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1 Introduction

A non-cooperative game with a continuum of players is an ideal representation of strategic

situations where each player’s strategy is relatively negligible but aggregated strategies affect

on his payoff. However, if $\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{m}\dot{\mathrm{i}}\mathrm{C}$ games implied the same result as the corresponding $\mathrm{f}\mathrm{i}_{11}\mathrm{i}\mathrm{t}\mathrm{e}$

game, it would be sufficient to study non-cooperative game with many but finite players and

the $\dot{\mathrm{f}}\mathrm{o}\mathrm{r}\mathrm{l}\mathrm{n}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ with a $\mathrm{c}\mathrm{o}\mathrm{n}\dot{\mathrm{t}}\mathrm{i}\mathrm{n}\dot{\mathrm{u}}$ um of $\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{W}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{d}$

’

be less attractive for the researchers.

One of the appealing features of non-atomic games is existence of a pure strategy equilib-

riuln. This result is obtained in several formulations of a game with a continuum of players.

Schmeidler (1973) shows that there exists a pure strategy equilibrium if every player’s payoff

depends on his own strategy and the integral of the strategy profile. Rath (1992) reformulates

this case and shows the direct proof of the existence.

In this paper, we show sufficient conditions of the uniqueness of the equilibrium in Schmeidler

and Rath’s formulation. We show the conditions of players’ payoffs for the uniqueness of the

equilibrium. In the game with $\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i},\mathrm{t}\mathrm{e}$ players, these conditions of payoffs does not always imply

the uniqueness of the equilibrium. Thus, this uniqueness of the equilibriunl can be regarded as

another appealillg feature of the game with a continuum of players.

This paper is an intoroduction paper to the results of Watanabe (1997). In this paper we

focus to sufflcient conditions of uniquness for the interior equilibrium on case of $n$ strategies

and show the sketch of the proof for main.theorelns. However proofs of lemmas are omitted.

$\backslash \mathrm{V}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (1997) shows tlle all proofs.
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2 Notations and Definitions

Let $(T, g, \lambda)$ be a player space where $T$ is a uncountable set in a complete separable metric space,

$B$ is a a-algebra on $T$ and $\lambda$ is an atomless probability measure on $B$ . Let $E=\{e^{1}, \ldots , e^{n}\}$

be the finite set of strategies where $e^{i}$ is the $i\mathrm{t}\mathrm{h}$ unit vector in $\mathcal{R}^{n}$ . A strategy profile is a

measurable function from $T$ to $E$ . The set of all strategy profiles is denoted by $F$ . Let $s(f)$ be

an average strategy for a strategy profile $f\in F$ defined by

$s(f)= \int_{T}fd\lambda=(\int_{\tau}f_{1}d\lambda, \ldots, \int_{T}f_{n}d\lambda)$ .

Then $S=\{s(f)|f\in F\}$ is the unit simplex in $\mathcal{R}^{n}$ . A payoff function is a real valued $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{l}\iota$

defined on $E\cross S$ which is continuous on $S$ . Let $l\mathit{4}$ be the set of all payoff functions. XVe

introduce $\sup$ norm topology on $\mathcal{U}$ . A game $g$ is defined as a measurable function from $T$ to $\mathcal{U}$ .

Thus, for a given $g,$ $g(t)(e^{i}, q)$ means a payoff of player $t\in T$ when his strategy is $e^{i}$. $\in E$ and

an average strategy is $q\in S$ .

Definition 2.1 A $f\in F$ is said to be a Nash equilibrium of a game $g$ , if and only if,

$\lambda$ ( $\{t\in\tau|g(t)(f(t),$ $f)\geq g(t)(e^{j},$ $f)$ for all $e^{j}\in E\}$ ) $=1$ .

The existence of pure strategy equilibria shown in the sequential studies (e.g. Schmeidler

(1972) and Rath (1992) $)$ with the unit interval is easily extended to our model with an un-

countable set in a complete separable metric space, since preserving upperhemicontinuity of

integrations shown by Aumann(1976), which is a key of the proof, can be extended to a set in a

complete separable metric space endowed with an atomless measure (see Hildenbrand (1974)).

Theorem 2.1 (Schmeidler$(1973)$ and Rath $(199\mathit{2})$ ) There exists $p\iota\iota re$ strategy equilibria

for any game.

Hence, in the following we only consider about pure strategies. As the definition of the

equilibrium, two strategy profiles which is different only on the nullsets are the same strategy

profiles in the game with a continuum of players. Thus, we consider tllat there exists the unique
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equilibrium if any equilibrium has identical value outside the null sets. Formally, we define the

uniqueness of the equilibrium as follows.

Definition 2.2 For any game $g$ , we say that the equilibrium of $g$ is unique iffor any equilibrium

$f$ and $f’$ in $g$ ,

$\lambda(\{t\in T|f(t)\neq f’(t)\})=0$ .

Rath (1992) defined a best response correspondence from the set of average strategies to the

set of average strategies and showed the excellent proof of existence of the equilibrium. Consid-

ering this correspondence makes analysis of the game easier than using the correspondence from

the set of the strategy profiles as finite games. We also use this best response correspondence.

Let $\Gamma$ be a correspondence from $S$ to $S$ defined by

$\Gamma(q)=$ { $\int fd\lambda|f(t)\in B(t,$ $q)$ , for almost $\mathrm{a}\mathrm{l}1t\in T$ }

where

$B(t, q)=$ { $e^{i}\in E|g(t)(e,$$qi)\geq g(t)(ej,$ $q)$ for anye $\in E$ }

Thus, $\Gamma$ is the best response correspondence for an average strategy. $q$ is said to be a fixed

point of $\Gamma$ if and only if $q\in\Gamma(q)$ . Rath (1992) shows that a strategy profile $f$ is an equilibrium

if $s(f)$ is a fixed point of F. However, there may be several several strategy profiles which have

the same average strategy. The following condition implies that the strategy profile is uniquely

determined outside the nllll sets for tlle fixed point of $\Gamma$ .

Condition $\mathrm{N}$ A game $g$ satisfies $\mathrm{c}_{\mathrm{o}\mathrm{n}}.\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{N}$ if for any $e^{i},$ $e^{j}\in E,$ $e^{\iota’}\neq e^{j}$ and any $q\in S$ ,

$\lambda(\{t\in T|.g.(.t),(e^{i}, q)=g(t)(e^{i}, q)’.\})=0$

. .
Condition $\mathrm{N}$ means that the set of players wllo have two indifferent strategies is an null set

for any average strategy.

Lemma 2.1 If a game $gsati\mathit{8}fieS$ condition $N$ and the fixed point of $\Gamma$ of $g$ is unique, then the

equilibrium of the game $g$ is unique.
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proof. Let us consider that two equilibrium $f,$ $f’\in F$ . Since $\Gamma$ has the unique fixed point

and an average strategy of an equilibrium is the fixed point of $\Gamma$ , we have $s(f)=s(f’)$ . Suppose

$s(f)=s(f’)=q$ and we define the subset of $T,$ $T_{a}$ by $T_{a}=\{t\in T|f(t)\neq f’(t)\}$

We have to show $\lambda(T_{a})=0$ . Let $T_{b}$ be the set of players whose strategies are the best

response of $q$ . This can be written as $T_{b}=\{t\in T|t\in B(t, q)\}$ and by definition of the

equilibrium we have $\lambda(T\backslash T_{b})=0$ .

For any $t\in T_{a}\cap T_{b}$ and any $e^{j}\in E$ , we have $g(t)(f(t),q)\geq g(t)(e^{i}, q)$ and $g(t)(f’(t), q)\geq$

$g(t)(e^{i}, q)$ . This implies $g(t)(f(t), q)=g(t)(f’(t), q)$ . From condition $N$ , we have $\lambda(\{t\in$

$T|g(t)(f(t), q)=g(t)(f’(t), q)\})=0$ . Since $(T_{a}\cap T_{b})\subset\{t\in T|g(t)(\dot{f}(t), q)=g(t)(f(t), q)\}$ ,

$T_{a}\cap T_{b}$ has zero measure. Since $T_{a}\subset(T_{a}\cap T_{b})\cup(T\backslash T_{b})$ , we have $\lambda(T_{a})=0$ . Q.E.D.

3 Case of $n$ Strategies for Normalized Games

In this section 5, we consider only a normalized game in which payoff of the $n\mathrm{t}\mathrm{h}$ strategy is

always zero for any average strategy.

Definition 3.1 A game $g$ is said to be a $normali\approx ed$ game if $g(t)(e, qn)=0$ for any $t\in T$ and

$q\in S$ .

Any game $\hat{g}$ can be normalized to the game $g$ by

$g(t)(e^{j}, q)=\hat{g}(t)(e^{j}, q)-\hat{g}(t)(e^{n}, q)$ .

Since any positive affine transformation does not change the best response structure between

two games, any game also have the unique equilibrium if its normalized game have the unique

equilibrium. Thus, we can use the uniqueness condition for any game by the normalization,

not only for normalized games, though our conditions is mainly applicable to the class of the

games which is originally a normalized game itself.

In this section, we consider the case where each player llas $n$ strategies. In the case we can

only show the uniqueness of an interior equilibrium.
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Definition 3.2 For any game $g$ , the interior equilibrium of $g$ is said to be unique if for any

equilibrium $f$ and $f’$ in $g_{f}$ satisfying that $s(f)_{i}>0$ and $s(f’)_{i}>0$ for any $i\in\{1, \ldots, n\}$ ,

$\lambda(\{t\in T|f(t)\neq f’(t)\})=0$ .

$q\in S$ is $\mathrm{s}\mathrm{a}\mathrm{i}\acute{\mathrm{d}}$ to be an interior fixed point of $\Gamma$ if $q\in\Gamma(q)$ and $q_{i}>0$ for any $i\in\{1, \ldots, n\}$ .

We find that the following lemma holds (see, Watanabe (1997))

Lemma 3.1 Let $g$ be a normalized game. If a game $g$ satisfies condition $N$ and the interior

fixed point of $\Gamma$ of $gi_{\mathit{8}}$ unique, then the interior equilibrium of $g$ is unique.

In normalized games, $n\mathrm{t}\mathrm{h}$ strategy is a special strategy in compare to the other strategies.

To describe conditions of uniqueness, we consider the following two operations. In the first

operation, we add $\theta$ to $i\mathrm{t}\mathrm{h}(i=1, \ldots, n-1)$ average strategy and subtract $\theta$ from $n\mathrm{t}\mathrm{h}$ average

strategy. We denote this operation by $\Delta^{i}(\theta)$ . Formally, for any $\theta\geq 0$ and $i\in\{1, \ldots, n-1\}$ ,

we define $\triangle^{i}(\theta)$ by

$\Delta^{i}(\theta)=\theta(e^{i}-e^{n})$ .

The second operation makes $n-1$ average strategies multiplied by $\theta$ and $n\mathrm{t}\mathrm{h}$ average strategy

decreased to adjust the sum of all average strategies to one. We denote this operation by $\otimes$ .

Formally, for a given $\theta>0$ and $q\in S$ , we define $\theta\otimes q$ by

$\theta\otimes q=(\theta q1, \theta q2, \ldots, \theta qn-1,1-\theta n-j1\sum_{=}q_{j})1$

Condition $\mathrm{R}$ : Rivalry Condition $\mathrm{F}^{\mathrm{I}}\mathrm{o}\mathrm{r}$ any $t\in T,$ $q\in S,$ $i,$ $k\in\{1, \ldots n-1\},i\neq k$ ,

$j\in\{1, \ldots n\}$ and $\theta>0$ satisfying $q+\Delta^{k}(\theta)\in S$ ; if $g(t)(e, qi)\geq g(t)(e^{j}, q)$ , then $g(t)(e^{i},$ $q+$

$\Delta^{k}.(\theta))\geq g(t)(e^{g}, q+\triangle^{k}(\theta))$ .

Condition $\mathrm{H}$ : Homogeneity For any $t\in T,$ $q\in S,$ $e^{i},$ $e^{j}\in E$ arid $\theta>0$ satisfying $\theta\otimes q\in S$ ,

if $g(t)(e^{i}, q)>g(t)(e, qj)$ , then $g(t)(e^{i}, \theta\otimes q)>g(t)(e^{j}, \theta\otimes q)$
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Some useful class of functions satisfies the above conditions. The following condition de-

scribes the class of functions.

Condition $\mathrm{G}$ If $g$ can be written as $g(t)(e, qi)=\overline{h}_{t}(q_{1}, \ldots, qn-1)h_{t}^{i}(q_{i})$ $i=1,$ $\ldots,$ $n-1$

where $\overline{h}_{t}(q_{1}, \ldots, qn-1)$ is a positive function and $h_{t}^{i}(q_{i})(i=1, \ldots, n-1)$ is a non-increasing and

homogeneous of degree $m$ function, then $g$ is said to be satisfying condition G.

Lemma 3.2 If $g$ satisfies condition $G$, then it $s\dot{a}tisfi\dot{e}S$ condition $H$ and $R$ .

Two main theorems in this section are sllown as follows.

Theorem 3.1 If $normali-\approx ed$ game $g$ satisfies condition $N,$ $H$ and $R$ and an interior equilibrium

exists, then the interior equilibrium $exi\mathit{8}tS$ uniquely.

This theorem and lemma 3.2 implies the following corollary.

Corollary 3.1 If $normoli\sim\gamma ed$ game $g$ satisfies condition $N$ and $G$ , and an interior equilibrium

exists, then the interior equilibrium $exi\mathit{8}tS$ uniquely.

To prove the theorem we have to show three lemmas. As I mentioned in the introduction.

all proofs of the lemmas are omitted.

First lemma asserts tllat a correspondence $\Gamma$ is single-valued if condition $\mathrm{N}$ holds.

Lemma 3.3 If $g_{\mathit{8}a}ti\mathit{8}fieS$ condition $N$, then the best response corregpondence $\Gamma$ is single valued.

$\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{e}\mathrm{r}$ is single valued, we rewrite a correspondence $\Gamma$ as a function $\gamma$ . In other words, we

define a function $\gamma$ from $S$ to $S$ by $\gamma(q)\in\Gamma(q)$ for any $q\in S$ and $\gamma$ is uniquely determined.

We define $\overline{S}$ by $\overline{S}=\{(x_{1}, \ldots, x_{n-1})\in R^{n-1}|xi\geq 0\sum_{i=1}^{n-1}xi\leq 1.\}$ Let $\overline{\gamma}$ be a function from
$\overline{S}$ to $\overline{S}$ such that $\gamma_{i}\overline{(}\overline{q}$) $\in\Gamma_{i}(q)$ for any $\overline{q}\in\overline{S}$ and $i\in\{1, \ldots, n-1\}$ , where $q=( \overline{q}, 1-\sum_{j1}n-1)=\overline{q}_{j}$ .

Thus, $\overline{\gamma}$ is a projection of $\Gamma$ to the $n-1$ dimensional real space and lemma 3.3 implies that $\overline{\gamma}$
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is uniquely determined. Hence we find that $x\in\overline{S}$ is a interior fixed point of $\overline{\gamma}$ , if and only if
$\hat{q}(x)\in R^{n}$ is a interior fixed point of $\Gamma$ where $\hat{q}(x)$ is defined by

$\hat{q}_{i}(x)=\{$

$x_{i}$ $1\leq i\leq n-1$

$1- \sum^{n-}j=1Xj1$ $\iota’=n$ .

Hence, we have only to show the uniqueness of interior fixed points $\overline{\gamma}$ to prove the uniqueness

of interior fixed points F.

If an average strategy is $q$ , the measure of the set of players whose best response strategy is
$e^{i}$ equals to $\Gamma_{i}(q)$ . But, the measure of the set of players whose best response strategy is only $e^{i}$

may be less than Fi $(q)$ because some non-null players whose best response strategy are $e^{i}$ has

other best response strategies. Condition $\mathrm{N}$ excludes this possibility and the following lemllua

asserts this fact, described as $\overline{\gamma}$ .

Lemma 3.4 If a $normali\approx ed$ game $g$ satisfies condition $N$, tllen for any $x\in\overline{S}$ and $i\in$

$\{1, \ldots, n-1\}f$

$\overline{\gamma}_{i}(x)=\lambda(Bi(x))$ (1)

holds where $B_{i}(x)=$ { $t\in T|g(t)(e^{i},\hat{q}(.X))>g(t)(e^{j},\hat{q}(X))$ for all $j$ . } In other words, the

measure of the players $u’ ho.se$ best response for $\hat{q}(x..)$ is on..ly $e^{i}$ is equal to $\overline{\gamma}_{i}’(X)$ .

: $\mathrm{Y}$

Lemma 3.5 If a $normali\approx ed$ game $g$ satisfies condition $N$ and condition $R$ , then for any $x\in\overline{S}$

$i\neq k,$ $\in\{1, \ldots, n-1\}$ , and any $\theta>0$ satishing $x+\theta\overline{c}^{k},$ $\mathrm{t}\iota’ eha\mathrm{t}\pi’ e\overline{\gamma}i(x+\theta\overline{e}^{k})\geq\overline{\gamma}_{i}(x)$ where
$\overline{e}^{k}\in R^{n-1}$ is a $kth$ unit vpctor, that is $kth$ elemcnt is one and the other elements are zero.

Now we show that
$\overline{.}\gamma_{i}$

is a $1_{1\mathrm{O}}\mathrm{m}\mathrm{o},\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{o}\mathrm{u}\mathrm{s}\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}$.on of degree zero.

Lemma 3.6 If a $normal|_{\sim}\sim ed$ game $gsati\mathit{8}fieS$ condition $N$ and $H$, then for any $i\in\{1, \mathrm{e}\cdot. , n-1\}$ ,
$\overline{\gamma}_{i}i\mathit{8}$ a homogeneou8 function of degree zero, that is, for any $x\in\overline{S}$ and $\theta>0$ satisfying $\theta x\in\overline{S}$,

$\overline{\gamma}_{i}(x)$ is equal to $\overline{\gamma}_{i}(\theta_{X})$ .
$\backslash$

227



proof of theorem 3.1 To prove theorem 3.1, we have only to show that an interior fixed

point of $\Gamma$ is at most one. Condition $\mathrm{N}$ and lemma 3.3 implies that we have only to show that

an interior fixed point of $\overline{\gamma}$ is at most one.

Suppose that there exists two different interior fixed points $y,$ $y’$ . Then, there exists $j$ such

that $y_{j}\neq y_{j}’$ Without loss of generality, we can assume $y_{j}<y_{j}’$ . Since $y$ and $y’\mathrm{i}\mathrm{S}$ interior fixed

points, for any $i\in\{1, \ldots, n\}$ , we have $y_{i}\neq 0$ and $y_{i}’\neq 0$ . Hence, $\mathrm{t}\mathrm{h}\dot{\mathrm{e}}\mathrm{r}\mathrm{e}$ exists $\overline{\theta}$ such that

$\overline{\theta}=\max_{j_{y_{j}}^{\lrcorner}}y’$ . Let $j\mathrm{O}$ be the index which gives the maximum of the above equation, so that

$\overline{\theta}=\lrcorner_{\frac{0}{0}}y_{j}y’$ . Since $y_{j}<y_{j}’$ holds for some $j$ , we have

$y_{j0}<y_{j}’\mathrm{o}$ . (2)

Choose a sufficiently small $\epsilon>0$ such that $\epsilon\overline{\theta}y\in\overline{S}$ and
$.$

$\epsilon\overline{\theta}y’\in\overline{S}$ . and let $z$ be $\epsilon\overline{\theta}y$ and $z’$ be

$\epsilon\overline{\theta}y’$ . For any $i\in\{1, \ldots, n-1\}$ , we have $z_{i}\geq z_{i}’$ because $z_{i}-z_{i}’= \epsilon(\overline{\theta}_{\mathrm{t}}ji-y’i)\geq\epsilon(\frac{y_{i}’}{y}\dot{.}y_{i}-y_{i})’=0$ .

Moreover $y\neq y’$ implies that $z_{i0}>z_{i0}’$ holds at least for some $i\mathrm{O}$ . Note that $z_{j0}=z_{j\mathrm{O}}’$ from the

definition of $\overline{\theta}$

We define $\{w_{1}, \ldots, w_{n-1}\}$ by

$w^{0_{=}}z’$ $w^{k_{=w}k-1}+(Zk-Z’)k\overline{e}^{k}$ $(k=1, \ldots, n-1)$ .

and $\Delta\overline{\gamma}_{j0}^{k}\in\overline{S}(k=1, \ldots, n-1)$ by $\Delta\overline{\gamma}_{j0}^{k}=\overline{\gamma}j\mathrm{o}(w^{k})-\overline{\gamma}j0(w)k-1$ . Lemma 3.5 implies $\triangle\overline{\gamma}_{j\mathrm{O}}^{k}\geq 0$

for any $k\in\{1, \ldots , n-1\},$ $k\neq j\mathrm{O}$ , and we find that $\overline{\gamma}jo(z)-\overline{\gamma}_{i}\mathit{0}(\approx)’=\sum_{kk}^{n-}=1.\neq i\Delta 1\overline{\gamma}_{j}^{k}0$ . Therefore

we have

$\overline{\gamma}j\mathrm{o}(Z)-\overline{\gamma}jo(z);\geq 0$ . (3)

Now consider $\delta$ defined by $\delta=(\overline{\gamma}_{i}0(Z)-yj0)-(\overline{\gamma}_{j}\mathrm{o}(Z’)-y_{j0})’$ . (2) and (3) implies $\delta>0$ . However,

since $y$ and $y’$ are fixed points of $\overline{\gamma}$ and $\mathrm{l}\mathrm{e}\mathrm{m}\mathfrak{m}\mathrm{a}3.6$ implies $\overline{\gamma}\mathrm{i}\mathrm{s}$ a homogenous function of degree
$\overline{\gamma}_{j}0(z)=\overline{\gamma}_{i^{\mathrm{o}(\overline{\theta}y)=}}\epsilon\overline{\gamma}j\mathrm{o}(y)=|Jj0$

$\mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o},.\delta=0$ should be zero: This leads a contradiction, so
$\overline{\gamma}_{j0}(_{Z’})=\overline{\gamma}_{j}\mathrm{o}(\epsilon\overline{\theta}y)’=\overline{\gamma}_{j}\mathrm{o}(y’)=l/_{j}’0$.

that an interior fixed point of $\overline{\gamma}$ is at most one. Q.E.D.
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