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Abstract

We introduce and study a modified notion of planarity, in
which two regions of a map are considered adjacent when
they share any point of their boundaries (not an edge, as
standard planarity requires). We seek to characterize the
abstract graphs realized by such map adjacencies. We prove
some preliminary properties of such graphs, and give a poly-
nomial time algorithm for the following restricted problem:
given an abstract graph, decide whether it is realized by a
map in which at most four regions meet at any point. The
general recognition problem remains open.

1 Introduction

1.1 Motivation: Topological Inference

Suppose that you are told that four planar regions relate in
the following way: $A$ is inside $B;B$ overlaps $C;C$ touches
$D$ on the outside; $D$ overlaps $B;D$ is disjoint from $A$ ; and
$C$ overlaps $A$ . All four planar regions are “bubbles” with no
holes (to be rigorous: disc homeomorphs). Is this possible?
lf so, we would like a model, a picture of four regions so
related; if not, a proof of impossibility.

This deceptively simple extension of propositional logic
is known as the topological inference problem [5], and its spe-
cial cases, extensions, and variants are studied in the area
of geographic information systems [3, 4, 10, 5, 11]. Despite
much effort (and $\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{i}\mathrm{m}\dot{\mathrm{S}}$ in the literature [12, 4]. . .), no de-
cision algorithm and finite axiomatization for this problem
is known –although the problem becomes both finitely ax-
iomatizable and polynomial-time decidable in any number
of dimensions other than two. In fact, the following special
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case has been open since the $1960’ \mathrm{s}[2]$ : We are given the
status of all pairs of regions (we call this the fully conjunc-
tive case) when two regions either overlap or are disjoint
(that is, no two regions contain one another or touch on the
outside). This problem is known as the string graph prob-
lem, because the information can be capturpd as a graph
with the regions as nodes ( $\mathrm{o}\mathrm{v}\mathrm{e}\Gamma \mathrm{l}\mathrm{a}\mathrm{p}\mathrm{s}/\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{j}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}$ corresponds to
$\mathrm{a}\mathrm{d}\mathrm{j}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{n}\mathrm{t}/\mathrm{n}\mathrm{o}\mathrm{n}$-adjacent), and we can $\mathrm{a}_{\sim^{\mathrm{S}\mathrm{s}\mathrm{u}\mathrm{m}}}\mathrm{e}$ that the regions
are in fact, one-dimensional planar curves. In other words,
we are seeking a recognition algorithm for the intersection
graphs of planar curves. As we mentioned, it is open whether
this problem is decidable; it is known that there are infinitelv
many forbidden subgraphs; that recognition is at least NP-
hard [8]; and that there are string graphs that require expo-
nentially many string intersections for tlleir realization [9].

The difficulty of the string graph problem exposes the
fact that the complexity of topological inference stems to a
large extent from the messy “overlaps” relation. But many
practical applications are so structured that $\mathrm{I}\mathrm{l}\mathrm{O}$ two regions
in them overlap (think of political maps, for example). lVhat,

if we had a fully conjunctive formula in which the only rela-
tions between two regions that are allowed are “touches on
the outside” and “disjoint’)? In other words, which graphs
are the intersection graphs of closed disc homeomorphs with
disjoint interiors? This is the problem we study in this
paper. It follows from our results that it is in NP (Corol-
lary 2)) however) whether it is in $\mathrm{P}$ is a most important and
intriguing open problem, which we solve in an interesting
and natural special case.

1.2 Motivation: Planarity, Revisited

Planarity is undoubtedly one of the most basic, ancient,
and influential concepts in graph theory. The four color con-
jecture has been arguablv the most famous and productive
open $1$}$\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}$ in the area, recognizing planar graphs moti-
vated the development of such $\mathrm{b}\mathrm{a}s$ic methods as depth-first
search and $pq$-trees, and planarity plays a central role in
the recent work of Robertson and Seymour. Planar graphs
may be defined as the intersection graphs of planar regions
with disjoint interiors such that no four regions meet at a
point. But what if the emphasized condition is removed?
We obtain a very natural, intriguing, and heretofore little-
studied class of graphs that we call planar map graphs. For
example, the adjacencv graph of the United States shown in
Figure 1 is a fine example of a planar map graph (in fact, in
the special category of 4-planar graphs defined and studied
later) which is non-planar (the “corner states” Arizona-New
$\mathrm{M}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{C}\mathrm{o}-\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{o}$ -Utah form a $\mathrm{A}_{4}’$ , which, together with
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Figure 1: The USA graph.

Montana, creates a $K_{5}$ minor). Actually, it is trivial to
construct planar map graphs that are non-planar, since a
pizza (Figure $2(\mathrm{a})$ ) yields an arbitrarily large clique.

It takes a little work even to show that the class of pla-
nar map graphs is in $\mathrm{N}\mathrm{P}$ –but it is (Corollary 2). We want
to establish that it is in $\mathrm{P}$, that is, to find a polynomial-
time recognition algorithm for planar map graphs. As we
point out in Section 2, a naive reduction to ordinary pla-
narity by (

$‘ \mathrm{d}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}$

” pizzas does not work, because $\max-$

imal cliques in. planar map graphs are not necessarily pizzas.
This complicates tremendously the recognition task, whose
polynomial solution we, unfortunately, can at present only
conjecture.

But suppose that we restrict our political maps so that
no more than $k$ regions meet at a point; we call the resulting
class $k$-planar graphs. Thus, 3-planar graphs are precisely
the ordinary planar graphs, and the $\mathrm{U}.\mathrm{S}$ .A. is a 4-planar
graph. Our main result is a polynomial-time recognition al-
gorithm for 4-planar graphs. The algorithm is very compli-
cated, as it must rely on a detailed case analysis of each
maximal clique and its “immediate environment” (cliques
intersecting it, and connected components in the comple-
ment graph).

It is an interesting philosophical question, why the fore-
fathers of graph theory never bothered to define this class,
despite the fact that it is, in our opinion, equally natural
to ordinary planarity. We can think of three possible expla-
nations: (a) one of those random lucky turns in intellectual
history; (b) the result of deep foresight on the nastiness of
the problem; or (c) the desire to state the four color conjec-
ture –trivially false in the context of planar map graphs.

1.3 The Results of this Paper

In Section 2 we present a characterization of planar map
graphs as the half-squares of planar bipartite graphs (Theo-
rem 1). The half square of a planar bipartite graph is simply
the square of the graph (two nodes are adjacent iff there is
a path of length 2 in the original graph connecting them)
restricted to one of the two sides of the bipartition. With
a little more thought, this implies that planar map graph
recognition is in NP (Corollary 2).

It would appear that planar map graphs can be recog-
nized by the following naive algorithm:

find set $C$ of maximal cliques with four or more nodes
if $|C|\geq 12n$ then reply “not aplanar map graph’ ’

omit from $G$ all edges that are in aclique in $C$

$\mathrm{f}$ or each maximal clique $C\in C$ do
add a vertex $v_{C}$ with edges to all nodes of $C$

test the graph for planarity, and return result

That is, we identify all points at which more than three
regions meet, and replace each with a fictitious region, con-
nected to all of them (the graph theoretic analog of the
circular piece in the middle of the pizza one sees in some
restaurants). The naive algorithm is based on the following
facts: (1) planar map graphs have $O(n)$ maximal cliques,
and (2) the maximal cliques of any graph can be output
with polynomial delay between consecutive specimens out-
put [7].

The reason why the naive algorithm fails is because $a$

maximal clique in a planar map graph can be realized in
ways other than the pizza, namely as a pizza with crust,
a hamantasch, and a rice ball, see Figure 2. Theorem 3
uses the characterization of Theorem 1 and planar graph
theory techniques to prove that these four are all possible
realizations of a clique.

2



(a) (b) (C) (d)

Figure 2: Clique types in planar map graphs.

In Section 3 we prove our main result, that 4-planar
graphs can be recognized in polynomial time (Theorem 5).
Our algorithm builds on the basic structure of the naive algo-
rithm, examining each maximal clique of the graph in some
carefully designed order: First cliques of size 6, then 5, then
4 (it is easy to see that 4-planar graphs have no cliques larger
than six). For each clique, it considers its “environment”
(intersecting cliques, and components of a certain $(‘ \mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}}1\mathrm{e}-$

ment graph”) and succeeds –often after very sophisticated,
but always linear-time, analysis– to make progress. There
are five basic kinds of progress:. We identify a maximal clique which must be realized

as a pizza (and eventually treated by the naive algo-
rithm).. We identify four regions (as we call the nodes of the
input graph) that must meet at a point in a specific
cyclical order.. We reduce the problem to one with fewer regions.

$0$ More interestingly (and, it turns out, more often), we
decompose the graph into components, and reduce the
problem to testing whether each component is a 4-
planar graph. The reason such decompositions are
possible is that all realizations of maximal cliques in
Figure 2, except for the pizza, have only triangular
“holes” (unoccupied planar regions within which more
regions can be embedded). Thus each component re-
sulting from its deletion can be separately checked for
4-planarity.. Finally, in certain more complicated cases we identify
a way of recursing on a similar maximal clique, albeit
in a smaller graph.

The case analysis involved is very tedious (over a hundred
cases must be examined); in Section 3 we include a top-level
summary without detailed proofs; for a draft of the complete
proof see [1]. The objects studied in the case analysis are
partial maps, that is, sets of planar regions corresponding
to the part of the graph being examined, with space left
for embedding the rest. We refine the maps by bringing in
more regions until we reach a final map, one in which all
unoccupied holes have at most three regions around them
(and thus the graph can be decomposed in a lossless way)
–or until we make progress in any one of the other four
ways listed above. It turns out that the methods are very
different for the three clique sizes.

The straight-forward analysis of the running time of the
algorithm yields an $O(n^{3})$ upper bound. It can be probably
reduce to $O(n^{2})$ by a more careful analysis, with some hope
of bringing it down to $O(n\log n)$ (the best known running
time for enumerating all maximal cliques, see [7] $)$ .

2 Planar Map Graphs

2.1 A Characterization

Consider a collection $\mathcal{R}$ of $n$ regions in the plane, each home-
omorphic to a disc, so that no two regions overlap except
possibly on their boundaries; these adjacencies define a pla-
nar map graph $G$ . A typical boundary point is shared by
one or two regions, however there may also be exceptional
points where three or more regions touch. Consider the se-
quence of adjacency changes around any one region, ignoring
“empty” stretches. A simple argument shows this sequence
is finite (in fact linear); hence a finite collection $P$ of points
witnesses all adjacencies among the regions of $\mathcal{R}$ .

In each region $R$ we choose a representative interior point,
and connect it with arcs through the interior of $R$ to the
points of $P$ bounding $R$. In this way we construct a bipar-
tite planar graph $G’=(\mathcal{R}, P, E’)$ , so that any two regions
$R_{1}$ and $R_{2}$ overlap iff they have distance two in $G’$ . Thus $G$

equals $G^{\prime 2}|R$ , the square of $G’$ restricted to $\mathcal{R}$ .
Conversely, given a bipartite planar graph $G’$ , we may re-

verse the construction to find a corresponding arrangement
of regions and bounding points. Hence we have:

Theorem 1 A graph is a planar map graph iff it is the half
square of a planar bipartite graph. $\blacksquare$

Corollary 2 The recognition problem for planar map graphs
is in $NP$ .

Proof: We establish that in the Theorem above the right-
hand side of the bipartite graph need only have $3n-6$ nodes.
First, we may assume that the right-hand side has no redun-
dant points; then we choose for each node $u$ of the right-hand
side two nodes on the left connected only through $u$ . Delete
all other edges of the graph. The half square is then a pla-
nar graph with as many edges as there were nodes in the
right-hand side. $\blacksquare$

We also make some simple initial remarks:

$0$ In the bipartite graph representation, bounding points
of degree three may be replaced by points of degree
two.. If $G$ has no 4-clique, then it. is a planar map graph iff
it is a planar graph.. A planar map graph may contain cliques of arbitrary
size.. Ihom the previous two remarks, it is clear that the
“planar map graph” property is not monotone, and
hence cannot be characterized by forbidden subgraphs
or minors.
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2.2 Cliques in Planar Map Graphs 2.3 $k$-Planar Graphs

Consider a planar map clique of size $n$ , it may be realized
in one of the four following ways:

1. The $n$ regions share a single boundary point. We call
this the pizza (Figure $2(\mathrm{a})$ ).

2. Some $n-1$ regions share a single boundary point, and
the one remaining region is arbitrarily connected to
them at other points. We call this the pizza with crust
(Figure $2(\mathrm{b})$ ).

3. If $n\geq 6$ , there may be three points supporting all
adjacencies in the clique, with at most $n-2$ regions
at any one point. In particular, there are at most two
regions adjacent to all three of the points. We call this
the hamantasch (Figure $2(\mathrm{c})$).

4. An ordinary planar clique (that is, with no points of
degree more than three), such as the rice ball (the pla-
nar $K_{4}$ , Figure $2(\mathrm{d}))$ .

Theorem 3 A planar map graph clique must be one of the
above four types.

Proof: Let $n=|\mathcal{R}|$ . By Theorem 1, we have a bipartite
planar graph $G=(\mathcal{R}, P, E’)$ such that $G^{2}|R$ –the restric-
tion of $G^{2}$ to $\mathcal{R}-\mathrm{i}\mathrm{s}$ the clique $K_{n}$ . Let $d$ be the maximum
degree of all points $p\in P$ .

If $n=d$, we have a pizza. If $n=d+1$ , we have a pizza
with crust. So we may assume $n\geq d+2$ . If $d\leq 3$ , we may
replace all degree-three points by three degree-two points,
preserving $G^{2}|n$ and establishing its planarity; this forces
$n\leq 4$ –the rice ball. So we now assume $d\geq 4$ .

Pick point $p_{1}$ of maximum degree $d$ , and regions $R_{1}$ and
$R_{2}$ not adjacent to $p_{1}$ . Consider the set $P’$ of all points
connecting $R_{1}$ or $R_{2}$ to the regions around $p_{1}$ . We claim
that there is a point $p_{2}\in \mathcal{P}’$ connecting $R_{1},$ $R_{2}$ , and at
least two regions $R_{3}$ and $R_{4}$ adjacent to $p_{1}$ . Otherwise, by
drawing arcs through the points of $P’$ , we could get a planar
$K_{d,2}$ with the $d$ regions around a common face, which is
impossible.

Since $p_{1}$ has maximum degree, we may also pick two re-
gions $R_{5}$ and $R_{6}$ adjacent to $p_{1}$ but not $p_{2}$ . So the graph $G$

contains the subgraph in Figure $3(\mathrm{a})$ . Notice that $p_{1}R_{3}p_{2}R4$

forms a cycle. All other regions of $R$ must be either con-
nected to both $p_{1}$ and $p_{2}$ (thus having the same type as $R_{3}$

and $R_{4}$ ) or they must all be embedded on the same side of
this cycle (say the inside). By this argument and relabel-
ing some regions if necessary, we arrive at Figure $3(\mathrm{b})$ , the
partial embedding of $p_{1},$ $p_{2}$ , and all their edges to adjacent
regions.

There must exist a third point $p_{3}$ inside the cycle to
connect $R_{1}$ and $R_{6}$ . These edges separate $Rs$ (and all other
regions adjacent to $p_{1}$ but not $p_{2}$ ) from $R_{2}$ (and all other
regions adjacent to $p_{2}$ but not $p_{1}$ ), so all these regions are
connected to $p_{3}$ , yielding Figure $3(\mathrm{c})$ .

Now $p_{1},$ $p_{2}$ , and $p_{3}$ support a hamantasch on the regions
adjacent to $p_{1}$ or $p_{2}$ ; we must show there are no other re-
gions. If we try to insert such a region (not adjacent to $p_{1}$

or $p_{2}$ ) into Figure $3(\mathrm{c})$ , we see that it cannot be
$\mathrm{a}\mathrm{d}\mathrm{j}\mathrm{a}\mathrm{c}\mathrm{e}r’\mathrm{n}\mathrm{t}$

to
either $R_{3}$ or $R_{4}$ , so we are done. $\blacksquare$

By a careful.analysis of each kind of clique, we can now
show:

Corollary 4 The number of cliques of size 4 or more in a
planar map graph with $n$ nodes is at most $12n$ . $\blacksquare$

Our attempts at a polynomial-time algorithm for recogniz-
ing planar map graphs have failed (see the last section for a
discussion). Consider however the interesting special case in
which the maps are restricted to be such that no more than
$k$ regions share a point. We call the class of graphs that are
realized by such maps $k$ -planar graphs. It is easy to see that
3-planar graphs are the ordinary planar graphs, and that the
USA graph is 4-planar. It is easy to extend Theorem 1, to
characterize $k$-planar graphs as the half-squares of bipartite
planar graphs whose right-hand side has degrees $k$ or less.

In the next section we focus on 4-planar graphs and
their recognition algorithm. It follows from Theorem 3 that
4-planar graphs have no 7-cliques, that all 6-cliques are
hamantaschen, all 5-cliques are pizzas with crust, and all 4-
cliques are either pizzas, or three regions touching at three
points and enclosing a fourth (variants of the rice ball). Fi-
nally, an eight-node example, omitted in this abstract, shows
that 4-planar graphs are non-monotone (in that deletion of
an edge may turn a 4-planar graph into a graph that is not
4-planar), and hence polynomial-time recognition does not
follow from first principles.

3 Recognition of 4-Planar Graphs

In this section we sketch the proof of our main result:

Theorem 54-planar graphs can be recognized in polyno-
mial time.

For a draft of the full proof see [1].

3.1 Preliminaries

Let $G$ be a graph. A map $\mathcal{L}$ is a finite set of planar regions
that are disc homeomorphs with disjoint interiors. A map is
a realization of $G$ (or a map of $G$ ) if its regions are in one-to-
one correspondence to the vertices of $G$ , and in which two
regions touch each other iff the corresponding vertices are
adjacent in $G$ . A map of $G$ is called a 4-map of $G$ if no five
regions meet each other at a point. To prove the theorem,
we must design a polynomial-time algorithm which given $G$ ,
constructs a 4-map of $G$ if one exists, and reports “failure”
otherwise. Since it is trivial to check whether a given map is
a realization of a given graph, we may assume that $G$ has a
4-map and only need to show how to find one. Without loss
of generality, we may further assume that $G$ is biconnected.

We call vertices of $G$ regions. For a region $c\in V(G)$ ,
$Nc(c)$ denotes the set of regions adjacent to $c$ in $G$ . Let
$U\subseteq V(G)$ and $F\subseteq E(G)$ . $N_{G}(U)= \bigcup_{c\in U}N_{G()}C$ , and
$G[U]$ denotes the subgraph of $G$ induced by U. $G-U-F$
denotes the graph obtained from $G$ by deleting the edges
in $F$ and the regions (together with the edges incident to
them) in $U$ . For a subset $W$ of $U,$ $c_{U,F}^{G}(W)=\{c\in V(G)-$

$U|W=N_{G}(K)\cap U$ , where $K$ is the connected component
of $G-U-F$ containing $c$}. When $U$ or $F$ is empty, we drop
it from the notations $G-U-F$ and $C_{U,F}^{G}(W)$ .

An extensible 4-map of $G[U]$ is a 4-map of $G[U]$ that can
be extended to a 4-map of $G$ . For $k=2,3,4$ , a $k$ -point in a
map is a point at which exactly $k$ regions meet. A maximal
clique of size $k$ is denoted by $\mathrm{M}\mathrm{C}_{k}$ (recall that $G$ has no
$\mathrm{M}\mathrm{C}_{k}$ with $k\geq 7$). Let $l$ be a positive integer. We say that
two maximal cliques $C$ and $C’$ are $l$ -sharing if $|C\cap C’|=l$ .
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(a)
$\mathrm{F}_{1}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{o}:.\mathrm{a}\mathrm{i}’ \mathrm{u}\mathrm{u}\mathrm{g}\mathrm{r}\mathrm{a}_{\mathrm{P}^{\mathrm{u}}}\mathrm{U}\mathrm{l}\mathrm{u},$ $\mathrm{d}11\mathrm{U}1\iota \mathrm{i}’$ Glllucuulllg.

Definition 1 A correct 4-point is a cyclicly ordered list
$\langle_{C_{0\cdot\cdot 3,0}},., cc\rangle$ of four regions in $G$ such that $G$ has a 4-
map in which (1) the four regions $c_{0}$ through $c_{3}$ meet at a
single point (say, $p$) in this order and (2) whenever $c0$ and
$c_{2}$ (or $c_{1}$ and $c_{3}$ , respectively) together with two other re-
gions $d’$ and $d”$ meet at a point $q\neq p$ , the cyclic order of
the four regions around $q$ is $c_{0},$ $d’,$ $c_{2},$ $d”,$ $c0$ (respectively,
$c_{1},$ $d’,$ $c_{3},$

$d^{J\prime},$ $c_{1})$ . Removing a correct 4-point entails adding
a new region and replacing the 4-clique by a wheel (in the
indicated cyclic order) centered in the new region.

Lemma 1 Let $G’$ be the graph obtained from $G$ by remov-
ing a correct 4-point $P=\langle c_{0}, \cdots, c\mathrm{s}, c\mathrm{o}\rangle$ . Then, (1) $G’$ has
a 4-map, (2) if $G’$ has neither $\mathrm{M}\mathrm{C}\mathrm{s}$ nor $\mathrm{M}\mathrm{C}_{6}G’$ has fewer
$\mathrm{M}\mathrm{C}_{4}’ \mathrm{s}$ , and (3) given an arbitrary 4-map of $G’$ , we can con-
struct a 4-map of $G$ in linear time.

3.2 Outline of the algorithm

We say that a 4-map $\mathcal{L}$ of $G[U]$ can be transformed to another
4-map $\mathcal{L}’$ of $G[U]$ if whenever $\mathcal{L}$ is extensible, so is $\mathcal{L}’$ . A map
is said to be explicit if all points in it are distinct except that
for one or more holes enclosed between exactly two regions,
the two 2-points on the boundary of each of these holes may
actually be identical; a map that is not explicit is rough.
A explicit map $L$ is said to be final if there is no 3-point
in it and every hole in it is enclosed by at most 3 regions.
Recall that $G$ is assumed to have a 4-map realization. Our
algorithm starts by enumerating all the maximal cliques of
size $\geq 4$ in $G$ –by Corollary 4 there are $O(|V(c)|)$ of them.
We deal with the $\mathrm{M}\mathrm{C}_{6}’ \mathrm{s},$ $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$, and $\mathrm{M}\mathrm{C}_{4\mathrm{S}}$

’ in $G$ , in this
order.

$\mathrm{M}\mathrm{C}_{6}’ \mathrm{s}$. Let $C=\{c_{1}, C_{2}, \ldots, c_{6}\}$ be an $\mathrm{M}\mathrm{C}_{6}$ in $G$ . It is
easy to see that every extensible 4-map of $C$ can be trans-
formed into another of the form shown in Figure 4. As in
all displayed maps of cliques, in this figure the regions 1, 2,
3, 4, 5, and 6, are a permutation of the nodes in the clique.
A typical map that we display during the case analysis is in
fact an equivalence class of maps, in the sense that different
points in it may or may not coincide. However, Figure 4 is
explicit; by this we mean that different points in it represent
distinct points of the map–with a single exception: The
two points delimiting a hole between two regions, such as
$p$ and $q$ in this figure, could coincide. Figures that are not
explicit are called rough. We call an explicit map final if
there is no 3-point in it and every hole in it is enclosed by at
most. 3 regions. Notice that Figure 4 is final. Our treatment
of $\mathrm{M}\mathrm{C}_{6}’ \mathrm{s}$ is based on the following result:

Theorem 6 Let $S=\{(1,2),$ $(3,4),$ $(5,6),$ $(2,3),$ $(2,5),$ $(3,5)$ ,
$(1, 4)$ , $(1, 6)$ , $(4, 6)\}$ , and $T=\{(2,3,5), (1,4,6)\}$ . Then, for
every permutation $\pi=(1, \ldots , 6)$ of $(c_{1}, \ldots, c_{6})$ , the 4-map

Figure 4: An $\mathrm{M}\mathrm{C}_{6}$ .

in Figure 4 is extensible iff the family $\mathcal{F}=\{c_{C(\{}^{C_{\mathrm{z}}}i, j\})|(i,j)\in$

$S\}\cup\{C_{C}c(\{i,j, k\})|(i, j)k)\in T\}$ is a partition of $V(G)-C$.

By Theorem 6, we can compute an extensible 4-map of
$C$ in linear time. Then we recursively find a realization of
the subgraph of $G$ induced by $\{i, j\}\cup C_{C}^{c_{(\{}}i,$ $j\})$ for every
pair $(i, j)\in S$ , and one of the subgraph of $G$ induced by
$\{i, j, k\}\cup c_{c(\{i}^{G},$ $j,$ $k\})$ for every triple $(i, j, k)\in T$ ; each of
the graphs in the recursive calls has fewer $\mathrm{M}\mathrm{C}_{6}’ \mathrm{s}$ than $G$ ,
and the total number of regions in these graphs is larger
than that in $G$ by only a constant.

Once we have eliminated all $\mathrm{M}\mathrm{C}_{6}’ \mathrm{s}$ , we consider $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$.
Unfortunately we are no longer guaranteed a “final)’ map,
so there are numerous layouts to consider, depending on the
rest of the graph. At the highest level, our cases are guided
by the number of other $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}4$-sharing with the current
$\mathrm{M}\mathrm{C}_{5}$ , with several layouts to consider in each case. After
eliminating all $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$, we turn to $\mathrm{M}\mathrm{C}_{4}’ \mathrm{s}$, where there are
even more layouts to consider. Because of space restrictions,
we present only a few illustrative cases in Appendix A. For
the full argument, see [1].

4 Discussion and Open Problems

The time bound $O(n^{3})$ follows from a very superficial and
generous analysis of the running time. The cubic part comes
from certain isolated cases, in which a less efficient kind of
recursion occurs. This can probably be eliminated, bringing
the time down to $O(n^{2})$ . A further reduction to $O(n\log n)$
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could be possible, by using ideas of dynamic connectivity in
the face of edge deletions, see for example [6].

There is an interesting variant of the problem, in which
we require that the union of the regions be a simply con-
nected region, with no holes –that is to say, we do not allow
“lakes” between the regions. There is a similar characteri-
zation as that of Theorem 1 for this case; the only difference
is that now all internal faces of the planar bipartite graph
must have length four and six. A variant of our algorithm
works in this case as well. If we further insist that we do
not have an infinite face either –that is, the union of the
regions comprises a sphere– then the problem becomes sub-
stantially easier, as the most complex of all top-level cases
(the type-2 non-pizza) becomes straightforward, resulting in
approximately a one-third reduction in the complexity and
length of the proof.

Naturally, we are very interested in a polynomial algo-
rithm for recognizing 5-planar graphs, or even general planar
map graphs. We conjecture that both problems are solvable
in polynomial time. In view of the complexity of the case
analysis for the 4-planar graph problem, however, new in-
sights seem to be needed in order to make progress in this
direction.

There are two more interesting generalizations of the
problem, motivated by topological inference: What if the re-
lation between certain pairs of regions ( $\mathrm{t}\mathrm{o}\mathrm{u}\mathrm{C}\mathrm{h}/\mathrm{d}\mathrm{o}$ not touch)
is left unspecified –that is, we are given a graph with “don’t
care” edges? And what if we also allow inclusion relation-
ships between regions? We conjecture that the first problem
is $\mathrm{N}\mathrm{P}$-complete (for the general problem, and the 4-planar
special case), while the latter polynomial.

Finally, a natural and interesting question in connection
with planar map graphs is, do $s\iota x$ colors suffice for coloring
any 4-planar graph $Q$ We conjecture that they do.
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A Algorithm Sketch for $\mathrm{M}\mathrm{C}_{5}\mathrm{s}$ and $\mathrm{M}\mathrm{C}_{4}\mathrm{s}$

In this appendix we sketch some of the cases for eliminated
$\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ and $\mathrm{M}\mathrm{C}_{4}’ \mathrm{s}$ from the graph. We assume that $\mathrm{M}\mathrm{C}_{6}’ \mathrm{s}$

have been eliminated, as described previously.
$\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$. We have removed all $\mathrm{M}\mathrm{C}_{6}’ \mathrm{s}$ from G. Our algo-

rithm then proceeds to removing $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ from $G$ . It is not
difficult to see that the five regions in every $\mathrm{M}\mathrm{C}_{5}$ must form
a $‘\iota_{\mathrm{P}^{\mathrm{i}\mathrm{z}\mathrm{z}\mathrm{a}}}$ with crust” in every 4-map of G. (A hamantasch
of five regions is actually a pizza with crust.) Thus, in ev-
ery extensible 4-map of an $\mathrm{M}\mathrm{C}_{5}C$ , there is a point shared
by exactly four regions in $C$ . This motivates the following
definition:

Definition 2 Let $C$ be an $\mathrm{M}\mathrm{C}_{5}$ in $G$ . A correct center of
$C$ is a cyclicly ordered list $\langle c0, \ldots, c3, C\mathrm{o}\rangle$ of four regions in
$C$ such that $C$ has an extensible 4-map in which the four
regions $c_{0}$ through $c_{3}$ meet at a single point in this order.
A correct crust of $C$ is a region $c\in C$ such that the four
regions in $C-\{c\}$ constitute a correct center of $C$ (in some
way).

To remove an $\mathrm{M}\mathrm{C}_{5}C$ from $G$ , the basic idea is to find an
extensible 4-map of $C$ and then remove its center. The fol-
lowing three simple facts are useful in finding an extensible
4-map of $C$ .

Fact 1 Every correct center of $C$ is a correct 4-point in $G$ .
Moreover, after removing it from $G,$ $G$ has fewer $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ .

Fact 2 There is at most two other distinct $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ 4-sharing
with $C$ .

Fact 3 Let $C’$ be another maximal clique in $G$ . Then, if
$|C’\cap C|\geq 3$ , no region in $C-C’$ is a correct crust of $C$ .
Moreover, if $|C’\cap C|=2$ , then in every extensible 4-map
of $C$ whose center includes both regions in $C’\cap C$ , the two
regions must appear around the center consecutively.

To find an extensible 4-map of $C$ , our algorithm con-
structs a rough 4-map $\mathcal{L}$ of $C$ , and then calls the following
procedure with argument $S=\{\mathcal{L}\}$ :

Procedure $Make_{-}Final(s)$

1. By distinguishing certain cases, from the rough 4-maps
in $S$ , construct a set of explicit 4-maps (of the same set
of regions as in the 4-maps in $S$ ) at least one of which
must be extensible whenever an extensible 4-map (of
the same set of regions) exists. Update $S$ to be the set
of the constructed explicit 4-maps.

2. If some 4-map in $S$ is not final, then perform the following
steps:

2.1. Select a certain set $A$ of regions that has not ap-
peared in the 4-maps in $S$ .
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Figure 5: A rough map of an $\mathrm{M}\mathrm{C}_{5}$ .

2.2. For each 4-map $\mathcal{L}\in S$ , if there is no way to add
the regions in $A$ into $\mathcal{L}$ , then delete $\mathcal{L}$ from $S$ ;
otherwise, add the regions in $A$ into $\mathcal{L}$ .

2.3. If $S$ is empty, then return “failure” ; otherwise,
goto step 1.

3. For each final 4-map in $S$ , based on a certain necessary
and sufficient condition (analogous to Theorem 6), de-
cide whether the 4-map is extensible or not.

To examine procedure Make-Final more closely, let $C=$
$\{c_{1}, c_{2}, \ldots, C_{5}\}$ be an $\mathrm{M}\mathrm{C}_{5}$ in $G$ and let us follow it for one
iteration. Figure 5 shows one of the starting rough 4-maps
of $C$ . This figure is rough, because, for example, any two
adjacent points from among the five contact points in the
upper half-perimeter of the circle could coincide. Our al-
gorithm sets $S$ to be the set of this rough 4-map and calls
$Make_{-}Final(S)$ . To construct a set of explicit 4-maps from
the rough 4-map in $S$ , procedure Make-Final distinguishes
three cases based on $nC,4s$ ’ the number of $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ 4-sharing
with $C$ in $G$ .

Case 1: $n_{C,4s}=2$ . Then, every extensible 4-map of
$C$ can be transformed to one of the last three 4-maps in
Figure 6 each of which is explicit. At the end of step 1
(of the first iteration of procedure Make-Final), $S$ becomes
the set of these three explicit 4-maps. Let the two $\mathrm{M}\mathrm{C}_{5\mathrm{S}}’ 4-$

sharing with $C$ be $C_{1}$ and $C_{2}$ . Let $C_{1}-C=\{c_{6}\},$ $C_{2}-C=$
$\{c_{7}\},$ $C-C_{1}=\{c_{1}\}$ , and $C-C_{2}=\{c_{4}\}$ . $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}_{)}$ procedure
Make-Final adds $c_{6}$ and $c_{7}$ to the three 4-maps in $S$ and
gets three larger 4-maps as shown in Figure 7. Figure $7(\mathrm{a})$ is
final while the other two are rough. With $S$ being the set of
the three rough 4-maps in Figure 7, procedure Make-Final
proceeds to the second iteration. We can prove that after
at most two further iterations, procedure Make-Final will
(1) find an extensible 4-map of $C,$ (2) report “failure”, or
(3) succeed in decomposing $G$ into graphs of fewer vertices
or fewer $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ and then recurse on each.

Case $\mathit{2}^{1}$ : $n_{C,4s}=1$ . Then, every extensible 4-map of $C$

can be transformed to one of the $1\mathrm{a}s\mathrm{t}$ four 4-maps in Figure 6

(a) (b)

$\mathrm{t}^{\iota}J$

Figure 7: Adding two 4-sharing cliques.

1Actually, only after removing all the $\mathrm{M}\mathrm{C}_{5^{\mathrm{S}}}’ 4$ -sharing with
exactly two $\mathrm{M}\mathrm{C}_{5^{\mathrm{S}}}$

’ in $G$ , our algorithm proceeds to removing those
$\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}4$ -sharing with exactly one $\mathrm{M}\mathrm{C}_{5}$ in $G$ . Thus, during the
construction of an extensible 4-map of an $\mathrm{M}\mathrm{C}_{5}4$-sharing with
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each of which is explicit. At the end of step 1, $S$ becomes
the set of these four explicit 4-maps. Let the $\mathrm{M}\mathrm{C}_{5}$ 4-sharing
with $C$ be $C_{1}$ . Let $C_{1}-C=\{c_{6}\}$ and $C-C_{1}=\{c_{4}\}$ .
Then, procedure Make-Final adds $c_{6}$ to the four 4-maps in
$S$ and gets four larger 4-maps shown in Figure 8. All four of
these maps are rough, because several pairs of points could
coincide. With $S$ being the set of the four rough 4-maps
in Figure 8, procedure Make-Final proceeds to the second
iteration. We can prove that after at most two further iter-
ations procedure Make-Final will either find an extensible
4-map of $C$ or report “failure”.

Case 3: $nc,4s=0$. This is the last and most involved
case for $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$, as we must further distinguish four cases
based on $n_{C,3s}$ , the number of $\mathrm{M}\mathrm{C}_{4}’ \mathrm{s}3$-sharing with $C$ in $G$

(we omit its detailed discussion).

$\mathrm{M}\mathrm{C}_{4}’ \mathrm{s}$. Once we have removed $\mathrm{M}\mathrm{C}_{6}’ \mathrm{s}$ and $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ from
$G$ , we proceed to the $\mathrm{M}\mathrm{C}_{4}’ \mathrm{s}$. This is in fact the most complex
and tedious part of the algorithm and the case analysis.
Let $C=\{c_{1}, \ldots , c_{4}\}$ be an $\mathrm{M}\mathrm{C}_{4}$ in $G$ . It is easy to see
that every extensible 4-map of $C$ can be transformed to
another of one of the forms in Figure 9. The second 4-map
in Figure 9 is final and the rest are explicit. We name the six
4-maps in Figure 9 pizza, $\mathit{0}$-type non-pizza (or rice ball), 1-
type non-pizza, 2-type non-pizza, (two varieties), and 3-type
non-pizza, respectively. For $0\leq k\leq 3$ , there are exactly $k$

$3$-points in every $k$-type non-pizza.

$\iota a\mathrm{t}$
$(\mathrm{t}:1$

$\mathrm{R}_{9^{\mu\gamma e}}^{\backslash }b$ : $\mathcal{E}\#\ell^{1C}\iota.\star$
$\gamma_{\aleph t\iota}\mathrm{P}^{\zeta}$

Definition 3 A candidate non-pizza of $C$ is a non-pizza 4-
map of $C$ which is extensible whenever $C$ has an extensible
non-pizza 4-map. A favorite non-pizza of $C$ is a candidate
non-pizza of $C$ which has the fewest 3-points among all the
candidate non-pizzas of $C$ .

The algorithm for treating $\mathrm{M}\mathrm{C}_{4\mathrm{S}}$
’ proceeds as follows:

(1) For every $\mathrm{M}\mathrm{C}_{4}C$ in the current graph, determine its fa-
vorite non-pizza $\mathcal{L}_{C}$ . Examine all $\mathcal{L}c’ \mathrm{s}$ , in the following
order: rice-balls, 3-type, 2-type, l-type.

(2) If some $\mathcal{L}c$ is a riceball, then based on a certain neces-
sary and sufficient condition, determine whether $\mathcal{L}c$ is
actually extensible or not. If it is, then use it to either
(a) find and remove a correct 4-point and repeat, or
(b) decompose the graph into smaller ones and then
recurse on each.

(3) If some $\mathcal{L}c$ is a $k$-type non-pizza, $k>0$ , then determine
whether $\mathcal{L}_{C}$ is actually extensible. If it is, then use it
to find and remove $k$ correct 4-points, and repeat.

(4) All remaining $\mathrm{M}\mathrm{C}_{4}’ \mathrm{s}$ are now pizzas, and we can use the
naive algorithm to find a 4-map of the current graph,
and therefore of $G$ .

$\mathrm{F}_{3^{1\mathit{1}\mathrm{r}q}}\iota^{\backslash }\int$ :A $d \mathrm{A}_{\iota}^{-}.\int A\mathfrak{e}$

$\sigma_{\mathrm{t}\mathfrak{n}}^{-}\theta^{1}\mathrm{C}4^{-};\Lambda a_{V\eta}|-\theta \mathrm{c}|_{1\mathfrak{b}^{u}}\backslash Q$

We omit the details of each case. For a draft of the
complete proof see [1].

(拭) 竹ノ

exactly one $\mathrm{M}\mathrm{C}_{5}$ in $G$ , our algorithm often makes use of the fact
that every $\mathrm{M}\mathrm{C}_{5}$ in the curren,$\mathrm{t}$ graph is 4-sharing with at most
one $\mathrm{M}\mathrm{C}_{5}$ .

$\mathrm{R}_{J^{\mathrm{t}\lambda\mu}}^{-}$

$\uparrow:\tau \mathrm{k}\mathfrak{e}$ $\mathrm{P}^{\mathrm{o}\sigma \mathrm{b}|_{\mathrm{Q}}}’\backslash |$ $\mathrm{e}\mathrm{x}_{\mathrm{P}^{\mathfrak{l}_{1}+}}\backslash \mathrm{C}1\backslash$ $\mathrm{p}_{\alpha}\mathrm{Y}^{\mathrm{o}\alpha \mathrm{t}s}$

$\theta+$ $a\downarrow \mathrm{q}$ $\vee C_{\psi}$ .
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