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A mathematical theory for the subject on ancestral character-state reconstructions under
the maximum parsimony in phylogeny has been developing $([2]-[10])$ .

We use the notations in [2] and [5]. Let $\Omega$ denote the set that may be either the set $\mathrm{R}$

of real numbers or the set $\mathrm{N}$ of nonnegative integers. Note that $\Omega$ expresses the linearly
ordered character-states. Let $T=(V=V_{O}\cup V_{H}, E, \sigma)$ be any undirected tree with the
endnodes evaluated by a weight function $\sigma$ : $V_{O}arrow\Omega$ , where $V$ is the set of nodes, $V_{O}$ is
the set of endnodes which are nodes of degree one, $V_{H}$ is the set of internal nodes, and $E$ is
the set of branches. We call this tree an $el$-tree. For an $\mathrm{e}1$-tree $T$ , we define an assignment
$\lambda$ : $Varrow\Omega$ such that $\lambda|V_{O}$ (the restriction of $\lambda$ to $V_{O}$ ) $=\sigma$ , where $\lambda(u)$ is called a state of
$u$ under $\lambda$ . This assignment is called a reconstruction on an $\mathrm{e}1$-tree $T$. For each branch $e$

in $E$ of an $\mathrm{e}1$-tree $T$ with a reconstruction $\lambda$ , we define the length $l(e)$ of branch $e=\{u, v\}$

by $|\lambda(u)-\lambda(v)|$ . Then the length $L(T|\lambda)$ of an $\mathrm{e}1$-tree $T$ under the reconstruction $\lambda$ is the
sum of the lengths of the branches. That is, $L(T|\lambda)=\Sigma_{e\in E}l(e)$ . Furthermore we define
the minimum length $L^{*}(T)$ of $T$ by

$L^{*}(T)= \min$ { $L(\tau|\lambda)|\lambda$ is a reconstruction on $T$}.

Note that $L^{*}(T)$ is well-defined. A $Most- Parsimonio\prime L\mathit{4}s$ Reconstruction denoted by MPR
on an $\mathrm{e}1$-tree $T$ is a reconstruction $\lambda$ such that $L(T|\lambda)=L^{*}(T)$ . Generally an $\mathrm{e}1$-tree $T$ has
more than one MPR. The set { $\lambda(u)|\lambda$ is an MPR on $T$} of states is called the MPR-set
of a node $u$ and written as $S_{u}$ .

Let $T=(V, E)$ be a rooted (directed), tree, where $V$ is the set of nodes and $E(\subseteq V\cross V)$

is the set of branches. For each $u$ and $v$ in $V$ , we write $uarrow v$ or $u=p(v)$ when $(u, v)\in E$ ,
i.e., $u$ is a parent of $v$ (or $v$ is a child of $u$). For each $u$ and $v$ in $V,$ $u$ is called an ancestor
of $v$ , written $uarrow v*$ , if there is a sequence of nodes $u=u_{1},$ $u_{2},$ $\cdots,$ $u_{n}=v$ in $V$ such that
$u_{i}arrow u_{i+1}(i\in[n-1])$ . In a rooted tree, there is only one node without a parent, which is
called the root, and a node without a child is called a leaf. For each $u$ in $V$ , we denote a
subtree of $T$ induced from a subset $\{u\}\cup\{v\in V|uarrow*v\}$ of $V$ by $T_{u}=(V_{u}, E_{u})$ . Note that
$u$ is the root of $T_{u}$ .

For a given $\mathrm{e}1$-tree $T=(V_{O}\cup V_{H}, E, \sigma)$ , we define a rooted $el$-tree $T^{(r)}$ rooted at any
element $r$ in $V=V_{O}\cup V_{H}$ . The rooted $\mathrm{e}1$-tree $T^{(r)}$ is simply written $T$ if it is understood.
In addition, if $r$ is an endnode, $\mathrm{i}.\mathrm{e}.,$ $r\in V_{O}$ and $s\mathrm{i},\mathrm{s}$ its unique child, we denote the rooted
tree $T^{(r)}$ by $(T_{S},r)$ to vizualize the structure. In this case, the subtree $T_{s}$ is called the body
of the tree $T^{(r)}$ : otherwise, i.e., if $r\in V_{H}$ , the body of $T^{(r)}$ is $T^{(r)}$ itself.
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Let $I_{i}=[a_{i}, b_{i}](i\in[m])$ be any family of closed intervals in $\Omega$ . Let all the endpoints $a_{i}$

and $b_{i}$ of $I_{i}(i\in[m])$ be sorted in ascending order and then be arranged as follows:

$x_{1}\leq x_{2}\leq\cdots\leq X_{m}\leq X_{m+}1\leq\cdots\leq x_{2m}$ .

Then we call the closed interval $[x_{m},x_{m+}1]$ in $\Omega$ the median interval of the closed inter-
vals $I_{i}(i\in[m])$ , which is the key concept in a series of our papers, and denote it by
$\mathrm{m}\mathrm{e}\mathrm{d}\langle I_{1}, I_{2}, \cdots, I_{m}\rangle$ or $\mathrm{m}\mathrm{e}\mathrm{d}\langle I_{i} : i\in[m]\rangle$ .

For each node $u$ in the body of a rooted $\mathrm{e}1$-tree $T$, we assign a closed interval $I(u)$ of $\Omega$

recursively as follows:

$I(u)=\{$
$[\sigma(u), \sigma(u)]$ if $u$ is a leaf,

$\mathrm{m}\mathrm{e}\mathrm{d}\langle I(v) : uarrow v\rangle$ otherwise.

We call $I(u)$ the characteristic interval of a node $u$ and so $I$ is called the characteris$tic$

interval map on $T$ .
We now restate the results in the previous paper [2], which are used in this paper. Let $T$

be a rooted $\mathrm{e}1$-tree $(T_{S},r)$ and $I$ be the characteristic interval map on $T$. Let $\lambda_{<u>}$ denote
the restriction $\lambda|V_{u}$ of a reconstruction $\lambda$ on $T$ to a subtree $T_{u}$ of $T$ . Then a set $\mathrm{R}\mathrm{m}\mathrm{p}2(r,S)$

of reconstructions on $T$ is defined recursively as follows:

$\lambda_{<S>}\in \mathrm{R}\mathrm{m}\mathrm{p}2(r, S)\Leftrightarrow\{$

$\lambda(s)\in \mathrm{m}\mathrm{e}\mathrm{d}\langle[\lambda(r), \lambda(r)], I(t) : sarrow \mathrm{t}\rangle$ ,
and $\forall t(sarrow t)(\lambda_{<t>}\in \mathrm{R}\mathrm{m}\mathrm{p}2(s, t))$ .

Note that $\lambda_{<S>}$ (with $\lambda(r)=\sigma(r)$ ) can be considered a reconstruction on $T$ . The following
are Theorem 1 (Theorem 3 $(\mathrm{i}\mathrm{i})$ ) and Corollary 5 in [2].

Theorem A. For any endnode $r$ of an el-tree $T,$ $\mathrm{R}\mathrm{m}\mathrm{p}2(r.S)\text{ノ}$ is the set of all MPRs on $T$

Noting that generally a phylogenetic tree has more than one MPR, Swofford and Maddi-
son [9] have defined more explicitly the ACCTRAN reconstruction originated with Farris
[1], and the DELTRAN reconstruction, which are considered to be more meaningful and
useful MPRs in phylogeny. Then Minaka [3] has introduced the usual partial ordering on
the set of all possible MPRs on a phylogenetic tree, in order to investigate the relationships
among the ACCTRAN, the DELTRAN, and other MPRs.

For any $\lambda$ and $\mu$ in $\mathrm{R}\mathrm{m}\mathrm{p}(T)$ , the partial ordering $\lambda\leq\mu$ is defined by $\lambda(u)\leq\mu(u)$ for all
$u$ in $V$ . The partially ordered set $(\mathrm{R}\mathrm{m}\mathrm{p}(\tau), \leq)$ is called the $MPR$-poset or Minaka poset.
From a lattice-theoretic point of view, we first have a question whether there exists the
greatest element (or the least element) in the MPR-poset or not.

The following is Proposition 5 in [7], which answers to the above question.

Proposition B. Let $T$ be an $el$-tree. Let $\lambda_{\max}(\lambda_{\min})$ denote a reconstruction $\lambda$ on $T$

such that $\lambda(u)=\max(S_{u})(\min(S_{u}))$ for any internal node $u$ . Then the reconstruction
$\lambda_{\max}(\lambda_{\min})$ on $T$ is the greatest (least) element of the $MPR$-poset $(\mathrm{R}\mathrm{m}\mathrm{p}(\tau), \leq)$ .

45



In Narusihma and Misheva $[6, 7]$ , and Narushima [8], the two remarkable properties of
ACCTRAN reconstructions have been shown, and also some conditions for an ACCTRAN
reconstruction to be the greatest element or the least element in the MPR-poset have been
given.

In order to investigate ACCTRAN and DELTRAN reconstructions from another point
of view, Minaka [4] has implicitly defined another partial ordering “a is ancestral to $b$” on
a polarized transformation series, and then has introduced a partial ordering called “MPR
partial $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}’$

’ on $\mathrm{R}\mathrm{m}\mathrm{p}(T)$ . We now give a mathematically explicit definition for the MPR
partial order.

We first define a binary relation $\leq_{\sigma(r)}$ on $\Omega$ as follows. Let $T$ be a rooted $\mathrm{e}1$-tree $(T_{s}, r)$ .
For $a$ and $b$ in $\Omega,$ $a\leq_{\sigma(r)}b$ if and only if $\sigma(r)\leq a\leq b$ or $\sigma(r)\geq a\geq b$ . Then, it is $\mathrm{e}\mathrm{a}s$ily
shown that the relation $\leq_{\sigma(r)}$ is a partial-ordering on $\Omega$ .

We next define a binary relation $\leq_{\sigma(r)}$ on $\mathrm{R}\mathrm{m}\mathrm{p}(\tau)$ as follows. Let $T$ be a rooted el-tree
$(T_{s}, r)$ . For $\lambda$ and $\mu$ in $\mathrm{R}\mathrm{m}\mathrm{p}(\tau),$ $\lambda\leq_{\sigma(r)}\mu$ if and only if $\lambda(u)\leq_{\sigma(r)}\mu(u)$ for all $u$ in $V_{H}$ .
Clearly, the binary relation $\leq_{\sigma(\mathrm{r})}$ on $\mathrm{R}\mathrm{m}\mathrm{p}(T)$ is a partial-ordering, and then the partially
ordered set $(\mathrm{R}\mathrm{m}\mathrm{p}(\tau), \leq_{\sigma(\mathrm{r})})$ is called a $\sigma(r)$ -version MPR-po8et.

We here show an example for the MPR-poset $(\mathrm{R}\mathrm{m}\mathrm{p}(\tau), \leq)$ and an example for the
$\sigma(r)$-version MPR-poset $(\mathrm{R}\mathrm{m}\mathrm{p}(\tau), \leq_{\sigma(\Gamma)})$ . An $\mathrm{e}1$-tree $T=(V_{O}\cup V_{H}, E, \sigma)$ is shown in
Fig.1.

Figure 1: An $\mathrm{e}1$-tree $T$

All MPRs on $T$ are recursively generated by Hanazawa-Narushima algorithm and shown
in Table 1. Then we have the MPR-poset $(\mathrm{R}\mathrm{m}\mathrm{p}(\tau), \leq)$ shown in Fig.2.
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Table 1: The set $\mathrm{R}\mathrm{m}\mathrm{p}(T)$ of all MPRs

Figure 2: The MPR-poset $(\mathrm{R}\mathrm{m}\mathrm{p}(\tau), \leq)$

Let the $\mathrm{e}1$-tree $T$ in Fig.1 be rooted at $k$ . Then we have a rooted $\mathrm{e}1$-tree $T^{(k)}=(T_{b}, k)$

shown in Fig.3 (a). Noting $\sigma(k)=2$ , we have the partial-ordering $\leq_{\sigma(k)}=\leq_{2}$ on $\Omega$ , of
which Hasse diagram is shown in Fig.3 (b). As a result, we have the 2-version MPR-poset
$(\mathrm{R}\mathrm{m}\mathrm{p}(\tau), \leq_{2})$ shown Fig.4.
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Figure 3: (a) A rooted $\mathrm{e}1$-tree $(T_{b}, k)$ (b) The partial-ordering $\leq_{\sigma(k)}=\leq_{2}$
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Figure 4: The MPR-poset $(\mathrm{R}\mathrm{m}\mathrm{p}(\tau), \leq_{2})$

Note that the usual MPR-poset is uniquely defined for an $\mathrm{e}1$-tree, but the $\sigma(r)$-version

MPR-poset depends on the root’s character-state of a rooted $\mathrm{e}1$-tree $T=(T_{s}, r)$ .
We here describe some lattice-theoretic problems on $\sigma(r)$-version MPR-posets.

Some lattice-theoretic problems on $\sigma(r)$-version MPR-posets.

1. Whether there exists the greatest element (or the least element) in each
$\sigma(r)$-version MPR-poset or not ?

2. If there is not the greatest element (or the least element), then what condi-

tions for the existence do we have ?

3. How many maximal (or minimal) elements do we have ?

4. Does any $\sigma(r)$-version MPR-poset form a lower-semilattice ?
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