
Towards TCS Concepts
for Characterizing Expertise

in Learning Systems Validation*

Gunter $\mathrm{G}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{r}\dagger\S$ Klaus P. $\mathrm{J}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{k}\mathrm{e}^{\uparrow}$ Steffen $\mathrm{L}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\ddagger \mathrm{t}$

Abstract

The authors’ intention is to motivate the needs
for the introduction of deeper formal concepts of
Theoretical Computer Science (TCS) into par-
ticular Artificial Intelligence $(\mathrm{A}\mathrm{I})$ research.

The target application area of complex AI sys-
tems $\backslash \mathrm{v}\mathrm{a}!\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ is. briefly introduced and a key
question is raised. It is the authors’ ultimate
goal to exemplify the relevance of TCS concepts
for answering certain $\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{s}\dot{\mathrm{t}}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ of the type under
consideration.

An approach is exemplified in the particular
area of inductive inference of recursive functions.
Interactive scenarios of validating inductive in-
ference algorithms are formalized.

Based on these TCS concepts, the paper is fo-
cused on the problem of characterizing the ex-
pertise which is necessary and sufficient in the
validation of inductive inference systems, respec-
tively. The crucial TCS concepts invoked are
BLUM complexity measures, limiting and rela-
tivized computability.

1 Where to Apply TCS Concepts:
Validation of Complex Systems
Necessity, Problems, and Solutions

There is an obvious necessity to validate and
verify complex systems. It might easily happen
that... the inability to adequately evaluate $sy_{S}-$

tems may become the limiting factor in our abil-
ity to employ systems that our technology and
$knowle\backslash dge$ will $a\dot{l}$ low $u.s$ to design. (cf. [WW93])

*A full version of this paper appeared as technical re-
port $\mathrm{M}\mathrm{E}\mathrm{M}\mathrm{E}-\mathrm{M}\mathrm{M}\mathrm{M}-1^{-}98$.

t Meme Media Laboratory, Hokkaido University, Sap-
poro 060, Japan, [grieser,$\mathrm{j}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{k}\mathrm{e}$] $@\mathrm{m}\mathrm{e}\mathrm{m}\mathrm{e}.\mathrm{h}\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{d}\mathrm{a}\mathrm{i}$.ac.jp

\ddagger Universit\"at $\mathrm{L}\mathrm{e}\mathrm{i}\mathrm{p}_{\dot{\mathrm{Z}}\mathrm{i}}\mathrm{g}$, Institut f\"ur Informatik, PF 920,
04009 Leipzig, Germany, slange@informatik.uni-leipzig.de

$\S_{\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}}$ research has been supported by the German Re-
search Fund (DFG) under contract number Ja 566/10-1.

B This work was performed while the author was visit-
ing the Meme Media Laboratory at Hokkaido University.

Unfortunately, there are numerous severe
accidents bearing abundant evidence for the
truly urgent need for complex systems valida-
tion. Besides spectacular cases, daily experience
with more or less invalid systems is providing
paramount illustrative examples. $\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{s}\dot{\mathrm{s}}$ in the
area of validation and verification of complex sys-
tems requires both disciplinary results and solu-
tions in the humanities including cognitive psy-
chology, e.g. Even social and political aspects
come into play. The authors refrain from an in-
depth discussion.

Following [Bo84] and [0093], validation is dis-
tinguished from verification by the illustrative
circumscription of dealing with building the right
system, whereas verification deals with building
the system right. -The prototypical application
area considered in the present paper is systems
validation, which–according to the perspective
cited above-is less constrained and less formal-
ized than verification.

Assume computer systems which are designed
and implemented for an interactive use to assist
human beings in open loops of human-machine
interactions of a usually unforeseeable length.
The validation task is substantially complicated,
if it is intermediately undecidable whether or not
some human-machine cooperation will eventu-
ally succeed.

Nontrivial learning problems, for instance, are
quite typical representatives of such a class of
probtems attacked through complex and usually
time consuming sequences of human-machine in-
teractions. Knowledge discovery in data bases,
for instance, is a practically relevant application
domain for those learning approaches.

For assessing those systems’ validity, there
have been proposed validation scenarios of sev-
eral types (cf. [KPG97], e.g.). As soon as hu-
man experts are involved in the $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\dot{\mathrm{a}}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$

of validation scenarios, there arises the problem
of the experts’ competence. An in-depth investi-

数理解析研究所講究録
1041巻 1998年 103-110 103

gation of validation scenarios, of their appropri-
ateness for certain classes of target systems, and
of their power and limitations involves inevitably
reasoning about the experts’ competence.

It is a basic question how to formalize in-
teractive systems validation. Formal concepts
are highly desirable for setting the stage for the
derivation of justified answers to certain ques-
tions which are controversially discussed. Stil
informally speaking, the key question is how
to characterize the human $experti_{S}e\underline{neceSSar}y_{\vee}or$

$\underline{su}ffiCient$ for validating certain AI systems.
The issue of human expertise is usually under-

stood a problem of cognitive sciences (cf. [Co92]).
This is complicating a thorough computer sci-
ence investigation of validation scenarios mostly
based on formal concepts and methodologies.

Therefore, the present papers is focusing on
approaches to characterize human expertise in
formal terms. This is deemed a substantial step
towards a better understanding of the power and
limitations of interactive validation scenarios.

The key question is exemplified in the par-
ticular area of validating learning systems. How
to characterize the human $experti_{S}e\underline{necessar}y$. or
$\underline{s}uJiCient$ for validating systems which learn in-
ductively ?

The usage of TCS concepts demonstrates in
formal terms that certain human expertise suf-
ficient to accomplish certain validation tasks is
$\mathrm{s}\mathrm{u}\mathrm{b}_{\mathrm{S}}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{u}_{\mathrm{y}}$ non-recursive. This leads to the
interesting question whether or not humans are
provably more powerful than machines–a ques-
tion which we are not going to deal with.

2 Learning Systems Validation
-A Case for Determining Expertise
by means of Suitable TCS Concepts

We adopt validation scenarios according to
[KPG97], e.g. Human experts who are invoked
for learning systems validation within the frame-
work of those scenarios need to have some topi-
cal competence. It is one of the key problems of
validation approaches based on human expertise
how to characterize the experts’ potentials which
allow them to do their job sufficiently well. Even
more exciting, it is usually unknown whether or
not the humans engaged in those interactive sce-
narios can be replaced by computer programs

without any substantial loss of validation power.
This problem is of a great philosophical interest
and of a tremendous practical importance.

For learning systems validation, we will be able
to characterize the human expertise sufficient for
trustable systems validation. Some characteriza-
tions are even both sufficient and necessary.

2.1 Preliminaries

Let IV denote the set of natural numbers, and
let $n_{\perp}^{\gamma}=\mathit{1}\mathrm{V}\cup\{\perp\}$. For any $M\subseteq N$ we denote
the power set of M by $\wp(M)$. For some function
$f,$ $dom(f)$ denotes the domain of f .

Computable functions are defined over N. P

is the class of all partial recursive functions. The
class of total recursive functions is denoted by \mathcal{R} .

By cod: $N^{2}arrow N$ let us denote CANTOR’S pair-
ing function, i.e. an easy to compute function
that is one to one, and onto (cf. [Ro67]).

For a $\mathrm{G}\ddot{\mathrm{O}}\mathrm{D}\mathrm{E}\mathrm{L}$ numbering φ , each number $j\in N$

is specifying a particular function denoted by φ_{j} .
For the rest of this paper, a G\"o $\mathrm{D}\mathrm{E}\mathrm{L}$ numbering φ

(cf. [Ro67]) and a corresponding BLUM complex-
ity measure ϕ (cf. [B167]) are fixed. For any
$j,x\in \mathfrak{R}^{\Gamma},$ $\varphi_{j}(X)\downarrow$ indicates that $\varphi_{\mathrm{j}}(x)$ is defined.

For a set F of computable functions, the index
set I_{F} contains exactly all programs for functions
from F , i.e. $I_{F}=\{i\in n^{\tau}|\varphi_{i}\in F\}$.

Let $U\subseteq \mathcal{R}$. Then, U is is said to be enumerable
provided there is a $g\in \mathcal{R}$ such that $U\subseteq\{\varphi_{g(n)}|$

$n\in m^{\Gamma}\}\subseteq R$. If $U=\{\varphi_{g(}n)|n\in J\mathrm{V}\}$ for some $g\in \mathcal{R}$,
then U is called exactly enumerable. By NUM
(NUM!) we denote the $\mathrm{c}\mathrm{o}\mathrm{U}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of all enumer-
able (exactly enumerable) subsets of R .

A sequence $(n_{t})_{t\in N}$ of natural numbers is said
to converge to some ultimately final value n , if
past some point $t’\mathrm{a}\mathrm{U}$ numbers $n_{t}(t\geq t’)$ are iden-
tical to n . This is denoted by $\lim(n_{t})_{t\in \mathit{1}}=n$.

f is said to be limiting computable, if there
is some $g\in \mathcal{R}^{2}$ satisfying (i) for all $x\in d_{om}(f)$,
there is some $t’\in \mathit{1}\mathrm{V}$ such that, for all $t\in n^{r}$ with
$t>t’,$ $g(x,t)=f(x)$, and (ii) for all $x\not\in dom(f)$

and all $t\in \mathrm{R}^{\Gamma}$, there exists some $t’\in J\mathrm{V}$ such that
$t’>t$, and $g(x,t’)\neq g(x,t)$.

Any $M\subseteq N$ is said to be limiting decidable, if
$M’ \mathrm{s}$ characteristic function χ_{M} is limiting com-
putable. Similarly, $M\subseteq N$ is said to be limiting
enumerable, if ‘half’ of $M’ \mathrm{s}$ characteristic func-
tion χ_{M}^{+} is limiting computable, where $\chi_{M}^{+}(x)=1$

if and only if $x\in M$.

104

We use the abbreviation f^{A} to indicate that
f is computable relative to some oracle A (cf.
[Ro67] $)$, i.e. there is an algorithm computing f

that is allowed to ask, from time to time, ques-
tion of the type “$n\in A?$”, and that may use the
answers supplied to determine how to continue.

We use the abbreviation $[Ml.r.e.]A$ to indicate
that there is some A-computable function limit-
ing enumerating set $M\subseteq N$.

2.2 Inductive Inference–Notions and
Notations

This section is focused on essential features of in-
ductive learning which complicate the validation
task, and it introduces a few basic formalisms.
For both conceptual simplicity and expressive
generality, the focus of the present investigations
is on learning of total recursive functions from fi-
nite sets of $\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ examples (cf. [AS83]).

When learning any total recursive function f ,
the $\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ examples $\langle \mathrm{O},f(\mathrm{O})\rangle,$ $\langle 1,f(1)\rangle$,
$\langle 2, f(2)\rangle,$

\ldots are subsequently presented. Learn-
ing devices are computable procedures generat-
ing hypotheses upon natural numbers $f[t]$ encod-
ing finite samples $\langle 0,f(\mathrm{O})\rangle,$ $\langle 1,f(1)\rangle,$

$\ldots,$
$\langle t,f(t)\rangle$.

Note that, for every $x\in N$, there is the one and
only finite sample encoded by x .

For notational co..nvenience, hypotheses are
just natural numbers $\dot{\mathrm{w}}\mathrm{h}\mathrm{i}_{\mathrm{C}}\mathrm{h}$ are to be interpreted
via the underlying G\"o $\mathrm{D}\mathrm{E}\mathrm{L}$ numbering φ . Note
that lear.ning will usually take place over time.
Thus, hypotheses are generated subsequently.

An individual learning $\mathrm{p}\mathrm{r}\tilde{\mathrm{o}}$ blem is always un-
derstood to be a class of $\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\dot{\mathrm{t}}$ functions. A
corresponding learning device has to learn each
of these functions individually when fed with ap-
propriate samples.

Definition 1 (LIM)
$U\in LIM$ if and only if there is an $S\in P$ satisfy-

ing for any $f\in U:$ (1) for all $t\in N\rangle$ $h_{t}=S(f[t])$

is defined. $and.(\mathit{2})\lim(ht)_{t\mathrm{j}\vee}\in=h$ with $\varphi_{h}=feX^{-}$

ists.

Thus, LIM is a collection of function classes
U for which some recursive learning device S

as indicated exists. If the learning device S

exclusively outputs indices for total recursive
functions, then U belongs to the learning type
TOTAL.

Definition 2 (TOTAL)
$U\in TOTAL$ if and only if there exists some $S\in P$

satisfying for any $f\in U:$ (1) for all $t\in N,$ $h_{t}=$

$S(f[t])$ is defined, (2) $\lim(h_{t})_{t\in N}=h$ with $\varphi_{h}=f$

exists, and $(_{\mathrm{t}}?)$ for all $t\in N,$ $h_{t}\in I_{R}$.

Alternatively, if it is decidable whether or not
S , when learning any $f\in U$, has reached the ul-
timate learning goal then S witnesses that U be-
longs to the special learning type FIN. This ap-
proach is easily formalized as well:

Definition 3 (FIN)
$U\in FIN$ if and only if there exist some $S\in P$ and
some related decision procedure $d\in P$ which sat-
isfy for any $f\in U:(\mathit{1})$ for all $t\in N,$ $h_{t}=S(f[t])$

is defined, (2) $\lim(h_{t})_{t\in N}=h$ with $\varphi_{h}=f$ ex-
ists, (3) for all $t\in N,$ $d(f[t])$ is defined, and (4)
$d(f[t])=1$ if and only if $S(f[t])=h$.

The relation between the learning types intro-
duced above is as follows:

$\mathrm{F}\mathrm{I}\mathrm{N}\subset \mathrm{T}\mathrm{O}\mathrm{T}\mathrm{A}\mathrm{L}\subset \mathrm{L}\mathrm{I}\mathrm{M}\subset\wp(\mathcal{R})$.

To sum up, although inductive learning suc-
ceeds after finitely many steps, in its right per-
spective, it is appropriately understood as a lim-
iting process. This fact is causing unavoidable
difficulties to validation attempts based on local
information, only.

2.3 Interactive Scenarios for Learning
Systems Validation

A validation problem for inductive inference sys-
tems is given as a triple of (1) some function class
$U\subseteq \mathcal{R},$ (2) some learning function $S\in P$, and (3)
an inductive inference type like LIM, TOTAL,
or FIN, e.g. The precise question is whether S

is able to learn all functions f from U with re-
spect to the considered inductive inference type
ID . Naturally, this question is only worth to be
asked in case that $U\in \mathrm{I}\mathrm{D}$.

There are two substantial difficulties. First,
function classes U under consideration are usu-
ally infinite. Second, every individual function is
an infinite object in its own right. In contrast,
every human attempt to validate some learning
system by a series of systematic tests is essen-
tially finite. Thus, validity statements are neces-
sarily approximate.

105

When some process of (hopefully) learning
some target function $f\in U$ by some device $S\in \mathcal{P}$

with respect to some inductive inference type is
under progress, one may inspect snapshots de-
termined by any point t in time.

Any pair of an index of a recursive function
and a time point is called test data. They repre-
sent initial segments of functions. Certain data
are chosen for testing by a test data selection.

Definition 4 (Test Data, Test Data Selec-
tion) Any pair $\langle j,t\rangle$ with $\varphi_{j}(x)1f$ for all $x\leq t$, is
called test data. TD denotes the set of all poten-
tial test data. Furthermore, a function $DS:Narrow$

$\wp(TD)$ defines a test data selection provided that,
for all $n\in N,$ $DS(n)\subset DS(n+1)$.

In practice, the selection of test data is fre-
quently done by hand. So, there is no need to
consider the test data selection to be recursive.

Intuitively, the two numbers refer to a program
and an intensity, with which the behaviour of the
system is tested for this program. Subsequently,
test data $\langle j,t\rangle$ are interpreted as $\varphi_{j}[t]$. Therefore,
the second parameter is called a time stamp.

In order to verify whether or not alearning sys-
tem is valid with respect to some function class
U , enough relevant test data have to be selected.

Definition 5 (Completeness)
Let $U\subseteq \mathcal{R}$ and let DS be a test data selection.
DS is said to be complete for U if and only if
the set $T= \bigcup_{n\in N}DS(n)$ satisfies conditions (1)
for all $f\in U$, there is a φ -index j for f such
that $\langle j,t\rangle\in T$ for every $t\in n^{r},$ (2) there are only
finitely many test data $\langle j,t\rangle\in T$ with $j\not\in I_{U}$, and
(3) there are only finitely many test data $\langle j,t\rangle\in T$

with $\langle j,t+1\rangle\not\in T$.

When testing some learning system S on test
data $\langle j,t\rangle$, one is interested in knowing how S

behaves on input $\varphi_{j}[t]$. Experimentation means
feeding test data to the system under investiga-
tion and, if possible, receiving system’s response.

Definition 6 (Experimentation)
Any mapping $Exp:Narrow N_{\perp}is$ called experimen-
tation. Furthermore, the mapping Exp is an
experimentation for $S\in P$ if and only if for all
$\langle j,t\rangle\in TD$, either $Exp(\varphi j[t])=\perp or$ $Exp(\varphi j[t])=$

$S(\varphi_{j}[t])$.

Because experimentation is a human activity,
the mapping Exp is not necessarily computable.

Intuitively, the result $\perp \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{s}$ that no proper
system’s response has been received. This may
be due to some time out, e.g. Clearly, if
it frequently happens that $Exp(\varphi_{j}[t])=\perp$, but
$S(\varphi_{j}[t])$ terminates, then this particular exper-
imentation does not reflect the learning system’s
behaviour sufficiently well.

Insistency characterizes a manner of interac-
tively validating a system where the human in-
terrogator does never give up too early.

Definition 7 (Insistency)
Let Exp be an experimentation for $S\in P$. Exp

is said to be insistent for S if and only if
$Exp(\varphi_{j}[t])=S(\varphi_{i}[t])$ for exactly all $\langle j,t\rangle\in TD_{f}$

where $S(\varphi_{j}[t])\downarrow$.

These formalisms are aimed at the description
of an expert’s interactive validation of any given
learning system S . An expert $\mathrm{i}\overline{\mathrm{s}}_{\mathrm{P}^{\mathrm{e}\mathrm{r}\mathrm{f}\min \mathrm{g}}}\mathrm{o}\mathrm{r}$ ex-
periments with some target object φ_{j} in mind re-
sulting in protocols. A protocol is a triple $\langle j,t,h)$

with $\langle j,t\rangle\in TD$ and $h=Exp(\varphi j[t])$.
Those protocols are subject to the expert’s

evaluation marked 1 or 0 , respectively, express-
ing the opinion whether or not the experiment
witnesses the system’s ability to learn the tar-
get function φ_{j} . This realizes a certain mapping
Eval: $TD\cross Narrow\{0,1\}$, a so-called expert’s eval-
uation function. As before, this might be not
computable. The tuple consisting of a protocol
and the expert’s evaluation is a report.

Validation statements are synthesized upon re-
ports which reflect interactive systems validation
to some extent. In dependence on the underlying
validation scenario, there are concepts of differ-
ent sophistication. We adopt the most simple
approach, and consider any finite set of reports
to be a validation statement.

For interactive systems, in general, and for
learning systems, in particular, any one-shot val-
idation does not seem to be appropriate. Thus,
one is lead to validation scenarios in open loops
which result in sequences of validation state-
ments. Hence, a validation dialogue arises, con-
stituted by any test data selection, experimenta-
tion, and the expert’s evaluation function.

106

Definition 8 (Validation Dialogue)
Assume any test data selection DS , any ex-
$\dot{p}erimentati_{on}Exp$, and any expert’s evaluation
function Eval. The triple $VD=\langle DS,Exp,Evol\rangle$

defines a sequence of validation statements
$(VS_{n})_{n\in N}$ called a validation dialogue, where,
for all $n\in N,$ VS_{n} is the collection of all reports
$\langle\langle j,t,h\rangle,b\rangle$ with $\langle j,t\rangle\in DS(n)$, $h=Exp(\varphi_{j}[t])$,
and $b=Eval(j,t,h)$.

Such a validation dialogue is said to be success-
ful for U and S if and only if the underlying data
selection is complete for U , the experimentation
is insistent, and the experts’ evaluation is con-
verging to the success value 1, for every program
which is subject to unbounded experimentation.

Definition 9 (Successful Validation Dia-
logue) Assume $U\subseteq \mathcal{R},$ $S\in P$, any test data se-
lection DS , any experimentation Exp , and an
expert’s evaluation function Eval. The val-
idation dialogue $(VS_{n})_{n\in N}$ defined by $VD=$

$\langle DS,Exp,Eval\rangle$ is successful for U and S if and
only if (1) DS is complete for U , (2) Exp

is insistent for S , and (3) for every $j\in N$,
there are only finitely many reports $\langle\langle j,t,h),b\rangle\in$

$\bigcup_{n\in N}Vs_{n}$ with $b=0$.
The formal concepts introduced will suffice for

systematically investigating the possibilities of
interactive learning systems validation.

3 Characterizing Test Data Selection:
The Goal of Invoking TCS Concepts

We go only very briefly into the details of test
data selection. There are several areas of more
traditional computer science and of AI where the
generation of test cases or test sets plays an im-
portant role. The methodologies invoked range
from sophisticated mathematical considerations
to comprehensive investigations taking aspects of
cognitive psychology into account. We are aware
of the narrowness of our present approach, but
we had to trade generality for precision.

Definition 10 (CDS)
Let $U\subseteq R.\dot{U}\in CDS$ if and only if there is a com-
putable test data selection being complete for U .

Let A be an oracle, and let $U\subseteq \mathcal{R}$. Then,
we let $[U\in \mathrm{C}\mathrm{D}\mathrm{S}]^{A}$ indicate that there is an A-
computable data selection being complete for U .

In most investigations, it is of a particular in-
terest to find out whether or not those sets of test
cases can be generated automatically. Within
the technical terms of the present approach, this
is the question for the computability or rela-
tivized computability of the data selection DS .

Theorem 1 Let $U\subseteq \mathcal{R}$ and A be any oracle.
Then, it holds: $[U\in CDs]A\Leftrightarrow[U\in NUM’.]^{A}$.

This allows the following corollary exhibiting
the restrictiveness of areas in which the selection
of relevant test data can be fully automated.

Corollary 2 $CDS=NUM’.$.

It’ can be $\mathrm{s}\mathrm{h}\dot{\mathrm{o}}\mathrm{w}\mathrm{n}$, that there \‘is no level of ex-
pertise that allows to generate complete test data
for all learning problems. More formally:

Theorem 3 Let A be any oracle. Then, there is
some $U\in LIM$ such that $[U\not\in CDS]^{A}$.

4 Characterizing Experiment Control:
The Goal of Invoking TCS Concepts

The question considered in the present section
is how to implement any form of control to ac-
complish insistent experimentation. Conceptu-
ally, one needs any module supervising exper-
imentation and “telling” the validator whether
or not (s)he should wait a little longer for some
system’s response.

TCS concepts are required to make this in-
tuitive approach precise. Otherwise, there were
no hope for precise results about the possibilities
of implementing insistent experimentation. The
following seems to be rather straightforward.

Any given learning function S under validation
is effectively computable and, therefore, when
being subject to experimentation, may be un-
derstood as some particular φ_{s} with $s\in N$. Note
that this does not mean that the validator is nec-
essarily aware of the particular “program” s un-
der inspection. However, the actual experimen-
tation process is characterized by the computa-
tion time of φ_{s} which can be suitably formalized
by the related BLUM complexity measure.

In order to formalize control concepts of in-
sistent experimentation, it is necessary to dis-
tinguish between so-called ‘white box’ valida-
tion and ‘black box’ validation (cf. [Gu93] and

107

[GR97], e.g.). In the first case, one has access to
the program under validation, whereas one is re-
stricted to only the program’s behaviour, in the
latter case. This is formally reflected by a control
function c which depends either on both the in-
formation $\varphi_{j}[t]$ presented and the program s in-
spected or on the recent information $\varphi_{j}[t]$, only.

Definition 11 (Control)
Let $c\in R^{2}$, and let $s\in N$. Then, c allows for
an insistent white box experimentation with $\varphi-$

program s if and only if, for any $\varphi_{j}[t]\in N$,
$\varphi_{S}(\varphi j[t])\downarrow$ implies $c(\varphi_{j}[t],S)\geq\phi_{S}(\varphi j[t])$.

Let $c\in \mathcal{R}$, and let $s\in N$. Then, c allows
for an insistent black. box experimentation with
$\varphi-prog\dot{r}ams$ if and only if, for any $\varphi_{j}[t]\in N$,
$\varphi_{S}(\varphi j[t])\downarrow-$ im.plies$c(-.\varphi j[t])\geq\phi_{S}.(\varphi j[t])$.

.

Let $c\in \mathcal{R}^{2}$. Then, COP (C) is the set of
all φ-programs controlled by c . Furthermore,
COF (C) is the set of $\mathrm{a}\mathrm{U}$ computable functions
for which there is a φ-program controlled by c ,
i.e. COF $(C)=\{\varphi_{S}|s\in coP^{w}(c)\}$. Concerning
insistent black box experimentation via some
control $c\in \mathcal{R}$, the sets COP (C) and COF (C) are
defined analogously.

As the reader may easily verify, insistent ex-
perimentation for any single strategy can be im-
plemented by an insistent control, and vice versa.
In the following, we study to what extent insis-
tent control functions can be used to realize ex-
periments with arbitrary learning devices.

It is well-known that there are arbitrary com-
plex programs. In other words, for each $\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{u}\mathrm{r}\dot{\mathrm{S}}\mathrm{i}\mathrm{V}\mathrm{e}$

bound1 , there are infinitely many total recur-
sive functions that have a program which exceeds
this bound (cf. [B167]). Thus, one may expect
that insistent experimentation for larger classes
of inductive learning devices requires some non-
recursive expertise.

A prominent example for non-recursive exper-
tise is the halting set Ii^{r} , i.e. $K=\{\langle i,x\rangle|i,x\in$

$N,$ $\varphi_{i}(x)\mathrm{t}\}$. As we $\mathrm{w}\mathrm{i}\mathrm{U}$ see, the halting set K ex-
actly characterizes the level of non-recursive ex-
pertise which is both necessary and sufficient to
realize white box experimentation for all learning
devices.

1A totai function $c\in \mathcal{R}$ is said to be a complexity
bound for the φ-program j of some $f\in \mathcal{R}$ provided that
$c(x)\geq\phi_{J}(x)$ for almost all $x\in B\mathrm{V}$.

Let A be an oracle, let $S\subseteq \mathcal{P}$, and let $Q\subseteq N$.
Then, we use the notations $[S\in COP^{w}]^{A}$ and
$[Q\in COF^{w}]^{A}$ to indicate that there is an A-
computable control c^{A} which allows for an in-
sistent white box experimentation with all pro-
grams in Q and all learning devices in S , respec-
tively. We adopt these notations for black box
experimentation.

Theorem 4 Let A be any oracle. Then, we

have: $[I_{P}\in COP^{w}]^{A}\Leftrightarrow$ [$I\iota^{r}$ is $recursive$] A .

In the black box approach, the situation
changes $\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{u}_{\mathrm{y}}$. In this setting, the control c

does not receive any information about the pro-
gram it is supposed to control. Thus, the re-
sult from [B167] already mentioned above imme-
diately allows for the following insight.

Theorem 5 There is no oracle A that guaran-
tees $[P\in COF^{b}]^{A}$. .

5 Characterizing Validation Expertise:
The Goal of Invoking TCS Concepts

Within the last two sections, we have investi-
gated the problem of automatizing the data se-
lection and the experimentation. Now, we focus
our attention on the evaluation phase. The next
definition provides the formal framework for an
appropriate investigation.. \cdot

Definition 12 (EVAL)
Let ID be an identification type, and A be an or-
acle. Then, all learning devices are said to be
ID-evaluable with respect to all learning prob-
lems modulo oracle A ($[ID\in EVAL]^{A}$, for short)
if and only if there is an A -computable evalua-
tion $Eval^{A}$ such that, for all $S\in P$, all $U\in ID_{f}$

all data selections DS complete for U , and all
experimentations Exp insistent for S , we have:
the validation dialogue $VD=\langle$ $DS,E_{X}p,$ Eval \rangle is
successful for U and S if and only if $U\subseteq ID(S)$.

The key question considered here is, given
some learning type $\mathrm{I}\mathrm{D}$, how powerful an expert
must be to $\mathrm{I}\mathrm{D}$-evaluate all computable learning
devices with respect to all learning problems that
can be solved by learning devices that meet the
requirements of the learning type $\mathrm{I}\mathrm{D}$.

108

TCS concepts can be invoked to implement the
following program:

(i) Choose the requirements an acceptable
learning device should meet. For instance, it
should learn in the limit or should finitely learn.

(ii) Find some characterization of expertise.
(iii) Prove a theorem that any expert who is

competent according to the conditions of (ii) is,
therefore, able to evaluate whether or not any
given learning device meets the requirements fo-
cused under (i) when being confronted with some
learning problem.

(iv) Prove a theorem that an expert’s ability to
evaluate all devices with respect to the require-
ments fixed within (i) necessarily needs some skill
as formalized within (ii).

Imagine, for a moment, some validation dia-
logue for a LIM-learning device. The expert,
who is involved in this process, has eventually
to answer the following questions:

(a) Does the learner, when fed information for
some function f , always output a hypothesis?

(b) Does the learning device converge when
successively fed information about f ?

(c) Does the final hypothesis correctly describe
the target function $f\mathrm{i}$

When asking for experts’ expertise for valida-
tion of machines which have to meet further re-
quirements, like for TOTAL-or FIN-type learn-
ers, e.g., answering questions (a), (b), and (c)
is an essential part of the evaluation process as
well. Therefore, we first try to characterize the
expertise needed to answer them.

Because the experimentation is assumed to be
insistent, (a) and (b) are not difficult to answer.
(c) is in essence the crucial question in this sec-
tion. If one can determine in the limit, at least,
whether a hypothesis is an index for a total com-
putable function, the consistency check becomes
fairly simple. Without this additional knowl-
edge, it might be impossible to test consistency.

So, the problem of determining in the limit,
whether or not an arbitrary computable function
is total, seems to play a key role in validating
learning systems.

Proposition 6 Let A be any oracle. Then, we

have the following equivalences:
(1) $[LIM\in EVAL]^{A}\Leftrightarrow[I_{R}l.r.e.]^{A}$.
(2) $[TOTAL\in EVAL]^{A}\Leftrightarrow[I_{R}l.r.e.]^{A}$.
(3) $[FIN\in EVAL]^{A}\Leftrightarrow[I_{R}l.r.e.]^{A}$.

Proposition 6 characterizes validation exper-
tise. Next, we relate validation expertise to do-
main expertise, i.e. the ability to solve learning
problems in the required sense.

Proposition 7 $([\mathrm{A}\mathrm{B}91])$ Let A be any oracle.
Then, we have: $[I_{R}l.r.e.]^{A}\Leftrightarrow[R\in LIM]^{A}$.

Putting the last two results together, we im-
mediately arrive at the following insight.

Theorem 8 Let A be any oracle. Then, we

have: $[LIM\in EVAL]^{A}\Leftrightarrow[\mathcal{R}\in LIM]^{A}$.

Consequently, an expert having the ability to
LIM-evaluate all learning devices has a level of
expertise which is sufficient to solve every possi-
ble learning task, i.e. to learn in the limit every
$f\in \mathcal{R}$ from $\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ examples.

Finally, we summarize the insights obtained.

Theorem 9 Let A be any oracle. Then, the fol-
lowing statements are equivalent:
(1) $[LIM\in EVAL]^{A},$ (2) $[TOTAL\in EVAL]A$,
(3) $[FIN\in EVAL]^{A}$, and (4) $[\mathcal{R}\in LIM]^{A}$.

Although different types of learning behaviour
may need different approaches in validating it,
the required expertise remains $\dot{\mathrm{u}}$nchanged.

6 Conclusions

First, we sum up very briefly the technical con-
tents of the present paper. We know about suffi-
cient and necessary expertise to accomplish some
validation tasks. Interestingly, this expertise can
not be automated. The strength of the expertise
is illustrated by the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{g}$ informal statement:

Who is able to validate certain learning de-
vices, is also able to replace them in solving
learning problems.

Evidence for this thesis is provided by several
of our results above. There are some results
illuminating the necessity to have an expertise
formally expressed by the oracle K , i.e. by the
power to decide the halting problem. In case
this power is available, it is immediately possi-
ble to learn in the limit any recursive function:
$[\mathcal{R}\in \mathrm{L}\mathrm{I}\mathrm{M}]^{K}$.

Some of our results exhibit non-recursive ex-
pertise as a necessary prerequisite to accom-
plish certain tasks in learning systems validation.

109

Consequently, there is no way to replace humans
by computer programs for those validation tasks.
Does this mean that we can prove that humans
are more powerful than machines in this partic-
ular area? We don’t know! In case humans turn
out to be able to solve au those validation prob-
lems sufficiently well, this were some evidence for
the humans’ superiority to machines–an excit-
ing open question.

However, these remarks refer only to the tech-
nical perspective of our present paper. Our start-
ing point was more general.

The validation of complex systems is a remark-
ably urgent problem area. Several validation ap-
proaches and scenarios are recently under devel-
opment, under theoretical investigation, and also
under experimental exploration.

As soon as human experts are becoming in-
volved, the question for the experts’ competence
is becoming crucial. Most problems, even some
very fundamental one, are still open. A quite
typical question is how the validation experts’
expertise relates to the domain experts’ skius.
Is it necessary that anybody involved in systems
validation needs to be qualified for doing the sys-
tems’ job, at least in principle? Or does a sub-
stantially lower degree of qualification suffice for
validating a system’s behaviour?

There might be no generally valid answers
to those questions. Despite this, any clear an-
swer derived under certain more specific cir-
cumstances might be discussed controversially.
Therefore, a firm justification is both theoreti-
cally and practically relevant. Unwelcome find-
ings need a particularly serious support.

TCS concepts and methodologies may pro-
vide a firm basis for sufficiently clear statements
which are characterizing human expertise for
complex systems validation. The present paper
is intended to provide an example, only. There
is evidence for the thesis that validation is not
simpler than doing the job itself.

References

[AB91] L. M. Adleman and M. Blum. Induc-
tive inference and unsolvability. The
Journal of Symbolic Logic, $56(3):891-$
900, Sept. 1991.

[AS83] D. Angluin and C. H. Smith. A sur-
vey of inductive inference: Theory and
methods. Computing Surveys, 15:237-
269, 1983.

[B167] M. Blum. A machine-independent the-
ory of the complexity of recursive func-
tions. J. ACM, 14:322-336, 1967.

[Bo84] B. W. Boehm. Verifying and validat-
ing software requirements and design
specifications. IEEE Trans. Software,
$1(1):75-88$, 1984.

[Co92] N. J. Cooke. Modeling human epertise
in expert systems. In Hoffman (ed.),
The Psychology of Expertise. Cognitive
Research of Empirical AI, pp. 29-60.
Springer-Verlag, 1992.

[GJL98] G. Grieser, K. P. Jantke, and S. Lange.
Characterizing sufficient expertise for
learning system validation. In Proc.
Florida AI Research Symp. ’98. AAAI
Press, 1998. to appear.

[GR97] A. J. Gonzalez and P. Ramasamy. De-
tecting anomalies in constraint-based
systems. In Gens (ed.), Int. Sci. Col-
loquium, Ilmenau Univ. of Technology,
vol. 2, pp. 35-40. TU $\mathrm{n}_{\mathrm{m}\mathrm{e}}\mathrm{n}\mathrm{a}\mathrm{u}$, 1997.

[Gu93] U. G. Gupta. Validation and Verifica-
tion of Expert Systems. IEEE Press,
Los Alamitos, CA, 1993.

[KPG97] R. Knauf, I. Philippow, and A. J. Gon-
zalez. Towards an assessment of an
AI system’s validity by a TURING
test. In Dankel II (ed.), Proc. Florida
AI Research Symp. ’97, pp. 397-401.
Florida AI Research Society, 1997.

[OO93] R. M. O’Keefe and D. E. O’Leary. Ex-
pert system verification and validation:
A survey and tutorial. Artificial Intel-
ligence Review, 7:3-42, 1993.

[Ro67] H. Rogers jr. The Theory of Recursive
Functions and Effective Computability.
$\mathrm{M}\mathrm{c}\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{w}$-Hill, 1967.

[WW93] J. A. Wise and M. A. Wise. Basic
considerations in verification and val-
idation. In Wise, Hopkin, and Stager
(eds.), Verification and Validation of
Complex Systems: Human Factors Is-
sues, NATO ASI Series, Series F:
Comp. and Systems Sci., vol. 110, pp.
87-95. Springer-Verlag, 1993.

110

