点ソースモデルに関する対数ポテンシャル逆問題に対する 窓 Fourier 変換の応用

岡山理科大学総合情報学部 大江貴司 (Takashi OHE) 大阪大学工学部 大中幸三郎 (Kohzaburo OHNAKA)

1 はじめに

偏微分方程式の逆問題の現実問題への適用を考える場合、対象領域の部分境界でしかデータが得 られないことがある [1]。本稿ではこの様な状況の下で、点ソースモデルに関する対数ポテンシャ ル逆問題 [2] について考える。とくに点ソースモデルのパラメータ推定逆問題に対し窓 Fourier 変 換を適用した解法を示し、その数値的性質について示す。

2 対数ポテンシャル逆問題

領域 $\Omega \subset \mathbf{R}^2$ を原点を中心とした半径 R の円領域とし、 $\Gamma = \partial \Omega$ とする。また Γ_{obs} を零でな い長さを持つ Γ の部分集合とする。領域 Ω 内で定義されたソース項 f によって生成される対数 ポテンシャル $u_L(f)$ を

$$u_L(f)(x,y) = -\frac{1}{2\pi} \int \int_{\Omega} f(x',y') \log \sqrt{(x-x')^2 + (y-y')^2} dx' dy', \quad (x,y) \in \Omega$$
(1)

で定義する。ただし、ソース項は個数 N および強度 $q \neq 0$ が既知の点ソースモデル

$$f(x,y) = q \sum_{j=1}^{N} \delta(x - x_j, y - y_j), \quad (x_j, y_j) \in \Omega$$

$$\tag{2}$$

で表されるものとする [2]。このときに次の問題を考える。

[問題]

関数 g を Γ 上の解析関数とする。式 (2) で表されるソース項 f に対する対数ポテンシャル $u_L(f)$ について $u_L(f)(x,y) = g(x,y), (x,y) \in \Gamma_{obs}$ が成立するするとき、点ソースモデル f の未知パ ラメータ $(x_j,y_j), j = 1, 2, \dots, N$ を決定せよ。

この問題の解は存在すれば一意である。これは $u_L(f)|_{\Gamma}$ が Γ 上で解析的であり、 $u_L(f)|_{\Gamma_{obs}}$ を 解析接続することにより $u_L(f)|_{\Gamma}$ が一意的に得られること、および点ソースモデルのパラメータ $(x_j, y_j), j = 1, 2, \dots, N$ が $u_L(f)|_{\Gamma}$ の Fourier 係数列

$$\gamma_k \equiv \int_0^{2\pi} u_L(f)(R\cos\theta, R\sin\theta) \exp(ik\theta) d\theta, \quad k \in \mathbf{Z}$$
(3)

に対して一意であることを用いて証明できる [3]。ここで $u_L(f)|_{\Gamma}$ は $u_L(f)$ の Γ への制限を表す。 なお、点ソースモデルのパラメータ $(x_j, y_j), j = 1, 2, \dots, N$ と Fourier 係数列 $\{\gamma_k, k \in \mathbb{Z}\}$ の間

には次の関係式が成立する。

$$\gamma_{k} = \begin{cases} \frac{q}{2k} \sum_{j=1}^{N} \left(\frac{x_{j} + iy_{j}}{R}\right)^{k}, & k \ge 1\\ -Nq \log R, & k = 0\\ \frac{q}{2k} \sum_{j=1}^{N} \left(\frac{x_{j} - iy_{j}}{R}\right)^{k}, & k \le -1 \end{cases}$$

$$(4)$$

式 (4) は点ソースモデルのパラメータ $(x_j, y_j), j = 1, 2, \dots, N$ を決定するためには、Fourier 係数 $\gamma_k, k = 1, 2, \dots, N$ を求めればよいことを示している [4,5]。

実際に解を求める際には、 $u_L(f)|_{\Gamma}$ の Fourier 係数列 $\{\gamma_k, k \in \mathbb{Z}\}$ を $u_L(f)|_{\Gamma_{obs}}$ から求める必要がある。本稿ではこの方法として窓 Fourier 変換を用いた方法を示す。

3 窓 Fourier 変換

窓 Fourier 変換とは、 $h \in L^2(\Gamma)$ に対する Γ_{obs} を台として持つような関数 $w \in L^{\infty}(\Gamma)$ を重み 関数とした Fourier 変換

$$\xi_k(h) = \int_0^{2\pi} h(R\cos\theta, R\sin\theta) \dot{w}(R\cos\theta, R\sin\theta) \exp(ik\theta) d\theta, \quad k \in \mathbb{Z}$$
(5)

である [6]。関数 $h \in L^2(\Gamma)$ の窓 Fourier 変換 $\xi(h) \equiv \{\xi_k(h), k \in \mathbb{Z}\}$ は $\xi(h) \in l^2$ であり、 h の Fourier 係数列 $\gamma(h) \equiv \{\gamma_k(h), k \in \mathbb{Z}\}$ との間に $\xi(h) = W\gamma(h)$ となるような有界線形作用素 W が存在する。

作用素 W は定義域 l^2 上で退化作用素であり、その逆作用素は一意ではない。しかし、定義域 を Γ 上の解析関数の Fourier 係数列の集合に制限した場合には、逆作用素は一意となることが証 明できる。本稿で考える問題では $u_L(f)|_{\Gamma}$ が解析的であることから、その窓 Fourier 変換に対し Fourier 係数列は一意となる [3]。したがって解析関数の Fourier 係数列を値域とする W の逆作用 素を構成すればよい。

4 逆問題の解法

前節で示した作用素 W の逆作用素の構成を考える。窓 Fourier 変換 ξ および作用素 W を用いると、Fourier 係数列 γ を

$$\gamma = \lambda W \gamma + (I - \lambda W) \gamma = \lambda \xi + (I - \lambda W) \gamma$$
(6)

の形に分解することができる。ここで λ は定数である。式 (6) を用いて

$$\gamma^{(0)} = \xi \tag{7}$$

$$\gamma^{(n)} = \lambda \xi + \gamma^{(n-1)} - \lambda W \gamma^{(n-1)}, \quad n \ge 1$$
(8)

で生成される γ の近似列 { $\gamma^{(n)}$ } を考える。このとき $\gamma^{(n)}$ の存在範囲は解析関数の Fourier 係数 列の範囲に限定されないため、 $\gamma^{(n)}$ が収束した場合においてもその極限が γ であることは保証されない。そこで $\gamma^{(n)}$ の存在範囲を限定するため、次式により近似列を構成することを考える。

$$\gamma^{(n)} = \lambda \xi + \gamma^{(n-1)} - \lambda W g\left(\gamma^{(n-1)}\right), \quad n \ge 1$$
(9)

ここで g(·) は、次式で構成される非線形作用素である。

$$g(\gamma) = \{g_k(\gamma), k \in \mathbf{Z}\} \in l^2$$

$$(10)$$

$$g_{k}(\gamma) = \begin{cases} \frac{1}{2k} \sum_{j=1}^{k} z_{j}(\gamma)^{k}, & k \ge 1\\ -Nq \log R, & k = 0\\ \frac{q}{2k} \sum_{j=1}^{N} \overline{z_{j}(\gamma)}^{k}, & k \le -1 \end{cases}$$
(11)

ただし $z_j(\gamma), \ j=1,2,\cdots,N$ は

$$\gamma_k = \frac{q}{2k} \sum_{j=1}^N z_j(\gamma)^k, \ k = 1, 2, \cdots, N$$
(12)

の解を表す。作用素 $g(\cdot)$ は $\gamma \in l^2$ から点ソースモデルの Fourier 係数列の性質を満たすような数 列を生成する l^2 から l^2 への非線形作用素である。式 (9) により生成される近似列について、収束 した場合にその極限が γ であることが証明できる。

5 収束比の評価

式 (9) に含まれるパラメータ λ の近似解の収束に対する影響について考える。点ソースモデル の Fourier 係数列の真の値 γ について

$$\gamma = \lambda \xi + \gamma - \lambda W g(\gamma) \tag{13}$$

が成立することから、式(9)から式(13)を引くことにより

$$\delta\gamma^{(n)} = \delta\gamma^{(n-1)} - \lambda W\left(g\left(\gamma^{(n-1)}\right) - g(\gamma)\right) \tag{14}$$

を得る。ここで $\delta\gamma^{(n)} = \gamma^{(n)} - \gamma$ である。右辺第 2 項を $\delta\gamma^{(n-1)}$ により Taylor 展開し、高次項を 無視すると $\delta\gamma^{(n)}$ は

$$\delta \gamma^{(n)} \simeq \left(I - \lambda W \frac{\partial g}{\partial \gamma} \left(\gamma^{(n-1)} \right) \right) \delta \gamma^{(n-1)}$$
 (15)

で近似できる。よって

$$\left\| \frac{\delta \gamma^{(n)}}{\delta \gamma^{(n-1)}} \right\| \simeq \left\| I - \lambda W \frac{\partial g}{\partial \gamma} \left(\gamma^{(n-1)} \right) \right\|$$
(16)

を評価することにより、近似解の収束比、およびそのパラメータ λ に対する依存性が評価できる。

6 数值実験

第4節で示した解法に関する数値実験結果を示す。領域 Ω の半径を1とし、点ソースを図1に 示す位置に配置した。なお各点ソースの強度は q = 0.3 とした。対数ポテンシャルの観測部分区 間 Γ_{obs} は

$$\Gamma_{obs} = \bigcup_{m=1}^{M} \left\{ \theta \; \left| \; \frac{2(m-1)\pi}{M} - \frac{T}{2M} \le \theta \le \frac{2(m-1)\pi}{M} + \frac{T}{2M} \right. \right\}$$
(17)

で定義した。ここで M は観測部分区間の個数で 1, 2, 3 の値をとり、 T は観測部分区間全体の幅 で 180 度から 360 度まで 30 度きざみで変化させた。また、対数ポテンシャルの誤差を含む観測値 $\widetilde{u_L}(f)(x,y)$ を次式により生成した。

$$\widetilde{u_L}(f)(x,y) = u_L(f)(x,y) + n(0,l \cdot p)$$
(18)

$$p = \sqrt{\int_{\Gamma_{obs}} u_L(f)(x,y)^2 d\Gamma(x,y)} / \int_{\Gamma_{obs}} d\Gamma(x,y)$$
(19)

ここで、 $n(m,\sigma)$ は平均 m、標準偏差 σ の正規乱数を表す。また l はノイズレベルを表し、 0, 10^{-4} , 10^{-3} , 10^{-2} とした。

窓関数 w としては、次式で定義される Γ_{obs} の定義関数 $\chi_{\Gamma_{obs}}$ を用いた。

$$w(\theta) = \chi_{\Gamma_{obs}}(\theta) \equiv \begin{cases} 1, & \theta \in \Gamma_{obs} \\ 0, & \theta \in \Gamma \backslash \Gamma_{obs} \end{cases}$$
(20)

なお窓 Fourier 変換の計算には中点則による数値積分を用い、観測部分区間の個数 M が 1, 2, 3 の場合に対し、それぞれ 21, 22, 21 個の点を用いた。また式 (9) におけるパラメータ λ は 1 とし た。近似列 { $\gamma^{(n)}$ } の収束判定条件は、式 (12) の解 $z_j(\gamma), j = 1, 2, \dots, N$ を用いて

$$\left|z_{j}\left(\gamma^{(n)}\right) - z_{j}\left(\gamma^{(n-1)}\right)\right| < 10^{-6}, \quad j = 1, 2, \cdots, N$$
 (21)

とし、最大反復回数を500とした。

ノイズレベル *l* = 0 の場合について、収束に要した反復回数および点ソースの推定位置の最大 誤差の値を表1に示す。表1より、同じ部分区間の個数では部分区間の幅が増加するほど、また同 じ観測部分区間幅では観測部分区間の個数が増加するほど、収束に要する反復回数が減少するこ とがわかる。また収束した場合について、推定位置の誤差はほぼ同程度であることが確認できる。

ノイズレベルを変化させた場合について、点ソースの推定位置の最大誤差の値を表 2 に示す。 表 2 より、 10^{-4} , 10^{-3} および 10^{-2} 程度の観測誤差レベルに対して、推定位置の最大誤差はそれぞれ 10^{-5} , 10^{-4} および 10^{-3} 程度であり、ノイズレベルに対し 1/10 程度であることが確認できる。 また、推定位置の誤差は観測部分区間の大きさ、および個数にはほとんど影響されないことがわ かる。

最後に第5節で示した近似解の収束比、およびそのパラメータ λ に対する依存性に関する数値 結果を示す。領域 Ω および点ソースの配置は先に示したものと同じものをとり、観測区間の大き さ T を 300 度に固定した。観測部分区間の個数は 1 とし、パラメータ λ を 0.1 から 1.9 の範囲で 0.1 きざみで変化させた。また $\frac{\partial g}{\partial \gamma} \left(\gamma^{(n-1)} \right)$ の評価に用いる $\gamma^{(n-1)}$ としては、最終的に収束した推 定値を用いた。図 2 に近似解の収束比の真値と式 (16) による評価値のパラメータ λ に対する依 存性を示す。図 2 より、近似解の収束比を最適にする λ の値が存在することが確認できる。また 式 (16) により近似解の収束比がほぼ正確に評価でき、さらにそれを最適にする λ の値も正しく評 価できることがわかる。

7 まとめ

点ソースモデルに対する対数ポテンシャル逆問題において、境界の一部分におけるデータのみ が得られる場合に対する数値解法として窓 Fourier 変換を用いた数値解法を示した。また本稿で 示した数値解法に対する実験をおこない、複数の点ソースの位置が正確に推定できることが確認 できた。また観測誤差がある場合についても、推定位置の誤差は観測誤差レベルの 1/10 程度であ ることがわかった。さらに近似解の収束比に関する評価をおこない、実際の近似解の収束比がほ ば正確に評価できることが確認できた。

参考文献

[1] 久保, 逆問題, 培風館, 1992.

[2] Stromeyer, D., and Ballani, L., Manuscripta Geodaetica, 9(1984), 125-136.

[3] 大江, 大中, 日本応用数理学会論文誌, 7(1997), 295-306.

[4] 山谷, 大中, 日本応用数理学会論文誌, 7(1997), 65-78.

[5] Ohe, T., and Ohnaka, K., Appl. Math. Modelling, 19(1995), 429-436.

[6] Chui, C.K., An Introduction to Wavelets, Academic Press, Orlando, 1992.

図1. 点ソースの配置

表1. 部分区間の幅Tと収束に要した反復回数および推定位置の誤差

	部分区間の	個数 $M = 1$	部分区間の	個数 M = 2	部分区間の個数 M = 3	
T	反復回数	推定位置	反復回数	推定位置	反復回数	推定位置
		の誤差		の誤差		の誤差
180	N.C.	6.3E-2	N.C.	4.2E-2	N.C.	8.3E-3
210	N.C.	2.4E-2	N.C,	1.6E-2	396	1.8E-5
240	N.C.	8.6E-3	N.C.	7.1E-5	154	6.2E-6
270	206	9.8E-6	145	8.0E-6	66	2.3E-6
300	54	2.0E-6	45	1.7E-6	31	6.5E-7
330	31	8.5E-7	16	2.7E-7	15	1.2E-7
360	3	2.0E-7	3	1.7E-8	3	8.0E-11

注意: N.C. は収束しなかったことを表す。

表 2. ノイズレベルと推定位置の誤差

(a) 部分区間の個数 M = 1			(b)部分区間の個数 $M=2$				
ノイズレベル				 ノイズレベル			
T	10-4	10 ⁻³	10^{-2}	T	10-4	10^{-3}	10^{-2}
180*	6.3E-02	6.4E-02	7.5E-02	180*	4.2E-02	4.2E-02	5.2E-02
210*	2.4E-02	2.5E-02	4.4E-02	210*	1.6E-02	1.6E-02	1.9E-02
240*	8.6E-03	9.2E-03	1.5 E-02	240*	2.7E-05	4.2E-04	4.7E-03
270	1.2E-04	1.1E-03	1.1E-02	270	7.3E-05	8.0E-04	7.9E-03
300	4.7E-05	4.6E-04	4.6E-03	300	9.0E-05	9.1E-04	9.1E-03
330	1.5E-04	1.5E-03	1.5E-02	330	6.9E-05	6.9E-04	7.0E-03
360	1.7E-05	1.7E-04	1.7E-03	360	6.0E-05	6.0E-04	6.1E-03
注意: *のついた角度では収束せず。			 注意:*のついた角度では収束せず。				

(c) 部分区間の個数 M=3

	ノイズレベル						
<u> </u>	10-4	10^{-3}	10^{-2}				
180*	8.3E-03	8.6E-03	1.2E-02				
210	5.9E-05	6.8E-04	6.9E-03				
240	9.5E-05	1.0E-03	1.0E-02				
270	4.5E-05	4.6E-04	4.7E-03				
300	2.5 E-05	2.5E-04	2.5E-03				
330	4.1E-05	4.1E-04	4.1E-03				
360	4.5E-05	4.5E-04	4.4E-03				
注意:	*のついた1	角度では収	束せず。				

図 2. 近似解の収束比のパラメータλに対する依存性