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1 Introduction

In this article, we describe the problem of sharing the fixed cost to construct
a network through the cooperative game theoretical approach, based on
several axioms.

There are several agents that have different kinds of information for users.
We suppose that all of the agents agree to cooperate and undertake to make
new network systems between agents. This construction of a network system
enable users who belong to agents get information about other agents. In
these networks, the values of them are determined by the utility which
agents derive from other agents.

At first we propose the three axioms. They are individual rationality,
Pareto optimality and aggregate monotonicity. We set the characteristic
function of this problem and considered how the cost should be allocated
among the agents. Among the $\mathrm{m}$

. ost commonly used of these game theory
concept is the Shapley value.

We propose a new method for allocating the joint cost of this project
using the Shapley value.

2 A Game Model

Suppose that there are three kinds of systems which are at a distance from
each other and all systems agree to cooperate and undertake the investment
project on the construction of the network system.

It is assumed that the set of systems (in other words, players) 1, 2 and 3
are linked to each other in order and make up the network system (Fig.1).

In order to construct a network system, some costs are necessary. Let $c_{12}$

be the cost for constructing the network link between player 1 and 2, $\mathrm{a}\mathrm{n}\mathrm{d}$

$c_{23}$ be the cost for constructing the network link between player 2 and 3. It
is assumed that player 1 is not linked to player 3. By convention, $c(\emptyset)=0$ .
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Fig.1 Cost Charge in 3-Network

The amount of information which player 1 , 2 and 3 possess are deno,ted
by $q_{1}$ , $q_{2}$ ; $q_{3}$ . We assume that the profit to the information which player
$i$ possesses is represented by a function $u;(q1, q2, q3)$ . Hence the profits
represented by a function $u_{1}(q_{1}, \mathrm{o}, \mathrm{o}.)$ , $u_{2}(0, q_{2}.’ \mathrm{o})$ , $u_{3}(0,0, q3)$ change to
$u_{1}(q_{1},q2, q3)$ , $u_{2}(q_{1}, q2, q3)$ , $u_{3}(q_{1},q2, q3)$ respectively.

The incentives issue is considered first. Let $x_{i},$ $(i=1,2,3)$ be the cost
charged to player $i$ . Then the following inequalities should hold at the time
of completion to construct the network system.

$z_{1}=u_{1}(q1, q2, q3)-u1(q_{1},0, \mathrm{o})\geq x_{1}$

$z_{2}=u_{2}(q1, q2, q3)-u2(0, q_{2}, \mathrm{o})\geq x_{2}$

$z_{3}=$. $u_{3(q1},$ $q_{2},$ $q3$ ) $-u3(\mathrm{o}, 0, q3)\geq x_{3}$

Furthermore the allocation of $\mathrm{x}$ must $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}6\prime x_{1}+x_{2}+x_{3}=c_{12}+c_{23}$ ,
$x_{1}\geq 0$ , $x_{2}\geq 0$ , $x_{3}\geq 0$ simultaneously. Note that $z_{i},$ $(i=1,2,3)$ is $i’s$

marginal saving.

$u_{1}(q_{1}, q_{2,q_{3}})-u1(q1,0,0)=n_{1}(e_{2}+e_{3})$

$u_{2}(q1, q_{2}, q.3)-u2(0, q2,0)=n_{2}(e_{1}+e3)$

$u_{3}(q_{1}, q_{2,q_{3}})-u3(0,0, q_{3})=n_{3}(e_{1}+e2)$

In this case, player 2 and 3 might have different value judgements of player
1. It means that it is better to denote these values as $e_{1}^{2}$ , $e_{1}^{3}$ . To make
the discussion easier,we define that the value judgements by players 2 and
3 of player 1 is the same. In this section,it is assumed that the amount of
information which each player possesses is known to other players equally.

Thus we set that $e_{1}^{2}=e_{1}^{3}=e_{1}$ , $e_{2}^{1}=e_{2}^{3}=e_{2}$ , $e_{3}^{1}=e_{3}^{2}=e_{3}.$ Krther-
more,the player $i$ consists of the number of users ni $(i=1,2,3)$ .

Thus we have the following conditions. ...$\cdot$ .

$z_{1}=n_{1}(e_{2}+e_{3})$

193



$z_{2}=n_{2(e+}1e3)$

$z_{3}=n_{3}(e_{1}+e_{2})$

A cooperative game with players $N=\{1,2,3\}$ is a real valued function $v(S)$

defined on all coalitions $S\subseteq N.v(S)$ is the value of $S$ .
Consider the characteristic function $v$ as follows:

$v(\emptyset)$ $=$ $0$

$v(1)$ $=$ $u_{1}(q_{1}, \mathrm{o}, \mathrm{o})$ , $v(2)=u_{2}(0, q_{2}, \mathrm{o})$ , $v(3)=(0,0, q_{3})$

$v(12)$ $=$ $u_{1}(q_{1}, q2, \mathrm{o})+u2(q1,q2, \mathrm{o})-c_{1}2$

$v(23)$ $=$ $u_{2}(0, q_{2}, q_{3})+u_{3}(0, q2, q3)-C23$

$v(13)$ $=$ $u_{1}(q_{1},0, q_{3})+u_{3}(q_{1}, \mathrm{o}_{\vee}, q3)-C13$

$v(123)$ $=$ . $u_{1}(q_{1}, q_{2)}q3)+u2(q_{1,q2,q}3)+u3(q1, q2, q_{3})-c12-c_{2}3$

The following game $(N,v’)$ is strategically equivalent to the game $(N,v)$

and the equations mentioned above can be rewritten as:

$v’(\emptyset)$ $=$ $0$ (1)
$v’(1)$ $=$ $v’(2)=v’(3)=0$ (2)

$v’(12)$ $=$ $n_{1}e_{2}+n_{2}e_{112}-C$ (3)
$v’(23)$ $=$ $n_{2}e_{3}+n_{3}e_{223}-C$ (4)
$v’(13)$ $=$ $n_{1}e_{3}+n_{3}e_{1}-c13$ (5)

$v’(123)$ $=$ $n_{1}(e_{2}+e_{3})+n_{2}(e_{1}+e_{3})+n_{3}(e_{1}+e_{2})-C12-c23$ (6)

Hence, the following theorem is given.

Theorem. 1 If $v’$ is subadditive and $v’(ij)\geq 0$ , then the $ga.me.(N, v’)$ is.
convex.

Proof. Consider the 3-player game $(N, v’)$ defined on $N=1,2,3$. This
cooperative game is $\mathrm{C}\mathrm{o}\mathrm{I}\mathrm{l}\mathrm{V}\mathrm{e}\mathrm{X}$ if and only if the following inequality is held:

$v’(T\cup\{i\})-v(’\tau)$ $\geq v’(S\cup\{i\})-v’(S)$

for $i\in N$ and $S\subset T\subset N-\{i\}$ .
Since $v’(ij)\geq 0,\mathrm{f}\mathrm{o}\mathrm{r}i=1$

$v’(123)-v’(23)-\{\dot{v}(/12)-v^{J}(2)\}=n_{1}e_{3}+n_{3}e_{1}\geq 0$

$v’(123)-v’(23)-\{v’(13)-v(\prime 3)\}=n_{1}e_{2}+n_{2}e_{1}\geq 0$

$v’(12)-v’(2)-v(J1)=n_{1}e_{2}+n_{2}e_{1}-C12\geq 0$

$v’(13)-v’(3)-v’(1)=n_{1}e_{3}+n_{3}e_{1}-c_{13}\geq 0$
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We can show this for $i=2,3\mathrm{i}\mathrm{n}$ the same $\mathrm{w}\mathrm{a}_{1}\mathrm{y}$ .
$\square$

Here,$v(S\cup\{i\})-v(S)$ represents the marginal contribution of $i$ to $S$ .

3 The Shapley value

We consider the problem on how to allocate the benefits of cooperation
equitably among players. There are several well-known allocation proce-
dures,which involve distinct ideas. The first rule is that it divides the
savings from the grand coalition equally among the players. The second
rule is known as the nucleous,which is the allocation that lexicongraphi-
cally minimizes the vector of excesses,when these are arranged in the order
of dexcending magnitude.

Let us decide which rule to adopt as the allocation rule of this model.
Define that the allocation rule must obey the principle of”aggregate mono-
tonicity”. Aggregate monotonicity states the following context.

Suppose that all players agree to cooperate and undertake to make a
new network system between agents with a specified allocation of estimated
costs.

This construction of a network system can make users who belongs to
agents get information about other agents. In these networks,the values of
them are determined by the utility ,which agents derive from other agents.

If the value for a network system might be changed using the completed
system,only $v(N)$ has changed. Since the alternative network systems were
not made,the available data are the value of the completed network system
and the previously estimated values of those undertaken. This means that
the changing amount of value may be allocatted, but no. one should benefit
by having his assessment reduced.

For each fixed $N$ there exists a unique allocation rule $\phi$ defined for all
characteristic function $v$ on $N$ that is symmetric,charges dummies noth-
ing,additive,and is monotonicity,namely the Shapley value. The Shapley
value can be calculated as follows:

$\phi_{1}(v’)$ $=$ $\frac{1}{6}v’(12)+\frac{1}{6}v’(13)+\frac{2}{6}\{v’(123)-v’(23)\}$

$=$ $\frac{1}{2}(n_{1}e_{2}+n2e_{1}+n1e3+n\mathrm{s}e_{1})-\frac{3}{6}C12-\frac{1}{6}c13$ (7)

$\phi_{2}(v’)$ $=$ $\frac{1}{6}v’(12)+\frac{1}{6}v’(23)+\frac{2}{6}\{v’(123)-v’(13)\}$

$=$ $\frac{1}{2}(n_{1}e_{2}+n2e_{1}+n2e3+n3e2)-\frac{3}{6}c12-\frac{3}{6}c_{2}3+\frac{2}{6}C_{13}$ (8)
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$\phi_{3}(v^{J})$ $=$ $\frac{1}{6}v’(13)+\frac{1}{6}v’(23)+\frac{2}{6}\{v’(123)-v’(12)\}$

$=$ $\frac{1}{2}(n_{1}e_{3}+n_{3}e_{1}+n_{2}e_{3}+n_{3}e_{2})-\frac{3}{6}c23-\frac{1}{6}c_{13}$ (9)

It is shown that the Shapley value is a core solution concept since the
game $(N, v’)$ is convex. Namely,the procedure $\phi$ which is shown in (7) ,
(8) and (9) are characterized by the $\mathrm{a}\mathrm{x}\mathrm{i}_{\mathrm{o}\mathrm{m}\mathrm{S}}:\mathrm{i}\mathrm{n},\mathrm{d}$ividual $\mathrm{r}\mathrm{a}$.tionality,Pareto
optimality and aggregate monotonicity.

Let $x=(x_{1}^{ss}, x_{2’ 3}X^{S})$ be a cost allocation vector. Consider the following
equalities for calculating the amounts players should pay.

$n_{1}(e_{2}+n_{3})-X_{1}S’=\phi 1(v)$

$n_{2}(e_{1}+n_{3})-x2\emptyset s_{=2}(v/)$

$n_{3()-}e_{1}+n_{2}x3s_{=\phi 3}(v)$’

From (7) , (8) and (9) ,we also have the following allocation solution.

$x_{1}^{S}$ $=$ $\frac{1}{2}(n_{1}e_{2}+n_{1}e3-n_{2}e_{1}-n3e_{1})+\frac{3}{6}c_{12}+\frac{1}{6}c_{13}$ (10)

$x_{2}^{S}$ $=$ $\frac{1}{2}(n_{2}e_{1}+n_{2}e_{3}-n1e2-n3e_{2})+\frac{3}{6}C12+\frac{3}{6}c23-\frac{2}{6}c13$ (11)

$x_{3}^{S}$ $=$ $\frac{1}{2}(n_{3}e1+n3e_{2}-n1e3-n_{2}e3)+\frac{3}{6}c_{2}3+\frac{1}{6}C_{1}3$ (12)

We can explain this solution shown in (10) , (11) and (12) as follows.
Player 1 should pay for construction of a network system with $\frac{3}{6}C_{12}+\frac{1}{6}c_{13}$ .
Kthermore player 1 should pay a half of $n_{1}e_{2}+n_{1}e_{3}$ which means the
marginal contribution in addition to this. On the other hand,there is a
charge reduction of half of $n_{2}e_{1}+n_{3}e_{1}$ for player 1.

We can explain also $\frac{3}{6}c_{12}+\frac{1}{6}c_{13}$ as follows. Player 1 should share the cost
of $c_{12}$ and the cost of $c_{13}$ equally among all of players, where $c_{12}$ is charged
for

$1\mathrm{i}\mathrm{n}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{l}^{\mathrm{g}}$

players 1 and 2, and $c_{13}$ is a dummy charge. Contrary to this
sharing,

$\overline{3}^{C_{13}}$
should be returned to player 1.

4 Summary and conclusions

In this paper,we examined a fair allocation model using tools of a coop-
erative game theory. We adopted the Shapley value as a solution of this
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model since the Shapley value is a unique and efficient solution that has
satisfied several axioms, especially individual rationality ,Pareto optimality
and aggregate monotonicity. It was also shown that the Shapley value is in
the core under the condition that the game is convex.

These results can be extended to the problem of the $n$ network systems
case. In this paper,we discussed in $\mathrm{d}\mathrm{e}\mathrm{t}.\mathrm{a}\mathrm{i}\mathrm{l}$ that the amount of information of
each player was known to other players equivalently.
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