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Abstract

Three dimensional hypersurface purely elliptic singularities are classified into three
classes according to the shape of their Newton boundaries.

A lot of examples of their defining equations are obtained from the defining equa-
tions of hypersurface simple $K3$ singularities. There are at least 95 types for the
defining equations of hypersurface purely elliptic singularities of the type $(0,1)$ or
$(0,0)$ .

1 Introduction

In the theory of normal two-dimensional singularities, simple elliptic singularities and cusp
singularities are regarded as the most reasonable class of singularities after rational double
points. They are characterized as $\mathrm{t}\mathrm{w}\infty \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ purely elliptic singularities of $(0,1)$-type
and of $(0,0)$-type, respectively. What are natural generahizations in three-dimensional case
of simple $\mathrm{e}\mathrm{U}\mathrm{i}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{c}$ singularities. The notion of a simple $K3$ singularity was defined in [4] as
a three-dimensional isolated Gorenstein purely $\mathrm{e}\mathrm{U}\mathrm{i}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{c}$ singularity of $(0,2)$-type. A simple
$K3$ singularity is characterized as a normal three-dimensional isolated singularity such
that the exceptional set of any $\mathrm{Q}$-factorial terminal modification is a three-dimensional $K3$

surface (see [4]). Here we are interested in three-dimensional hypersurface purely elliptic
singularities of $(0,\dot{i})$-type for $i=0$ or $i=1$ . Let $f\in \mathrm{C}[z_{0,1}Z, Z_{2}, z3]$ be a polynomial which
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is non-degenerate with respect to its Newton boundary $\Gamma(f)$ in the sense of [5], md whose
zero locus $X=\{f=0\}$ in $\mathrm{C}^{4}$ has an isolated singularity at the origin $0\in G$ . Then the
condition for the singularity (X, $x$) to be a purely elliptic singularity of $(0,0)$-type is given
by a property of the Newton boundary of $\Gamma(f)$ of $f$ .

In this paper, we give the method to obtain the principal parts of defining equations,
which define three-dimensional hypersurface purely $\mathrm{e}\mathrm{U}\mathrm{i}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{C}$ singularities of $(0,i)$-type for
$i=0$ to $\dot{i}=1$ .

2 Preliminaries

In this section, we recall some definitions and results from [1], [4] and [6].
First we define the plurigenera $\delta_{m},m\in \mathrm{N}$ , for normal isolated singularities and define

purely elliptic singularities. Let (X, $x$) be a normal isolated singularity in an n-dimensional
analytic space $X$ , and $\pi:(M, E)arrow(X,x)$ a good resolution. In the following, we assume
that $X$ is a sufficiently small Stein neighbourhood of $x$ .

DEFINITION. ([6]) Let (X, $x$ ) be a normal isolated singularity. For any positive integer
$m$ ,

$\delta_{m}(X,X):=dim_{\mathrm{C}}\Gamma(X-\{x\}, \mathcal{O}(mK))/L^{2/m}(x-\{x\})$ ,

where $K$ is the canonical line bundle on $X-\{x\}$ .
Then $\delta_{m}$ is finite and does not depend on the choice of a Stein neighborhood.
DEFINITION. ([6]) A singularity (X, $x$) is said to be purely elliptic if $\delta_{m}=1$ for every

$m\in \mathrm{N}$ .
When $X$ is a two-dimensional analytic space, purely $\mathrm{e}\mathrm{U}\mathrm{i}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{c}$ singularities are quasi-

Gorenstein singularities, i.e., there is a nowhere vanishing holomorphic 2-form on $X-\{x\}$

(see [2]). But in higher dimension, purely elliptic singularities are not always quasi-
Gorenstein (see [3]).

In the following, we assume that (X, $x$) is quasi-Gorenstein. Let $E=\cup E_{i}$ be the
decomposition of the exceptional set $E$ into its irreducible components, and write

$K_{M}= \pi^{*}K\mathrm{x}+\sum_{i\in I}miE_{i^{-}}\sum_{j\in j}mjEJ$

with $m_{i}\geq 0,m_{j}\geq 0$ . Ishii [1] defined the essential part of the exceptional set $E$ as
$E_{j}= \sum_{j\in J}mjE_{J}$ , and showed that if (X, $x$) is purely elliptic, then $m_{j}=1$ for ffi $j\in J$ .
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DEFINITION. $([1],[6])$ A quasi-Gorenstein purely elliptic singularity (X, $x$) is of $(\mathrm{o},\mathrm{i})-$

type if $H^{n-1}(E_{J}, \mathcal{O}_{E})$ consists of the $(\mathrm{O},\mathrm{i})$-Hodge component $H^{0,i}(E_{J})$ , where

$\mathrm{C}\simeq H^{n-1}(EJ, \mathcal{O}E)=Gr_{p}^{0-1}Hn(E_{J})=\bigoplus_{i1}^{-1}n=H0,i(E_{J})$

$n$-dimensional quasi-Gorenstein purely elliptic singularities are classified into $2n$ classes,

including the condition that the singularity is Cohen-Macaulay or not.
Next we consider the case where (X, $x$) is a hypersurface singularity defined by a non-

degenerate polynomial $f= \sum a_{\nu}z^{\nu}\in \mathrm{C}[z_{0}, z_{1}, \ldots,Z]n$
’ and $x=0\in \mathrm{C}^{n+1}$ . Recall that the

Newton boundary $\Gamma(f)$ of $f$ is the union of the compact faces of $\Gamma_{+}(f)$ , where $\Gamma_{+}(f)$ is the

convex hull of $\bigcup_{a_{v}\neq 0}(\nu+\mathrm{R}_{\mathrm{O}}^{n+1})$ in $\mathrm{R}^{n+1}$ . For any face $\triangle$ of $\Gamma_{+}(f)$ , set $f_{\Delta}:= \sum_{\nu\in\Gamma\nu}aZ^{\mathcal{V}}$ .
We say $f$ to be nondegenerate, if

$\frac{\partial f_{\Delta}}{\partial z_{0}}=\frac{\partial f_{\Delta}}{\partial z_{1}}=\cdots=\frac{\partial f_{\Delta}}{\partial z_{n}}=0$

has no solution in $(\mathrm{C}^{*})^{n+1}$ for any face A. Where $f$ is nondegenerate, the condition for
(X, $x$) to be a purely $\mathrm{e}\mathrm{U}\mathrm{i}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{c}$ singularity of $(\mathrm{O},\mathrm{i})- \mathrm{t}\mathrm{y}\mathrm{P}\mathrm{e}$ is given as follows:

THEOREM 2. 1 Let $f$ be a nondegenerate polynomial and suppose $X=\{f=0\}$ has an
isolated singularity at $x=0\in \mathrm{C}^{n+1}$ .

(1) (X, $x$) is purely elliptic if and only if $(1, 1, \ldots, 1)\in\Gamma(f)$ .
(2) Let $n=3$ and let $\triangle 0$ be the face of $\Gamma(f)$ consisting the point (1, 1, 1, 1) in $fhe$ relative

interior of $\triangle 0$ . Then we have
(i) (X, $x$) is a singularity of $(0,2)$ -type if and only if $d\dot{i}m_{\mathrm{R}}\triangle_{0}=3$ .
(ii) (X, $x$) is a singularity of $(0,1)$ -type if and only if $d_{\dot{i}}m_{\mathrm{R}}\triangle_{0}=2$ .
(iii) (X, $x$) is a singvrarity of $(0,0)$ -type if and only if $d_{\dot{i}m_{\mathrm{R}}}\triangle_{0=1}$ or $dim_{\mathrm{R}}\Delta 0=0$ .

3 Principal parts

In this section, we give examples of the principal parts of hypersurface purely elliptic

singularities of $(0,i)$-type defined by a nondegenerate polynomial for $i=0$ to $\dot{i}=1$ .

EXAMPLE. Let (X, $x$) be the hypersurface purely $\mathrm{e}\mathrm{U}\mathrm{i}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{c}$ singularity

$xy_{Zw+X}++p+q+y^{5}Z^{5r}5++w^{5}=0+s$

71



in $\mathrm{C}^{4}$ . Blow up the point $O=$ (0,0,0,0), let $F$ be the exceptional set, and let $\mathrm{Y}$ be the
strict transform of $X$ . In this case the morphism $\pi:\mathrm{Y}arrow X$ is the canonical resolution of
X. The exceptional set $E$ consists of four 2-dimensional projective spaces in $F$ , forming a
tetrahedron.

EXAMPLE. Let (X, $x$) be the hypersurface purely elliptic singularity

$x^{2}+y^{3743s}+Z+w+xyzw=0+$

in $\mathrm{C}^{4}$ . Blow up the point $O=(\mathrm{O},0,0,\mathrm{o})$ with weight (21,14,6,1), let $F$ be the exceptional
set, and let $\mathrm{Y}$ be the strict trans form of X. $\mathrm{h}$ this case the morphism $\pi:\mathrm{Y}arrow X$ is the
canonical resolution of $X$ . The exceptional set $E$ is a rational surface with a singularity
$T_{2,3.7}$ in a weighted projective space $F$ , i.e., $\mathrm{P}(21,14,6,1)$ .

EXAMPLE. Let (X, $x$ ) be the hypersurface singularity defined by the equation

$x^{2}+y^{3}+Z^{7}+z^{6}w+w^{43}+X6+syzw=0$

in $\mathrm{C}^{4}$ . Then the singularity (X, $x$) is a purely eliptic singularity of $(0,1)$-type.
EXAMPLE. Let (X, $x$) be the hypersurface singularity defined by the equation

$x^{2}+y^{37}+\mathcal{Z}+\lambda zw+\mu w+w+xyzw=0664243+\theta$

in $\mathrm{C}^{4}$ . Then the we obtain:
(1) $\mu\neq 0\Leftrightarrow(0,2)$-type.
(2) $\mu=0,$ $\lambda\neq 0\Leftrightarrow(0,1)$-type.
(3) $\mu=0,$ $\lambda=0\Leftrightarrow(0,0)$-type.
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