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$0$ . Introduction. Let $X$ be a compact set in $\mathrm{C}^{N}$ and $\hat{X}$ its polynomial hull:

$\hat{X}:=$ { $(Z_{1},$
$\ldots,$

$Z_{N})\in \mathrm{C}^{N}$ : $|p(z_{1},$
$\ldots,$

$z_{N})|\leq||p||_{X}$ for all polynomials $p$},

$\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{w}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{e}\mathrm{r}$

radial limit values $g^{*}(e^{*\theta})$ belonging to $X$ for $\mathrm{a}.\mathrm{e}$ . $\theta$ , then, by the maximum modulus principle, $\hat{X}$ contains
the analytic disk $g(\Delta)$ . In general, we say a set $S$ has analytic structure if it contains an analytic disk $g(\Delta)$ .
In this note, we discuss well-known examples of Stolzenberg [S] and Wermer [W] and recent modifications
which show that a compact set can have non-trivial hull (i.e., $\hat{X}\neq X$ ) with $\hat{X}$ (or at least $\hat{X}\backslash X$ ) containing
no analytic structure. We remark that in both examples, the set $\hat{X}$ is constructed as alimit (in the Hausdorff
metric) of compact subsets of analytic varieties in $\mathrm{C}^{2}$ .
1. The Stolzenberg Example. Stolzenberg’s set $X$ is a subset of the topological boundary of the bidisk
$\Delta\cross\Delta$ in $\mathrm{C}^{2}$ such that the origin $(0,0)$ lies in $\hat{X}$ . However, the projection of the hull in each coordinate
plane contains no nonempty open set; hence $\hat{X}$ contains no analytic structure. The rough idea of the
Stolzenberg construction is, first of all, to take a countable dense set of points $\{a_{j}\}$ in the punctured disk
$\{t\in \mathrm{C} : 0<|t|<1\}$ and form the algebraic varieties $C_{j}:=\{(z, w)\in \mathrm{C}^{2} : (z-a_{j})(w-a_{j})=0\}$ . These
varieties avoid $(0,0)$ and have the property that each of the coordinate projections $\pi_{z}$ and $\pi_{w}$ of the union
$\bigcup_{j}(C_{j}\cap(\Delta\cross\Delta))$ equals $\{a_{j}\}$ . Then a decreasing sequence of compact subsets $X_{1}$. of the topological boundary
of the bidisk is constructed inductively so that $(0,0)$ lies in $\hat{X}_{\dot{*}}$ for each $i$ and $\hat{X}_{i}\cap(\cup^{i}C)j=1j=\emptyset$ ; i.e., the
hulls $\hat{X}_{\dot{*}}$ avoid more and more of the algebraic varieties $C_{j}$ . The intersection $X:=\cap X_{\dot{*}}$ is the desired set.
Remarks. Although the coordinate projections of $\hat{X}$ are nowhere dense, they have positive Lebesgue measure
(as subsets of $\mathrm{R}^{2}$ ). This can be seen as follows: first of all, despite the lack of analytic structure in $\hat{X}$ ,
(holomorphic) polynomials are not dense in the continuous (complex-valued) functions on $\hat{X}$ , or, in the
standard notation of uniform algebras, $P(\hat{X})\neq C(\hat{X})$ . Indeed, for any $p\in P(\hat{X}),$ $||p||_{\dot{X}}=||p||_{X}$ ; thus if
$f\in C(\hat{X})$ satisfies $|f(0, \mathrm{o})|>||f||\mathrm{x}$ (such $f$ clearly exist), $f\not\in P(\hat{X})$ . Now if the coordinate projections of
$\hat{X}$ have positive Lebesgue measure, by the Hartogs-Rosenthal theorem, the functions $\overline{z}$ and $\overline{w}$ are in $P(\hat{X})$ ;
then, using the Stone-Weierstrass theorem, we get that $P(\hat{X})=C(\hat{X})$ , a contradiction.
Further Examples. By choosing $\{a_{j}\}$ a bit more carefully (in particular, to avoid an entire interval $[a, b]$

instead ofjust the origin), and by slightly modifying the construction of the sets $X_{*}.$ , Fornaess and the author
proved the following.

Theorem 1 $([\mathrm{F}\mathrm{L}])$ . Let $D$ be a boun$ded$ domain in $\mathrm{C}^{2}$ with $\overline{D}\wedge=\overline{D}$ and such that both coordinate
projections of $D$ yield the unit disk. Let $0<a<b<1$ . Then there exists a compact set $X\subset\partial D$ such that
$\hat{X}$ contains no analytic struct $\mathrm{u}re$ but with $[a, b]\cross[a, b]\subset\hat{X}\backslash X$ .
We remark that $[a, b]\cross[a, b]$ is $non-plu\dot{n}p_{\mathit{0}}lar$ in $\mathrm{C}^{2}$ ; i.e., if a plurisubharmonic function $u$ is equal $\mathrm{t}\mathrm{o}-\infty$

on $[a, b]\cross[a, b]$ , then $u\equiv-\infty$ .
Abstracting the concrete ideas in [FL], Duval and the author generalized Theorem 1.

Theorem 2 $([\mathrm{D}\mathrm{L}])$ . Let $D$ be a boun$ded$ domain in $\mathrm{C}^{N}$ with $\overline{D^{\wedge}}=\overline{D}$ . Given $K\subset D$ with $I\mathrm{f}=\hat{I}\mathrm{f}$ (or
$I\mathrm{f}\subset\overline{D}$ with $IC=\hat{K}=K\overline{\cap\partial}D$), there exists $X\subset\partial D$ compact with $K\subset\hat{X}$ such that $\hat{X}\backslash I\mathrm{f}$ contains no
analytic struct $u\mathrm{r}\mathrm{e}$ . In $p$articular, if $I\zeta$ contains no analytic struct $u\mathrm{r}e$, then $\hat{X}$ contains no analytic struct $u\mathrm{r}e$ .
As a corollary, by taking $K=\Gamma\cross\ldots\cross\Gamma$ ( $N$ times) where $\Gamma$ is a Jordan arc in $\mathrm{C}$ with positive Lebesgue
measure (in $\mathrm{R}^{2}$), we get a compact set $X$ in $\partial D$ whose hull $\hat{X}$ contains no analytic structure but such that
$\hat{X}\backslash X$ has positive Lebesgue measure in $\mathrm{R}^{2N}$ .

Remarks. Intuitively, one might expect that if $\hat{X}\backslash X$ is nonempty but contains no analytic structure, then
$\hat{X}\backslash X$ should still be ((

$\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}$
” in some sense. The previous two theorems show that $\hat{X}\backslash X$ can still be quite
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“large” in certain cases. The next result, due independently to Alexander and Sibony, shows that $\hat{X}\backslash X$

is always “large” when $\hat{X}\backslash X$ is nonempty but contains no analytic structure. Below, $h_{2}(S)$ denotes the
Hausdorff 2-measure of a set $S$ .

Theorem 3 (Alexander [A1], Sibony [Si]). Let $X\subset \mathrm{C}^{N}$ be compact and let $q\in\hat{X}\backslash X$ . If there exists
a $\mathrm{n}$eighborhood $U$ of $q$ in $\mathrm{C}^{N}$ with $h_{2}(\hat{X}\cap U)<+\infty$ , then $\hat{X}\cap U$ is $a$ one-dimensional analytic subvariety
of $U$ .
As a corollary, if $\hat{X}\backslash X\neq\emptyset$ and $\hat{X}\backslash X$ contains no analytic structure, then $h_{2}(\hat{X}\backslash X)=+\infty$ .

2. The Wermer Example. In 1982, Wermer [W] constructed a compact set $X$ in $\partial\Delta\cross \mathrm{C}\subset \mathrm{C}^{2}$ ; i.e.,
$\pi_{z}(X)=\partial\Delta$ (recall $\pi_{z}$ denotes the projection onto the first coordinate), with $\pi_{z}(\hat{X})=\overline{\Delta}$ and such that
$\hat{X}\backslash X\subset\Delta\cross \mathrm{C}$ does not contain any topological disk; i.e., there is no continuous nonconstant $g$ : $\Deltaarrow \mathrm{C}^{2}$

with $g(\Delta)\subset\hat{X}\backslash X$ . Clearly since $\pi_{z}(\hat{X}\backslash X)=\Delta$ , the reason $\hat{X}\backslash X$ contains no analytic structure is not
because of “small” coordinate projections as in the Stolzenberg example. Here, $\hat{X}$ is constructed as a limit
(in the Hausdorff metric) of Riemann surfaces $\Sigma_{n}\mathrm{o}\mathrm{V}\mathrm{e}\mathrm{r}\overline{\Delta}$ which branch over more and more points. Starting
with a countable dense set of points $\{a_{j}\}$ in $\overline{\Delta}$ , one chooses a sequence $\{c_{j}\}$ of positive numbers decreasing
rapidly to $0$ so that the graphs of the $2^{n}$ -valued functions

$g_{n}(z):=c1\sqrt{z-a_{1}}+c2(z-a_{1})\sqrt{z-a_{2}}+\ldots+C_{n}(Z-a_{1})\cdots(Z-an-1)\sqrt{z-a_{n}}$

over $\overline{\Delta}$ form the desired Riemann surfaces $\Sigma_{n}$ . To be precise, the actual construction done in [W] takes place
over the disk of radius one-half centered at the origin in the $z$ -plane; this yields the estimate $|a-b|<1$ for
$|a|,$ $|b|<1/2$ .
Remarks. Although $\hat{X}\backslash X$ contains no analytic structure, there remains some semblance of analyticity in
this set. A result of Goldmann [G] shows that functions in the uniform algebra $P(X)$ behave like analytic
functions in the sense that if $f\in P(X)$ vanishes on an open set $U$ (relative to $\hat{X}$ ), then $f$ vanishes identically.
Such a uniform algebra is called an analytic algebra.

Further Examples. One can choose the parameters in the Wermer construction so that the intersection of
$\hat{X}\backslash X$ with any analytic disk is ((

$\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}$ ”.

Theorem 4 $(1^{\mathrm{L}}])$ . There exist $X$ compact in $\partial\Delta\cross \mathrm{C}$ with $\pi_{z}(\hat{X})=\overline{\Delta}$ and such that $g(\Delta)\cap(\hat{X}\backslash X)$ is
polar in $g(\Delta)$ for all $H^{\infty}$ disks $g$ .

Note that in the Wermer example, we have no analytic structure in $\hat{X}\backslash X$ ; however, the set $X$ itself
can contain lots of analytic disks. Indeed, we have the following “fattening lemma’) of Alexander.

Theorem 5 (Alexander [A2]). There exists a Wermer-type set $X(X$ compact in $\partial\Delta\cross \mathrm{C}$ with $\pi_{z}(\hat{X})=\overline{\Delta}$

and such that $\hat{X}\backslash X\subset\Delta\cross \mathrm{C}$ contains no analytic struct $\mathrm{u}\mathrm{r}e$) such that for all proper, closed $s\mathrm{u}$ bsets $\alpha$ of
$\partial\Delta$ and all $M>0$ , setting

$Z:=x\cup\{(z, w) : z\in\alpha, |w|\leq M\}$ ,

we $h$ave $\hat{Z}\backslash Z=\hat{X}\backslash X$ .

Remarks. One can also construct the Wermer set $\hat{X}$ as a decreasing intersection of the generalized lemniscates

$X_{n}:=\{(z, w) : |z|\leq 1/2, |p_{n}(_{Z}, w)|\leq\epsilon_{n}\}$

where $\{p_{n}\}$ are polynomials in $(z, w)$ which satisfy
1. $\Sigma_{n}=\{(z, w) : |z|\leq 1/2, p_{n}(z, w)=0\}$ ;
2. $p_{n}(z, w)=c_{n}^{2^{n}}Z^{m_{\mathrm{n}}}+R_{n}(z, w)$ where $\deg R_{n}<m_{n}$ $:=\deg p_{n}$ ;
3. $\{c_{n}\},$ $\{\epsilon_{n}\}$ tend to $0$ rapidly enough so that $X_{n+1}\subset X_{n}$ for all $n$ and $\hat{X}=\bigcap_{n}X_{n}$

(cf., [W]). Thus, from results in [LT], if
$\lim_{narrow\infty}(\frac{\epsilon_{n}}{c_{n}^{2^{n}}})^{1/m_{\mathrm{n}}}=0$ ,

the set $\hat{X}\backslash X$ is pluripolar in $\mathrm{C}^{2}$ (see [L]).
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In general, if $X$ is compact in $\partial\Delta\cross \mathrm{C}$ with $\pi_{z}(\hat{X})=\overline{\Delta}$ , then $\hat{X}\backslash X\subset\Delta\cross \mathrm{C}$ is pseudoconcave in the
sense of Oka; i.e., $(\Delta\cross \mathrm{C})\backslash (\hat{X}\backslash X)$ is pseudoconvex. In the terminology of set-valued functions, $\hat{X}\backslash X$

is the graph of an analytic multifunction over $\Delta$ (cf. [S1]). Yamaguchi [Y] has shown in this setting that
the function $zarrow 1o\mathrm{g}C(\hat{X}_{z})$ , where $\hat{X}_{z}:=\{w : (z, w)\in X\}$ is the fiber of $\hat{X}$ over $z$ and $C(S)$ denotes the
logarithmic capacity of the compact set $S$ , is subharmonic on $\Delta$ . Thus, if there exists one $z$ in $\Delta$ such that
the fiber $\hat{X}_{z}$ is non-polar in $\mathrm{C}$ , then $\hat{X}\backslash X$ is non-pluripolar as a subset of $\mathrm{C}^{2}$ .

3. Final comments and open questions. Theorem 1 gives a concrete example of a compact set $X$ with
$\hat{X}\backslash X$ being non-pluripolar without containing any analytic structure. It is unknown if the Wermer example
can be modified in this manner.

1. Does th$eree\dot{\mathrm{K}}stx$ compact in $\partial\Delta\cross \mathrm{C}$ with $\pi_{z}(\hat{X})=\overline{\Delta}$ such that $\hat{X}\backslash X$ contains no analytic structu$\mathrm{r}e$

but is non-pluripolar?
From the discussion in section 3, once $\hat{X}_{z}$ is non-polar in $\mathrm{C}$ for one $z$ in $\Delta$ , then $\hat{X}\backslash X$ is non-pluripolar in
$\mathrm{C}^{2}$ .

Suppose $S\subset\Delta\cross \mathrm{C}$ is pseudoconcave. Sadullaev has shown [Sa] that $S$ is pluripolar in $\mathrm{C}^{2}$ if and only
if each fiber $S_{z}$ is polar (“only if” follows from Yamaguchi’s result).

2. Let $S\subset\Delta\cross \mathrm{C}$ be pseudoconcave with each fiber $S_{z}$ being polar. Is it true that for each $r<1$ ,
$S^{r}:=S\cap\{|z|<r\}$ is complete pluripolar,$\cdot$ i.e., there exists $u$ plurisubharmonic in $\{|z|<r\}\cross \mathrm{C}$ such
that

$S^{r}=\{(Z, w) : u(z, w)=-\infty\}$ ?

Is it $tr\mathrm{u}e$ that $S\cap\{|z|\leq r\}$ is polynom$i$ally convex for each $r<1$ ?

Recall that for the Stolzenberg example, $P(\hat{X})\neq C(\hat{X})$ . Recently, Izzo [I] has constructed an example of
a compact set $X$ in the unit sphere $\partial B$ in $\mathrm{C}^{3}$ which is polynomially convex $(\hat{X}=X)$ but with $P(X)\neq C(X)$ .
Note that a subset of the unit sphere $\partial B$ in $\mathrm{C}^{N}$ contains no analytic disk; thus there is no analytic obstruction
to $P(X)$ being dense in $C(X)$ . However, it is unkown if such an example can be constructed in $\mathrm{C}^{2}$ .

3. Suppose $X\subset\partial B\subset \mathrm{C}^{2}$ is compact and polynomially convex. Is $P(X)=C(X).$?

We end this note by remarking that Alexander [A3] has recently constructed a compact set $X$ in the
unit torus $\partial\Delta\cross\partial\Delta$ in $\mathrm{C}^{2}$ such that the origin $(0,0)$ lies in $\hat{X}$ but such that $\hat{X}$ contains no analytic structure.
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