 Hp o (4570 + (5 +7) N+ BN(N - 1),

with ¢{) = ITj<k |2} — 2P T}, |2 exp(—2%/2) ground state wavefunction of (1.3).
Scalar product associated with this model is

F@ g = [~ [7 1988z - da. (28)

By a direct calculation, we can show that the operator Z}L is adjoint of 31- with respect to
the scalar product (2.8), and hence the operator hf is self-adjoint for all j =1,..., N.
Now we define multivariable Laguerre polynomials [vD].

Definition 2.10 ([vD]) Multivariable Laguerre polynomials L'?(z) are characterized by
the following properties:

() L (2) = ma(z?) + Z uramu(2?),

u(<pA)
(i) (LP(2),m (22NP =0  for all pu <y \.
We can construct an operator representation of Lf\ﬂ)(z) by using the intertwiner oP.

Proposition 2.11 ([Ka2]) Multivariable Laguerre polynomials Lgﬂ )(z) are related to the
Jack polynomials as follows:

LP(z) = oP(JP)(2)) = JEY(FT)?/2) - 1.

One can prove this statement in the same way as Proposition 2.6, so we omit details.

3 Construction of raising operators

As is shown in the previous section, the multivariable Hermite and Laguerre polynomials
are expressed in terms of the Jack polynomials whose arguments are Dunkl-type opera-
tors. Some properties of the multivariable Hermite and Laguerre polynomia.ls are obtained
directly from those of the Jack polynomials simply by applying p# or pB As an example,
we will construct raising operators for the polynomials.
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Lapointe and Vinet constructed raising operators for the Jack polynomials [LV]. Using
their raising operators, they obtained Rodorigues-type formula for the Jack polynomials.
Raising operators for the multivariable Hermite polynomials have been constructed by
Ujino and Wadati [UW]. The raising operators above are constructed by the use of Dunkl
operators of Heckman-type (non-commutative). In those cases, relation to the degenerate
double affine Hecke algebra is still unclear.

On the other hand, Kirillov and Noumi gave another expression of raising operators by

using Cherednik operators [KN]. In our notation, their raising operators are expressed as
the following form:

By, = Y Ttk Tr, (DR + B2 — k)
k1<<km

(DR + B3 = kp)) - (D, + B(m — b + 1)).
We recall a important property of these operators.

Theorem 3.1 ([KN]) Action of the operators Bl € % on the Jack polynomials are given
by

BLIP (@) =TI\ + Bm — § + 1)I 4 (@),

=1

where A+ (1™) = (A1 +1,...,An + 1).

Applying 0# or o8 to B!, we obtain raising operators for the Hermite-case or the
Laguerre-case respectively:

BE = Y alal---al (b +BE- k)

k1<"'<km-
x (kg + B3 = k2)) -+ (R, + B(m ~ kum + 1)),
B = 3 B3l (B 42— )
x(h, + B(3 = k2)) -+ (AL, + B(m — Ky +1)).
Form the theorem 3.1 and the propositions 2.6, 2.11, it immediately follows that:
Proposition 3.2 (i) BEH)(z) = 2-m/2 A+ B(m -5+ 1))H§ﬁ_)(1m)(a:),

(i) BLLY(2) = Ty (Aj + Blm — § + 1)) L) 1m (2)-

Applying the raising operators repeatedly, one can obtain Rodorigues-type formulas for
the multivariable Hermite and Laguerre polynomials:

HO(z) = 27 TI (\ =g+ B0 —i+1) 7 (B (BY )7 (B2 -1,
(1.4)ex

L) =TI =i 4B =i+ 1) (BR) (Bl )= - (B 1,
(1.7)€X

where X' = (A}, A}, ...) is the conjugate partition to A.
1> 72y g



76

4 Construction of shift operators

In this section, we construct shift operators for the multivariable Hermite and Laguerre
polynomials. Each of such shift operators are related to one of the scalar products (2.3),
(2.6), (2.8) (see the theorems 4.2, 4.6 and 4.9 below) However properties related to scalar
product cannot be obtained simply by applying p# or pP. It require a little more effort to
construct shift operators.

It should be noted that the notion of hypergeometric shift operators were introduced
originally by Opdam, and Heckman gave an expression by using the Dunkl operators
[He2, Hel]. Since our construction of shift operators are based on the Cherednik operators,
relation to the degenerate double affine Hecke algebra becomes clear.

4.1 Shift operators for the Jack polynomials

In this subsection, we review the method of constructing shift operators for the Jack

polynomials by the use of the Cherednik operators. Our method is based on the lecture

note of Kirillov Jr. [Ki]; All results given in this section can be obtained by taking limiting

procedure on those of [Ki]. However, all proofs given here are algebraic and we avoid using

limiting procedure so that we can apply the results to the Hermite and Laguerre cases.
Consider elements of £, that have the following forms:

X=[l@i-2), »n=[M6B-D4+Df), IH=T(-B-DF+D}). (41)

i<j i<y t<j

We note that these operators preserve C[z]. From the defining relations of £}, we know
that

(si +1)(=B—Df+D4;1) = (=B—Diy, +Di)s; - 1),
(si—1)(B-Df+D4) = (B- D&, + D) (s;+ 1), (4.2)
Sj(c_Df'FDk )(e— D;i+1+Df) = (C“D;‘+DkA)( D;l+1 Dl‘:l)sja

with ¢ arbitrary constant and k # j,j + 1. Then, if we define C[z]®" and C[z]~S» as

Cl21® = {f(z) € Cla]| (s; — 1)f(=) = 0},
ClaI™® = {f(2) € Cla]| (s; + 1) f(z) = 0},

we see that
XeCl®,  »(Cll®) =Cl]=%*, 31 (Cle]"®*) = Cla]®.  (43)

We now introduce shift operators for the Jack polynomials as Gj = XY, Gy = )1 X
The operators G and G enjoy the following properties:

Lemma 4.1 ([Ki]) (i) G3J®;, G;J¢*) € C[z]S¥.

(ii) GJJ§") = cf\ﬁ+l)m,\+ “lower terms” with respect to <p,
with C(ﬁH) = [li; {AN—jr1 = ANoipn+i— i+ Bl —i-1)}
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(iii) GJJ ,QG +) _ Ef\ﬁ+l)m,\+5+ “ower terms” with respect to <p,
with &Y = [l {Aojrr — Avoip +5 — i+ (G — i+ 1)}
Proof. (i) Follows from (4.3).
(ii) For the longest element wg of Sy, i.e. wo(j) = N —j +1, equation (2.1) reduces to

Dizh = Avojm +BG —1)zhe+ Y uakah.
(psw')< (A wo) '

Using this relation, we can calculate the action of Y;j:

Y3 ,(\ﬁ)g = [[B-D+ DA)(:v’\"'E “lower terms” with respect to <)
i<y
— c(ﬁ+1)xA+6 +

“lower terms” with respect to <. (4.4)

On the other hand, (4.3) implies that Y;J{ is divisible by X. Together with (i), this
concludes the proof.
(iii) Can also be proved in similar way. a

The following theorem implies that Gj is, in a sense, adjoint of Gy:
Theorem 4.2 ([Ki]) For f,g € Clal®¥, (G1f,)f™ = (f,G19)".

To prove this theorem, we introduce symmetrizer P, and anti-symmetrizer P- as

_ 1 w IR N O
P+_#6NZ ’ P——#G Z(l) ’

wEGN weGy

where /(w) is the length of the element w. We further prepare a lemma.
Lemma 4.3 ([Ki]) P_()y—))) = Zﬁj(f)f, oo, DR (sj — 1) for some g;(z1,---,zN) €
J

It should be remarked that this lemma is a degenerate version of a lemma given in [Ki].
We will give a proof in Appendix A for reader’s convenience.
Now we go back to the proof of Theorem 4.2.

Proof of Theorem 4.2. Tt is clear that P, does not affect constant term of polynomials.
Then, for f,g € (C[:c]GN , we know that

(GJf, g)&"“) = (_1)(ﬂ+1)N(N—1)/2 [(X—lny) ( (ﬂ+1)) ]0
= (- 1)(ﬂ+1)N(N 1)/2 [’P+ ((yjf)gz\f’ ¢(ﬂ) )
= (- l)ﬁN(N 1)/2 [p (ny)gX(qS(B)) ]

From Lemma 4.3, we see that P_(); — yJ) f=0forall f € (C[z]GN . Hence we can replace
Yy by Py:

(Gif,g)f) = (~1)PNN-DL2 [p_(3; g (¢ = (D, 29)) = (£, Cag)Y.

In the last equality, we have used the self-adjointness of bf o

0

Using Theorem 4.2, we can evaluate the action of G and G’ 7 on the Jack polynomials.
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Proposition 4.4 ([Ki]) G; (f?,s = LGB G B = P +1)J,@5, where the con-
stants c(ﬁ) and ¢ "(ﬁ ) are defined in Lemma 4.1.

Proof. Assume y <p A. Then we have
G 7O, m (ﬁ) J ,Gim,)! @ = (g s,mu+5 + lower terms )(ﬁ) =0,
M6 Ty A+6 b A

where we have used Lemma 4.1 and Theorem 4.2. From this fact, along with Lemma 4.1
(ii), we see that G JJ§€_)6 coincides with cf\ﬁ g ,(f’ *1)| The latter can be proved in similar

O
way.

With these preliminaries, it is possible to derive the following result.

Proposition 4.5 ([M1])

O OO _ —k+B(j—i1+1)
(7O J§ NtkI_IIE A+k+ﬂ( 1 (4.5)

Proof. From Proposition 4.4, it follows that

(J(l?+1) J(ﬁ+1))(ﬁ+1) GJ,(\[_?J, J(ﬁ“))ff“)

(ﬁ+l) (

1)
(T8, TN E),

= (8) (B+1)y(8) _
(ﬁ+1) (‘]A+5  GrI);3 (ﬁ+1)
Applying this relation repeatedly, we have
C = =0) (8=0
( J(ﬁ) J(ﬁ) H E\;klf) )(\lj_ﬁg)’ Jﬁ ps))( )
k=0 Cyyks »
which gives the desired result. o

The norm formula (4.5) can be rewritten into the following form:

(7@ goe _ VB)! I JZ1HBIN —itl) Ai—j+1+4B(%—1)
YR e GBI =) N+ A —i+1)

A proof of the equivalence between (4.5) and (4.6) is given in Appendix B.

(4.6)

4.2 Shift operators for the multivariable Hermite polynomials

In this section, we will construct shift operators for the multivariable Hermite polynomials.
It should be noted that Heckman has constructed shift operators for the Hamiltonian H,
without harmonic potential [He2]. However, for the application to norm formulas, it is
needed to compute actions of the shift shift operators on polynomials explicitly. Our
method gives an unified and straightforward way to compute such actions.

To construct shift operators, we first introduce Yy and 5711 as follows:

Ya=p' V) =TIB-k+88),  Ju=p*P) = [[(-B- KL+ 7).

i<j i<
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Using these operators, we define shift operators for the multivariable Hermite polynomials
asGg =X~ yH, Gu = YuX. We stress that we have used same X as (4.1), and therefore

Gu # pA(Gy), Gu # pA(Gy). This reﬂects the characteristics of the scalar products (2.3),
(2.6). |
If we apply p? to (4.2), we have

(31 +1)(-8 - hA + h]+1) (=8 - h1+1 + Tlf)(sj 1),
(s; =1)(B— hA + h;+1) (B - h]+1 + hf)(sj +1),
sj(c— hA + b k)(c— hf+1 + hA) = (c— hf + hf)(c - h}q+1 +h%)ss,
with ¢ arbitrary constant and k # j,j + 1. These relations imply that ‘
Yu (Clel®) = Cla %, I (Cla]=®) = Cla]®. (47)
Furthermore, if we apply 04 to (4.4), we see that
)?HH,(\er)ﬁ = cf\ﬁ +1)a:,’},j5 + “lower terms” with respect to <. (4.8)

For the proof of the shift relations for the Jack polynomials (Proposition 4.4), Theorem
4.2 played a crucial role. Here we state analogous result for Hermite case:

Theorem 4.6 For f,g € (C[:c]eN (Guf, )(ﬁH) (f, GHg)(ﬂ)

Proof. The proof is similar to that of Theorem 4.2. For f,g € C[.’E]GN , we know that
(Guf, ) = [ o [T P Ouf)gX (6D der - do

On the other hand, applying p* to Lemma 4.3, we obtain

P_(Q — ) = Zf]j(ﬂ, e ,Ejv)(sj —1) for some §;(zi,---,zn) € Clz].

From this relation, we find that P_(Jy — 57;1) f=0foral fe C[II)]GN . Hence we can
replace Yy by Vu:

=<M¢xwm uﬁgw>

In the last equality, we have used the self-adjointness of the operator 7134. o

Now we are in position to state that:

Proposition 4.7 Gy H(ﬁ) = c(ﬁH)H(ﬁH) éHHf\ﬁ+1) = &‘f\ﬂ"'l)H,g[_?s, where the constants
(ﬁ) and ¢ "(ﬁ) are defined in Lemma 4.1.

Proof. From (4.7) and (4.8), we know that (cf\ﬁ Jrl))“lGHH,(\[:L)& satisfies the first condition
of Definition 2.5. So it suffice to prove the orthogonality which can be shown in the same
way as Proposition 4.4. The second equation can be proved in similar way. o

Using Proposition 4.7 and Theorem 4.6, we can prove the norm formula for H ,@ .
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Proposition 4.8 ([BF1, vD])

N2 N
(HO, BOYO — m
<TI0 + BN — J))HH —hi kA —it]) (4.9)

i=1 k1i<s A )\+k+,3(]—-z—1)
where |A\| =32; A |

Proof. Using Proposition 4.7 and Theorem 4.6, we see that

1)
HY HED

B+1 B+1)\(6+1
(H( )H( ))( ) (ﬁ+1)< e,

On the other hand, since H,(\ﬂ =0)(m) is direct product of the (one-variable) Hermite poly-
nomials, one can evaluate the norm easily:

(B=0) pr(B=0)\(p=0) _ N
<H H ) 2|A| H )‘
Using these relations, one arrives at the formula above. a

The norm formula (4.9) can be rewritten into the following form [BF1]:

N /-
HO HOW = T LGB
INFENIN-1/2 " (BN

« [ ULHAWN it DHA =g+ 1+ A0 — i)
(i.5)EN Ai—J +ﬁ(’\3‘ —i+1) .

It should be remarked that other proofs of these formulas have been given via limiting
procedure [BF1, vD].

4.3 Shift operators for the multivariable Laguerre polynomials

We first define A%, )i, and 57L as follows:

A, =[IG-2), W =[I(B-h?/2+R7[2), D =TI(-B—hFP/2+k}/2). (4.10)
i<j i<j i<j
After same discussion as in the previous subsection, we see that

W (Cl4%%) = Cl21m%>, 31, (C[e%)-S) = C[48r, (4.11)

and

yHLgf_?s = cf\ﬁ +1)zfv(o’\+5) + “lower terms” with respect to <. (4.12)

Now we define the shift operators for Laguerre case as G, = X)L, GL = A
These operators enjoy the following properties:

Theorem 4.9 For f,g € C[2*|®¥, (G.f, )(ﬁ+ ) = = (f,GL g)(ﬁ)
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Proof. The proof for this case is also similar to that of Theorem 4.2. For f,g € C[2?|®¥,
we know that

(G = [~ [~ P Oufe (98 de - daw.
On the other hand, applying p? to Lemma 4.3, we find that

P_-(Oh — EgJ(b ~ ( i —1) for some §;(z1,---,zn) € Clz].

From this relation, we see that P_(J}, — JL)f = 0 for all f € C[z?|®~. Hence we can
replace )i, by Ji: : '
(Guf,g) = / / P_(OLf)gA(4D)?dz - - den
= Ouf, 208 = (f, Gt

In the last equality, we have used the self-adjointness of the operator ﬁf O

We then state the following results:

Proposition 4.10 Gy, L(ﬁ ) = c(ﬂ +1)L(ﬁ 1) G'LLE\‘G ) = P +1)Lf\ﬂ+)6, where the constants

(ﬁ) and ¢ “(ﬁ) are defined in Lemma 4.1.

Proof. From (4.11) and (4.12), we know that (c&ﬁﬂ))'lGLLE\@a satisfies the first condition
of Definition 2.10 up to a constant factor. So it suffice to prove the orthogonality which

can be shown in the same way as Proposition 4.4. The second equation can be proved in
similar way. O

Using Proposition 4.10 and Theorem 4.9, we can prove the norm formula for L&ﬁ).
Proposition 4.11 ([BF1, vD])

(L(ﬁ) L(ﬁ) B — an H(,\ + B(N — )

Jj=

' —Ai—k+p(i—i4+1)
le;_[lI‘()\J+ﬂ(N )+7+1/2)k1_]lg A+k+ﬂ(3_z_1)

(4.13)

where I'(:) denotes the gamma function.

Proof. The proof of this proposition is similar to the Hermite case. We only note the
following formula for the case 8 = 0:

(LP=0), [P=0y6=0) _ (g2 ) H{/\' T\ +7+1/2)},

j=1

which follows from the norm formula of the one-variable Laguerre polynomials. O
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The norm formula (4.13) can be rewritten into the following form [BF1):

N -
(LP, L) = ——_—Hf(=ﬂ1'()’Nﬂ ) ﬁ LA+ B(N —j) +7+1/2)
j=1

< 11 {J—1+ﬂ(N—z+1)}{A —J+1+ B -9}
(i.5)EX .7+,B(’\ _"+1)

It should be remarked that other proofs of these formulas have been given via limiting
procedure [BF1, vD].

5 Concluding remarks

In this paper, we have reviewed the common algebraic structure of Calogero-Sutherland-
type models, i.e. the degenerate double affine Hecke algebra. From this viewpoint, we can
construct the intertwining operators that map the Jack polynomials to the multivariable
Hermite and Laguerre polynomials.

We restrict ourselves to symmetric polynomials though the operators o and o2 are
applicable to non-symmetric case, i.e. we can obtain the non-symmetric counterparts of
the multivariable Hermite and Laguerre polynomials:

EMNg)=2-MrR GHy .1, EODX(y) = EM(31)?/2)- 1.

Baker and Forrester named these polynomials non-symmetric Hermite and Laguerre poly-
nomials respectively, and studied their properties [BF2, BF3]. We note that some of their
results may be obtained directly form the correspondmg properties of the Jack polynomials
by applying the intertwiners. -

Our constructs are based on the degenerate double affine Hecke algebra, so it is expected
that the results given here extend to non-degenerate case. Baker and Forrester studied
isomorphism between affine Hecke algebras that maps the Macdonald polynomials to the
multivariable Al-Salam and Carlitz polynomials [BF4]. On the other hand, van Diejen
proposed difference counterpart of the Hamiltonians H 4 and Hp [vD]. It would be nice to
clarify algebraic structure of his models. We hope to report on them in the near future.

Appendices

Appendix A: Proof of Lemma 4.3

In Appendix A, we will give a proof of Lemma 4.3. We remark again that the proof given
in this section is a limiting case of [Ki].
We begin with seeing some properties of the anti-symmetrizer.

Lemma A.1 ([Ki]) (i) The anti-symmetrizer P_ is divisible by 1+ (—1)"®0)wq both on
the left and on the right.

(ii) For all j =1,...,N — 1, the anti-symmetrizer P_ is divisible by 1 — s; both on the
left and on the right.
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Proof. (i) GN can be divided into pairs (w,wwp). Then, rewriting into the summation
over such pairs, we have

Po= Y {(-1)®w+4(- —1)! g p = 37 (=1)e {1+ (=)@, } .
(w,wwo) (w,wwo)
Divisibility on the left is proved similarly.
(ii) Can also be proved by similar discussion. O

From Lemma A.1 (ii), we know that Ker P_ > > ; Ker (1 — s;). To describe kernel of
the anti-symmetrizer, we first investigate kernels of 1 — s; and their union.

Lemma A.2 ([Ki]) (i) LetV is a representation of Sy, and denote V; = Ker (1—s;),
=3;V;. Then V' is Gy-invariant. '

(i) Assume V is a finite-dimensional irreducible representation of Gy. Then we have

V= 0 (if V is the sign representation),
|V (otherwise).

Proof. (i) From the definition of V}, it follows that s;(s;v) = s;v for all v € s;V;. If we
introduce vy = (v & 5;v)/2, we see that s;(vy —v_) = vy — v_ which means vy —v_ € V;.
Since vy € V; by definition, we obtain v = vy +v. € V;+V,. This leads to s;V; C V; + V],
which concludes the proof.

(ii) From (i), it follows that V' is a subrepresentation. Due to the irreducibility, V"’
can be either 0 or V. If V' = 0, then we have V; = 0 for all j. This means that 1 — 85
is invertible, i.e. for all v € V, there exists u such that v = (1 — s;)u. Then we obtain
sjv = —v for all v € V, i.e. V-is the sign representation. O

From Lemma A.2(ii), it immediately follows:

Ker P_ =) Ker (1 —s;)

for any finite-dimensional representation of Gy. Note this identity also holds for the
representation of G in the space of polynomials (C[:c] since this representation is a direct
sum of finite-dimensional representations.

We now introduce operators 3; as

s;—1
§:=s8; + ﬂ..J—
T ZTj— Tj41
Using these operators, we can define another representation of the degenerate affine Hecke
algebra £ on Clz]:
A4 .
P(Df) =g, p(s5)=3;

Using the isomorphism p’, we introduce deformed anti-symmetrizer PP as

PO = p(P.) = #6 > (-1)®,

WGSN

where b = p'(w).
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Lemma A.3 ([Ki]) Ker PP = Ker P for the action of P¥) in Clz):

Proof. By similar discussion to Proposition A.1, we know that PP is divisible by 3; ~1
both on the left and on the right for every j = 1,...,N — 1. Hence we have

Ker P¥ > > Ker (1 —'.§j) = Ker (1 —s;) = Ker P, (A1)

J J
and thus dim(Ker P)) > dim(Ker P_). On the other hand, if we denote C[z], as space
of polynomials of order n, it is clear that e preserves Clz],. Since dim(Ker P-(—ﬂ)) can

not decrease under specialization, it follows that dim(Ker PSﬁ)) < dim(Ker pe =°)) =
dim(Ker P_) and hence we have A

dim(Ker P®¥) = dim(Ker P_). | (A.2)

Thus it follows from (A.1) and (A.2) that Ker P = Ker P = ¥;Ker (1-—s;). o

We then define )’ and J" as

Y=/ =TlB-zi+sz), V=0 =Tl(-F-gi+c;)

i<j i<j
Lemma A.4 ([Ki])
P_ (Y -V)f=0 forall feClz)®.
Proof. We can show that
(14 (~D)VODa0)(3 — ) = (¥ = )1 - wo).
by the direct calculation. Considering the action on C[z]®¥, we have

(14 (—)NV=D20) (Y — P f = 0,

for all f € Clz]®¥. Using this formula and Proposition A.1 (i), we obtain the desirous
result. a

From Lemma A.3 and Lemma A.4, we know that
PEY —PVf=0 forall feClz]®n.
On the other hand, the following statement can easily be proved:

Lemma A.5 Let A be a operator of the form, A = T uety Jutd with g, € Clz]. If Af =0
- for all f € C[z]S¥, then A can be represented in the following form:

A= > §i(3,—1) for some §; € (C[:v]GN.
3
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Proof. The operator A can be rewritten as

A= 3 g, 5Gi 1)@ —1)+§ forsome g ; €Cla].

jl yeeerdk

Then the assumption of the proposition means g = 0, which gives the desirous result. O

Applying Lemma A.5 to Lemma A.4, we conclude that
PO — ) =Y §(z1,--,an)(3 — 1) for some gj(z1,-..,2zn) € Cla].  (A3)
J ' _

Applying (p’)~! completes the proof of Lemma 4.3.

Appendix B: Equivalence of the two ‘expressior'ls for the norm
formula ' |

In Appendix B, we will give a proof of equivalence between two expressions of the norm
formulas. We first begin with considering the Jack case.
Let X be a partitions satisfying the following conditions (see Figure 1 below):

AP—I > ’\P == ’\P+T1 -1> )‘P+7‘1 == )‘P+T1+72—2
, >0 > Apprdetrmoy = 0= Appridetrm— > Aptridedrn =000 = 0,
All =t =)‘;1 > )‘;1+1 == /\;1+32

> > Xttt = = Ao > Aggtpen =0 = 0

We further define p as p = (Ag,---,Ap + 1,- -+, AN).

Figure 1: Young diagram of A and p

Calculating the ratio (J‘(f),J‘(‘ﬁ))gﬁ)/(J)(\m,Jgﬁ))gﬂ) by using (4.5) or (4.6), one can show
that both cases reduce to
(IO, IO = MM+ Bp—i) M- d—1+B(p—i)
(O TPE G =X+ Bp—i=1) M-d—1+B8(p—i-1)
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(Smtl+B(r—1) smt-+s+1+f(rit+ - +rm—1)
1+B(r—1) Smtc s+ 1+8r+ - +rm—1)

Pri_ _ smtBritr) smt-satB(rit - trm)
Sm + B Sm + Sm—1+ B(ry +12) Smt-t+s1+P(ri++ )
ySmtosi+B(N-—p+1) 1
Smt--+8s+1+B(N—-p) B

On the other hand, if we consider the simplest case A = ¢, both (4.5) and (4.6) reduce
to (1,1)&5 ) = (BN)Y/(B")N. Hence, by induction, we conclude that (4.5) and (4.6) are
equivalent for all .

The Hermite and Laguerre cases can be proved in the similar fashion.
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