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SINGULARITIES OF SOLUTIONS TO ELASTIC WAVE
PROPAGATION PROBLEMS IN STRATIFIED MEDIA II

Senjo SHIMIZU (/K B

Faculty of Engineering, Shizuoka University, Hamamatsu 432, Japan

ABSTRACT. In this paper we shall study elasti¢c mixed or initial-interface value prob-
lems and give an inner estimate of the location of singularities of reflected and re-
fracted Riemann functions by making use of the localization method.

In this paper, we shall continue our study in the previous paper “Singularities
of Solutions to Elastic Wave Propagation Problems in Stratified media” in RIMS
Kokyuroku 994 (1997), Spectral and Scattering Theory and Its Related Topics
pp-104-120. .

1. Introduction

We consider elastic wave propagation problems in the following plane-stratified
media R?® with the planar interface z3 = 0:

(A1, p1,p1) for :1:3<0,v
(A2, pg, p2) for z3>0. (

(A(@s), u(xs), p(z3)) = {

Here the constants Ay, A, p1, po are called the Lamé constants and the constants
p1, p2 are densities. We shall denote the lower half-space R® by Medium I and the
upper half-space R} by Medium II, respectively, as in Figure 1.
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Figure 1 Stratified media I and II
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We assume that
(1.1) Ni+pi>0, pi>0, p;>0, i=12

(1.1) is the natural assumption in practical situation. From the roots of the charac-
teristic equations of P!(D) and P!!(D) which are defined below 3 x 3 matrix valued
hyperbolic partial diferential operators in Medium I and Medium II, respectively,
we obtain two speeds correspond to Pressuer or Primary wave (P wave) and Share
or Secondary wave (S wave) on each medium. c,, denotes the speed of P wave in
Medium I and cs, denotes the speed of S wave in Medium I. ¢p, and c,, denote the
speed of P and S wave in Medium II, respectively. They are given by

Ai + 20, i
c =——+——u—, cii—u 1=1,2.

pi pi pi

= —, =

By assumption (1.1), the speed of P wave is greater than that of S wave in each
medium. On account of this, these are six cases of the order relation of the speeds
of {¢py,Csy+Cpy,Csy }. Here we assume that

(1.2) Csy < Cpy < Cgy < Cpy-

It is the standard case (cf. [Sh, Section 3]). The other cases can be treated in a
similar manner. :

Let © = (29, 21,22,23) = (2',23) = (20,2") = (20,2, 23) in R*. The variable
zo will play a role of time, and =" = (zy, T2, z3) will play that of space. £ is a real
dual variable of = and is equal to (£o, €1, €2,&3) = (€', €3) = (€0, €"") = (£0,€",€3) In
R‘g. We use the differential symble D; =:719/0z; (7 =0,1,2,3), where : = V-1

“We shall denote by R™ the half-space {z = (21, ,%n) € R"| z, < 0} and by
R? the half-space {z = (1, -+ ,zn) € R"| z, > 0}, and also use the notation |z |

Let u(z) = *(uy(x),uz(x),us(z)) € R? be the displacement vector at time o
and position z'’. The propagation problems of elastic waves in the stratified media
is formulated as mixed (initial-interface value) problem:

PI(Du(z) = f(z), o >0, 2" = (1,z2,23) € R%,
P(D)u(z) = f(z), =zo>0,z" = (z1,22,23) € RY,

(1.3) $ () |zg=—0 = t(@)|zg=+0, @0 >0,2z" € R’
BI(D)u(e)|esmmv = B (D)u(@)lssmros a0 >0, 2" € R,
DEu(z)|zg=0 = gx(z"), k'=0,1, z" €R>

-~

Here
PI(D)u= -D2Eu +

is a 3 x 3 matrix valued second order hyperbolic differential operator with constant .
coefficients where F is a 3 x 3 identity matrix,

(BI(D)u);c = 1A (Vg - w)brs + 2paers(u), k=1,2,3,
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is the k-th component of symmetric stress tensors B!(D)u where
Ekg(u) :‘i/Q(D;;uk + Dyus), k=1,2,3,

.are strain tensors. The PH(D)u and B'(D)u are defined by replacing A1, p1, p1
by As, p2, p2, respectively.

If we put unit impulse Dirac’s delta 6(z — y) with zo > yo and y3 < 0, that
is, put it in Medium I, then the Riemann function of this elastic mixed problem 1s
given by the following: :

& )_{E{(m-y)~FI(x,y) for z3 <0,
Y= Fl(z,y) for z3 >0,

where E!(z) is the fundamental solution in Medium I describing an incident wave,
is defined by »

El(z)=(2m)™* / e Etmplie L in)7ldg,  pe —s9 T,
R4
. 14

with a positive real s large enough. Here ¥ and I are defiend below. Taking partial
Fourier-Laplace transform with respect to z’ for the mixed problem, we obtain a
interface value problem for ordinary differential equation with parameters. Then
taking partial inverse Fourier-Laplace transform for the solution, we obtain expicit
expressions of reflected and refracted Riemann functions F!(z,y) and F{(z,y)
which describe reflected and refracted waves, respectively.

In this paper, we give an inner estimate of the location of singularities of re-
flected and refracted Riemann functions F!(z,y) and F!(z,y) by making use of
the localization method. This method is first studied by M. F. Atiyah, R. Bott, L.
Garding [A-B-G] for initial value problem, then studied by M. Matsumura [Ma 1],
M. Tsuji [Ts], and S. Wakabayashi [Wa 1], [Wa 2] for half-space mixed problem.
Matsumura studied the singularities of the ordinary wave propagation problems in
the stratified media by applying above methods [Ma 2], [Ma 3]. They are useful
references to our study. '

We define a localization of polynom1als according to Atiyah-Bott-Garding (cf.
[A B-G]):

Definition 1. Let P(¢) be a polynomial of degree m > 0 and develop v™P(v~1€+
n) in ascendemg power of v:

(1.4) VT"P (v +1n) = vPPe(n) + O(v**1) as v—0,

where Pg(n) is the first coefficient that does not vanish identically in 5. The poly-
nomial P¢(n) is the localization of P at £, the number p is the multiplicity of £
relative to P.

Moreover we introduce the following:
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Definition 2. T = I'(P,9) is the component of R} \ {7 € Ry, P(n) = 0} which
contains ¥ = (1,0,---,0) € R®. Moreover I =T'(P,J) = {z € R z-n>0,n¢
'} is the dual cone of T' and is called the propagation cone.

We obtain the following Main theorem I. This Main Theorem I is corresponding
to Main Theorem in the previous paper. It means singular supports of reflected
and refracted Riemann functions F!(z,y) and F!I(z,y) are estimated innerly by
localizations FL(z,y) and FgIOI(:c, y) of FI(z,y) and FI!(z,y) at £°, respectively.

Main Theorem I. For £° € R; satisfying (detP{)(£°) =0 (] € {.pl,sl}), that is
2 " '
(det Py )(E°) =& — 5,16 1F =0,
or 2 . "
(det P)(E") =& — i, I =0,

we have the following:
(1) For the reflected Riemann function FI(z,y), we have

(15) VILIIOIO Ve—iu{(-’lll—y')-€0'+:c31'; (EOI)—ysfg}FI(.x,‘y) = F]IEOk(x’ y),
| j € {p1,51} I?E{Pl;sl},

and if €' are zeros of 75(¢"), that is, €' satisfy €0} = % (m € {p],pé,SQ}), then
we have o

(1.6)

lim {u%e—iv{(x'—y'>~e°'+xar;(:"’)-yseg}F’ (z,y) — u%Ffeok(x,y)}

V=00

= jIgOkm(fan), je{p,s1}, ke{p,s1}, m € {p1,p2; 52}

in the distribution sense with respect to (z,y) € R: x R%.
Moreover we have

(1.7) | (supp F}eoi(2,y) U supp Feor(2,y)) C sing supp F'(z,y),
€90 : ' \

and

(1.8)

I
supp Fieox(2,y) = (Tjeo ), = {(m,y) €R. xRZ:

((z' — ') + zagradery (€°)) 7' —y3ms 2 0, n € Fjso},
j€{p,s1}, k€ {p1,s1}
for £° satisfying F]-Iéok(:c,y) #0 (5 €{p1,s1}, k¥ € {p1,51}), A
(1.9)

I
supp Fieom(2,¥) = (Fjeom) = {(»’v,y) €RI xRZ:



(&' —y'") + zsgradery (€°)) -n' —ysms 2.0, n € Fje°m}’

| je{plvsl}a ke{plasl}a mE{Pl,p2,52}

for 50 Sa;ﬁSfyjng F]'Igokm(a:’y) 7"4 0 (.7 € {Pl,sl}; ke {plasl }7 m € {plap2752})'

(2) For the refracted Riemann function F'!(z,y), we have

(1.10)
Lim Ve—iu{(;,;l__yl)_50'+:c3«;-lL (60’) y3£3}FII(:C y) ok(:c’y)’

vV—00
j€{p1,81}, k€ {p2, 52},
and if €°' are zeros of T1(¢') (m € {ps}), then we have

- (1.11)
lim {V%e—iu{(z'_yl),501+z31—k (50') yssa}FII(:C y) . VzFEok(.’E y)}

V>0

50km(37 Y), VRS {p1,31}7 k€ {p1,s1}, m€ {p2},

in the distribution sense with respect to (z,y) € R x RY.
Moreover we have

(1.12) |J (supp Fibi(2,y) Usupp Fjgoy(2,y)) C sing supp F'(z,y),
£90

and

(1.13)

i II
supp Ffp(2.) = (Tier)t' = { (a,0) € RY R

(@' = ') + zsgrader; (€ )) N —y3ns 2 0, ne Fj£°}>
j€{p1,81}, k€ {p2,s2}
for €9 satisfying F]-Igok(x,y) #0 (G €{p1,51} k € {p2,52}), and
(1.14)

II
supprsIoknl(x,y) = (FJ'EOm)k = {(:v,y) €eR* xR :

((z' —y') + zsgradery (€%)) 0’ —yams > 0, n € Fj{"m}v
j €{p1,s1}, k€ {pz,52}, m € {p2}

for £ satistying Fjjg{)km(‘w’y) #0 (5 € {p1,51}, k € {p2,52}, m € {p2}).
Here
(1.15)
Tjeo = I'((det P} )eo(n), V), 9 =(1,0,0,0), je€{p,s1},

7
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(1.16)
0
Tjcom = I'((det P)eo(n),9) 0 {F (570170 —&m - 63772,19'> X Rn} ,

9 =(1,0,0), j € {pr,s1}, m € {p2},

+ ety 53 02 if 53 0"'|2 >0
Tp (€)= sgn(Fo) 2 €072, i 2 13 2 Y,
P1

P1

and T]ﬁ(.f') is taken a branch of 6_523- — |€9™"|? such that +Im7:(£') > 0 if :‘Tﬁ -
P1

P1

|§0"”2 <0. 7-31:(5'), 7-;&2(5’), and Tsi2(§’) are defined as the same as T;i(f’) substi-

tuting cp, for ¢,,, Cp,, and cs,, respectively.

Remark.1. The (T;e0)i (7 € {p1,51}, k € {p1,51}) represent k reflected wave for
j incident wave. The (Fjé°m)£ (7 € {p1,51}, k € {p1, 51} m{p1,p2,82}) represent
m lateral wave of k reflected wave for j incident wave. The (I'jeo)i! (7 € {p1,51},
k € {ps,s2}) represent k refracted wave for j incident wave. The (Tjeom)f (7 €
{p1,s1}, k € {p2,s2} m{p2}) represent m lateral wave of k refracted wave for j
incident wave.

+ + :
Remark.2. The T;E (&1, TE(E"), TE(E'), and 75(€') arise from

(1.17)
det P1(£) = det P} (€) x det PJ(¢)
= {(=&2 + 2 E"P)—E2 + 2 |€")} x (=€ + &3, 1€")
= det P} (£) x {det PL(&O)Y |
= {2, (& — T (EN)(Es — T (€& = 7L (€& — 75,(€)}
x {c2 (& — (€& — 7., (EN}, '

and the factor of detPT/(¢) given with replaced pi, s1 by p2, s2, respectively.

Remark.3. If (detPI)j(fo) # 0, (] € {p1,s1}) then (detP!);co(n)=(detPT);(£°)
and is constant. So [jeo = T'jeo,, = R* and thus (Tjeo)f = (Tje0m)t = {0} C
R4— X R‘-l- (J € {pl'a31}7 ke {pl,sl} m € {p17p2’52}) and (ijo)iI = (ijom)iI =
{0} C R4 x RL (5 € {p1,51}, k € {p1,51} m € {p2})-

Remark.4. By the assumption (1.2), there are not any real ¢ that are roots of
(2 — 2 |¢"|* = 0 and zeros of 7/t (¢'). The sets of €0 cause singularities are given
“in (3.1)-(3.19).

Remark.5. In (1.8), £° satisfying Feor(2,y) # 0 is equivalent to (Q1(£°),Q2(€%))
# 0 in (3.18) below, or is equivalent to Q1(€°) # 0 in (3.20) below. In (1.9), £°
satisfying F]‘Isokm(fc’y) # 0 is equivalent to T1(§°)R1(§°') — Q1(€°)S(€%") # 0 or
Ty(£)R1(£%') — Q2(€°)S(€%") # 0 in (3.21) below.

Lateral waves, in other words, glancing wave, arise from the presence of branch

points of Tﬁ(ﬁ’), i€, 7';,’:2(5’), and 7E(¢'). In our problem, many lateral waves

are appeared.



79

Concerning the Lopatinski determinant, there are two cases: One is the case that
Lopatinski determinant has one real zero, and the other is the case that it has no
zero. It depends on the Lamé constants and densities. We remark that the speed
of the Stoneley wave cg; is less than or equal to ¢,, which is the minimum speed
of {Cs,,Cpy»Csy5Cp, } (cf. [Sh Section 3]). If we put unit impulse § on the interface
z3 = 0, then we have the Riemann functions

_ [ H{() for z3 <O,
Hl(w)—{ﬂl”(m) for z3 >0, [=1,2

given (4.1)-(4.5) below. The singularity appears which corresponds to the inter-
face wave of which name is the Stoneley wave, in the case that the Lopationski
determinant has one real zero. For this case we have the following.

Main Theorem IL. For ¢ € R} satisfying £ — c%,(¢ + €3) = 0, we have the
following: '
(1) For the Riemann function H{ (z) (I =1,2), we have

lim V—le—i”,"so,HlI(w) = HlIeo (z)

V—00

in the distribution sense with respect to x € R%.
Moreover we have

U supp lim H,IEo(x)Csing supp lim Hi(z),
£0'£0 a0 T

and
» supp xal.l_il}_o HI,IEO(,x) :‘ (FStf°'>l — {3:' € R3:2'- 77’ >0, n' € FStEO'}y
where

(1.18)  Dgyor =T <770 — esi(E0m + ) /& + 532,19') , 9'=(1,0,0).

(2) For the Riemann function H{!(z) (I = 1,2), we have

lim V'le_i”xl'eo.lH,”(;v) = Hf;{n(x)

V—r00

in the distribution sense with respect to z € R%.
Moreover we have

\J supp lim ' Hig(z) Csing supp lim H{(x), -
607;&0. .

and
supp I}ﬁoﬂég,(w) = (I‘StEo:)l = {:c' eR*:2' -9 >0, 70 ¢ I‘Steo/},

where T'zor is the same as (1.18).

Remark. If the Lopatinski determinant has no zero, then a singularity. correspond-
ing to the Stoneley wave does not appear.
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2. Proof of Main Theorem I

In this section, we give the precise proof of Main Theorem I. The procedure
of getting explicit expressions of the reflected and refracted Riemann functions
FI(z,y) and F!I(z,y) are given in the previous paper.

We prove for the reflected Riemann function F’ I(z,y). A similar proof is given

for the refracted Riemann function F1!(z,y).
The first part of the theorem is derived by the localization method. First we

prove the equation (1.5). We consider the case that j = s1, k = pi, that is, consider
that P, reflected wave for S; incident wave, and consider that the point ¢° satisfying
(3.2) below. We calculate :

2.1)

14

:(27[')—4/ ei(x'—y')~(“VEO'+£'+iT]’)/ e"iya(*V§g+€3+ins)U(§Hl+,l'nIlI)CX
) R3 R

e—iu{(z'—‘y')'fo'+xsr},—1 (EO’)—?Jaan}FI(w’ y)

( {PI(O)"'h
B{(O{P{ () h

TR (& i)

{P{()"h

BIOWBIO™ - | .
Ik A A TEE )\ ik (i) 4y (€))es
V_lRl(E’-{-n)') lé-ll!_!_inllll

\ 0

{P{(O)7}

BI(O{P{({)7 )2
' 1€ + in™| —z'{r;:(f""i",)'*'""p_l (€ )} es
IR (E i) —7t (€' +an') )

{P{( O} - - ‘

BI(O{PI() 2 - . |
. (75 (¢ +10') \ —i{r (&' +in) vy, (€°)}s
+ y—1R1(f'+in’) <|§”I+i77"’l e { 1( n') p1(5 )}
0

( |5:I(-;’ Z;1:”-[',)) o (€ i) Hrrs (€)) e
—Tp, m

0

[P
| B3 (QPy ()™ -] —ifri (¢'+in)+vry, (67))as
PR AGEST))

(U(E" +in™)C) ™" desde',
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Here ( = & + in. The - means the same component of the Lopatinski matrices
R1(¢" (¢ = €' +in') and Ry((') given below, {P{({)~'}; and {P{(¢)~1}; are the

1 and 2 columns, respectively, of the inverse matrix of P{(¢) given by

(2.2)
cof P |
PO™ = GRHO™ (O™ ) = G = =g ma— oD

v ( Co + {Cp1C3 +C (Cl +C2)} ‘(cf;l ’;Cgl)VCf +C§C3 )
(& WA G d TG+
R1(¢') and R,(¢') are the Lopatinski determinants of the systems {PII (¢', D3),

P{I(¢', D3), B{(¢', Ds), B{'(¢', D3)} and {P)(¢', D3), P{*(¢', Ds), B3 ((', D),
BL((', D3)}, respectively, given by

(2.3) Ri(¢") = det R4 (¢,
(2.4) |
Ié;”él ) TI“L(C)
" ____Tpl C, Cm|
BOT a0 = (0O - 1)
pré (T (C = 1¢" ) —2p1¢2, TE(CHIC™
€] ~r ()
(C‘I) lCHIl

zpzcsz pz(C)IC"’I- o (rE(CYE = ¢ 2y |
P TECY = IC"R) 20, TCIC]

(2.5) Ry((') = det Ro(('),

no_ 1 1
(2'6) RZ(C ) N ( .91 sl(c ) _92682 Sz(C ))

We note that

| 2
(€)= —\/ S (G rep) =€)
P1

since 7,7 (£') is real. Similarly note that Tf(.f’) = -7 (8 (4 = {s1,p3,52}). Making
the change of variable —v£° + € = &, then we have
(2.7)
— (2,”)—-4/ ‘ ei(:c’—y’){n'—*—ir,’)/ e-—z’ya(rc3+in3)U(V€0"’ + K"+ i?]'")CX
R3 R . )
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( - {P{(v€® + & +in)"'h

Biwe® + k +im){P{ (v + x+m) ' - - -

!Vgo + Kn/ + Z-nml
V_1R1(I/EOI+I€'+1"I'[') —7';;(1/60/ + li, + lnl)
o= Hrh e +x'+in')—vrf (€°)} s

{PI(v€® + r+in) ' h

Bi(we® + k+in){P{(v&® + x+in)"'h -

+ v=1Ry (€% +x'+in’)

IVﬁom + KM +i77,”i
___T;;(Vé'ol +K/’ +ZT],)
—i{rt (v€ +x'+in")—vr} (%)} 28

Xe ! P1

\ | 0

" -1
and so on ) (U(u§° + "+ in"')C) drsds'.

Note that
(2.8) | |
! . ! ! . —
(e + &' +in') = vr (€%) + gradrf (67) - (&' + ') + O(v™Y), k= {p1,51},
and
(2.9)
111 1
U(Vé'o + K’” + 7:77”’) — :
VE + Ky + i )% + (V€D + Ko + 1n2)?
vEY + Ky +im —vE — Ko — i 0
x | vE + ko 4 iny vE? + kyim 0 :
0 0 V(WE) + k1 4 in1)? 4 (V€ + K2 +in2)?
0 0 .
1 1 b 0
iy & & , 0 = U(foul) as v — oo for {0”' # 0,
2 2
VES+ o 0 (Jet+e?
(2.10)
Uwe®" + k" + ") - U(s" + ™) as v — oo for " =0,
(2.11)
p w4 k" i = v (€D + K+ i)+ (VED + K2 +1ma)?
P +8V1+ 00
=82+ 67 =" as v—ooo for £ #£0,
(2.12) |

ol

=0.

|V§0I,l+ﬁ"'+inm|—*lfﬂm'*'i"’”{ as v —o oo for £



For 3 x 3 matirx valued function ¢(z,y) € C§°(RL x RY), we have

<Ve_iu{($,_y,),$o'+x3r;l (50/)—y3£§}FI($’ y), (z, y)>

T,y

= (27r)_2<<U(£"' +in"Cx
( {P{(O)™'h
B{(O{P{(O)h

v=L Ry (€' +in’)

{PI(O)h
B{(O{PI(¢)™ h
+ - v—1R,(€&'+in’)
\ | 0

and so on ) (UE" +1ip"™)C) ™1,

IE"’ ™|\ —ir (¢ in)es
(&' +1n') '

( 1611(161 * Z/Zl)) —”:1 (&' +in")zs
+:n

civear (€° )¢(V50' ¢ —in' zs, —vE + & +in', —vE + & + iU3)> > 5
£/ z3

making the change of variable —v£° + ¢ = &, then we have

(2.13)
— (27T)_2<U(1/€0_m + K/I.II + i?]l")CX
[ {P{(v€® + k +1in)"'h

Bi(v€® +k + i) {P{(v€® + x+1in)"'h

( |1/§OI” +K:III+Z‘T]IIII )
—r*(vf" + &' +1n")

v=1Ry (v€Y +K'+in’)
: —z'r;'l (v +k'+in')zs

‘ xe
APLE® + 5+ i) h

B{(v€® + k+ in){P{(v€" + £ +in)" '}

v=1Ry (v€% +k'+in')

( |I/§0”l+f€'”+i’l7”,' )
—7t (€ + R i)
o~ T (V€ +K'+in')zs

-

" -1
and so on ) (U(V€O + k" 4 in"')C) ,
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vzart (69') 7 . : :
RIZELACS )¢(_’€/ —in' za, K+, K3 + “{3)> > ‘
K I3
Here < > denotes a sum of each component, and

QZ(C', z3, Z) = fﬁ(r’,y)[d’(xay)](cl, Z)’

where FL denotes Fourier-Laplace transformation. If §°I” # 0, then for the term
. o/ 1 . . .
including i (€0 HR +i)2s e have by using (2.8)

(2.14)
" 1 : .
L (9) "2 0 L
(2m) <<U“ ) @et PL)eo(x + i)

0 OIII ) B PR
(gl((fo')) ( 7|-€+ (EL’)) e—zgradrp*l(f‘) )?3-(": +”7,) and so on )
1 “ip\

K

where Q1(£°) is defined by (2.19) below. For the term including

T (e AR in')es the right-hand side of (2.13) is equal to

(2.15) (2m) 2 (e €")=s f(i + in, v),

%(_K’I —’in’7m37ﬁ’+i"7,aﬁ3 +ZK'3)> > '7
K T3
by using

! . ! [N ! ’
e + K +in') —vrf (€)= v (") — 75 (€7}
+ gradr}H (€2) - (k' +in') + O(v™1).
We put |
< Sk= 6—1'11(1-:'; (601)_1.:1 (50/))x3g(2}3,1/).

The g(z3, ) belongs to C§° with respect to z3, and suppz,9(z3,v) is included at a
compact set independing on v. Moreover

< 3C indep of v.

5}
"gag(x?n V)
So < >,,in (2.15) is

(2.16) < >g= /e—i"(r-’t(501)—71?1(601))1@(:53,V)d:vg —0 as v—o o
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because of integral by parts or the Riemann-Lebesgue theorem. By (2.14) and
(2.16), we obtain

(2.17)
111'11 < ve “/{(‘T -y ) 50,+$3Tk (50 ) 9363}FI($ y) ¢($ y) >z
=< Fiig0p,(,9),8(2,9) >y for é(z,y) € C(RL x RY),
Here
(2.18)
FsIlgopl (:r7y)

= (27‘-)—4/ ei(:c’__y/—gra.drl;*”l (£")z3) (k' +in’) / e—iys(n3+in3) U(§°"')C
R3 R
o OIII OII'I
0 0
1 Q1(€°) ( 13 ) Q2(¢°) ( €0
Ri(€%) \ _p+ (g0 Ri(€7) \ _p+ (g0’ 0
(det PI )50(H+27’]) ( 0 p1(§ ) | 0 pl(f ) 0

UE"™)C) ™ drsdr’,
(ve™e)

where o
(det P, Jes (s +in) = 2 (€0" — 2, ") |
x {80 (5o +im0) = ¢, (€1 (k1 +im1) + €3 (52 + ina) + €3 (k3 +im3)}
and Q1(£") and Q2(£°) are given by

(2.19)
{P{(E)h
Qe = (et Po)eo )| preeny a0y 1y,

2 2
—€07 + 2 112 + 2, €3

P153
_ —(e2, - ¢ >|¢°“’|53
N ipyc? €9{~ £2+(2c31 2 )" P + 02} SN
ipr|€°" [{—(c2, - 2¢2)€d’ +c81<c,,1 2¢2 >|£°"’|2 c2,c2 £0°}
{PL(£9)1),

Q2(§O) = (detPI )E"(& ) BI(GO){PI(fo) 1}

—(cz, — c2)1e"" |8
B ~€8% + 2 |02 4 2 €97
| g €T+ 2 1P 4 (2¢2, — 2L 2}
ip1€8{—c2, 60" + €2 (32, — 222 )" + 2, 2, €9}

b
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where - means the same component of the Lopatinski matrix (2.4). If 0" =0,

then using (2.10) and (2.12), the right-hand side of (2.13) is equal to

-2 m il 1
ey (U0 + " e

) 1,11 N1 i , P '
(S (57t )
1 —p ‘

(U(K" +in"™)C) ™", $(—&" —in',z3,&" +in', k3 + i53)> >

T3

Since we could put £° satisfying (3.2) below to (1,0,0, —--), we obtain (2.17) with
&

(2.20)
Lot 1] 1 PR
FI Jy) = (2 —4/ i(z' —y ‘(“Z‘l—,0,0)xa).('c +m)/ —iys(ka+ins)
8150111(:1" y) ( ’/T) Rae P Re
/0 0 0
1 Q:1(£°)
X - ; 0 0 O} dkads'.
(det PL)eo(k+in) Ry (€)Y \ L ¢ o k3ak

Cpq

Thus we prove the equation (1.5).

Secondly we prove the equation (1.6). We consider the case that j = s;, k = p;
and m = sy, that is, consider that S, lateral wave of P; reflected wave for 5;
incident wave, and consider that the point £° satisfying (3.7) below.

We calculate '

. ] 1 o/ - ! 0 .
3o (e =) € ey (€° )+93€3}F1(x’y) _ V%Fslle%l(x’y)

: :(271’)_41/%/ ei(x'—y')'(~'+in')/ 6—i93('€3+in3)U(V§0”'+Klll+inlll)c><
R3 R

( {P{(v€® + k+in)~'h

BI(vE® + 5+ i){PL(vE® + x + in) '}

. |1/§0”, + k" 4 i77"'|
—7h (V€ + K +in)
xg—i{r;l(ufol+n'+in')——ur;1 (€°)}zs

v-1Ry(ve% +x'+in')

{P{(v€® +r+in)" h

B{(v€® + k+ in){P[ (v + k +1in) "' h

v-lR, (VEOI +k'+in')

. ( |V§0”’ + k" + in'| )
—T (V€ + K +in')

. + o’ £y + '\ |
o — T (E Hin)) —urt (67)}as

\ 0
and so on ) (U(V§°

i

' -1
‘I" K,III + 7:1’]",)0) dfigdl‘i,
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~(mytoh [ @) [ it e

1 0.(e") ( €1 ) 0:(e") ( L3y ) 0
X — Ry (€ —++(£0 Ry(€ —7rF(£0 0
(det PsI1 Jeo (K + 1) OTpx(f ) 0 p1(§ ) 0

x (u(e"")C) 7 drgdr.

We have for 74, 7p,, Tp,,

1_+,. 0! ! o’

o (vE + K +zn)—>7‘l (f) as v — 00 for I = {s1,p1,p2},
and for 7,,

u_%r+(1/§0, + &' +1in")

_)\/ éo (K/O+“70) é-olu.(mm_i_z'n/n)} as v — 00,

where /- satisfies Imy/- > 0. We have
Ri(ve” + &' +in')

0
=8 {'R1(§0,)+V—%\/2 {fTO(KO +i770) _é.()m . (F&m +in"')}><

—7(¢") ¢ ¢
( —2P1051T,;E(C)IC"'| —p 2 (THC) = IR —pacd, (rE(C)E = 1K)
P (T =K =2pe? (¢S] 2pacs, T (C)IC]
Il T+ ({")
-F chi i +(C') 1¢""|
~2p12, T (CICM] —prc? (T (¢ = [¢"?)

—75(¢)
!CIHI

) +0(V‘1)}
—pac?, (75 (¢)* = 1¢"?). ‘

zys{Rﬂé"’W'%\/ { 20 (o +imo) — €2 <n"'+m"'>}5<s >+o<u—1>}'

82
Similarly

{P{(v€ + & +in)"h
. iy

BI(v€ + n+in){(P{(v€® + s +in) ™ h | T (det PL)ea(n + in)

v

X {QI(EU) + I/“%\/z {f—z(—)—(no +ing) — gor (km + i"]”')}Tl(fO) + O(V_l)} ’

82
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(P + r+in) ]y 6

B{(Vfo+n}+in){P{(u§°+n+in)_l}1 - +| 7 (det PL)eo(r +1n)

" {Qz(éo) + V—%\/ {co (ko +1m0) — olu (K" + ZU'II)}T2(§0) + O(V—l)}

s2
In a similar manner as the proof of the equation (1.5), we obtain )
<V%e—iv{(z’—y').£o/+zarp‘l (§°/)+93€§}F1(x, y) _ V%FsIlﬁopl (z,y), é(z, y)>

=< FS1EOP182(w7y)7¢(x7y) >z, for ¢(:v,y) € CSO(RE_ XR‘I_)’

z,y

where

(2.21)
F3]1£°P132 (.’B, y)

= (277-)—4/ i(z’_y’_gradr+ (€°Yz3) (k' +in") /I; ¢~ 1ys(ka+ins) U(EOHI)C

" (et P; go(n—}—zn)\/ 2, - (Ko +ino) — 50""('?"’4-2'77”’)}‘

, , OIII
T(€) Ry (€”) =01 (€°)S(6”) ( €1 )
X Ry (€%) T;(‘fO)

, , ol
L) R (€)= Qo (£)S(E) ( € ) 0 )
() (")) 0 ( U(e )c) drsdk.
0 0 |

Here we remark that ‘
(TUEDRE™) — Qu(€M)S(E), TelE)IR(E) ~ Qa(€)S(E)) # (0, 0)

-since there is at least one no zero point. :
If we localize at the point £° satisfying (3.5) below, that is j = s;, k = 51, m = py,

then the proof of (1.6) is as follows. For the term mcludlng e i e i)

zrpl(u£ "+ k' +in’)

prove as same as (2.14). For the term including e , we have

<V%e—iu{(z'_y’)fO'—{—xsrp_l(50')+y3530}FI($’ y) - v} FL o, (2,9), $(z, y)>

z,

- <1/§ e T (€ kR Hin )~ (€0 w8 g 4 i ),

%(_K’I - inl7x3a K:, + i’?’, K3 + “73)> '

K,Z3

y .
/ 1 i{lﬂ'j; (EOI)—V%\/2{;!0_('604-1'7]0)"fol/"('c”"i‘iﬂ”')}}’33
— V-z-e P1
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X f(k+1n,z3,0)¢(—&" —in' 23,6 +in', k3 + in3) dredzs
= I(v) ’
for ¢(z,y) € CP(RE x RY), where

&(Claxii,z) = ]—"L(x,,y)[q&(:r,y)](C',z),
Flk +in,23,v) = B2 @) (Hin ol ™D}as ¢y 4y 1)),

If we put

¢{ (ko +1m0) — €0 - (£ i)} o

50 ; 8/&30 ’

Pl

tL____

1
vizy -

then we obtain

z{””‘«s‘“) "’\/2{;%&(nmno)—sv'“~(~~'+z‘n'“)}}fa
I(v) = / | g

x v3 L [f(/i +in, z3,v)d(—K' —in',z3, K" +in', k3 + ing)] drdzs

— 0 as v — oo,

since
o\ 1. - . . : .
(5) [Fe inaa, ) =i o0 4 s i)
ali‘,()
<C)(sl+I)7% i v>1, ;<2
and

—3C; <z3<-3C3; <0 on supp <$

Thus we prove the equation (1.6).

The inclusion relation (1.7) is proved in the prev1ous paper, so we omit the proof
of (1.7).

Finally we prove the formula (1.8) and (1.9). If (Q1(£°), Q2(£%))# (0 0) in (2.18)
or 1f Q1(£%) # 0 in (2.20), then we could put

iz’ =y’ —gradrf (€°")zs) (k' +in') —ys(xa+ins)

fo&"pl(‘”’y) = Const.(27r)_4/ ‘ a dx,
R4 ("90 +i770) — _gngo . (ﬁu +i77”)

and would like to obtain s;upstIlsop1 (z, y) If we put

6i:c'(fc+i77)
Gi(z) = (2%)—4/ . = ——dk,
IRt (0 + ino) — " - (" +in")
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then
Ffleopl(%y) Gl(a? -y —gfad (f )$3a_y3)

So it is sufficient that we consider suppG;. From the Paley-Wiener-Schwartz theo-
rem, Co

chlsuppGy] = {z € R* z-9n >0 for Vn €T, e},

where ch denotes a convex hull, and

(2.22) Ty 0 = {n eR!

no — 3160" ”>O}.
3

By (2.22), we have

ch[suppG1] = {IL' € R*

c2 n
gc=A(1,——’OL 0 ) AZO}
0
SCZ/\( 60”>, )‘20}’
£

since Gy is a homogeneous distribution. Thus we prove the formula (1.8). Next we
prove the formula (1.9). If

and it is half-line. So we obtain

suppG; = ch[suppGi] = {a: eR*

(TR~ QuEISE), Tl)Ra(e") - Qal€)S(E”)) # (0, 0)
in (2.21), then we could put

ei(x'—y'—gfadffl (6°")z3)-(x'+in")—ys(rs+ins)

F! (z,y)-= Const.(2m)™* /
$1&%p1s ’ 2
187 P182 R4 (RO + Zno) N ngl é.oll . (K,” + in”)

- |
" \/57"(&0 ting) — € (K + i) d,
cs,

and would like to obtain suppF €0 (z,y). If we put

P182

6iz~(n+in)

Ga(z) =(2r)~* / » ~
R* (kg +1n) — fg_go” (K" 4 1n")

\/"‘O—(Ko + "’0) _ 60", (K"' + zn"’)dn _

then ‘
/
F31£0p132(m y) GZ(‘T - y - grad (60 )CB3, —yS)-
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So it is sufficient that we consider suppG2. From the Paley-Wiener-Schwartz theo-

rem,
ch[suppGs] ={z € R* z-7 >0 for Vn€ T, o5},

where ch denotes a convex hull, and

c c,
(223) F315032 = {n € Rf; no — _Eoigo” . 77” >0, o — ___62_£OIII . 7]," > 0} .
0 0
By (2.19), we have v |
chlsuppGs) = {x eER*|\z =k ( 60") +ko (1 - 50”' )
3 &

ki, ko > 0}.

We would 11ke to verify ch[suppG,]=suppG,. We take the change of coordinates
such as

1 St e el
| 032 0 622 0 0
p = Ak, A=11 — 8l 0 ,
0 0 1 0
0 0 0 1

where we note that A is holomorphic matrix by the assumption (1 2). Then Ga(z)
is given by

_ iftA"lz. (p—iAY) 0 —
(o) = my o [ CE T Vam D,

I det AI R* Csy 6(()) p1—1

where 9 = £(1,0,0,0) and +/€(po — 7) is taken the branch such that Im+/£3(po — 1)

~ >0. By Aﬂ:t(l,-lv, 0,0) and the Cauchy integral theorem, we obtain

Go(z) = (27)™* 1 it AT 2 (p=it(1,1,0,0)) _1 mdp

b

' | det A[ Jrs ' s, 60 p1— v
(2.24) = (2m)™* 1 AT e 1 £d(po — 20) dp
'. } | det Al R4 ' 68268 p1— 10. :

By the Fourier transform formula (cf. [H6, Example 7.1.17]), we deduce

(2.25) - f‘l [E’-l—zdl (a:)zz'H(x),

4

(2.26) F (- i0)}] (2) = -2 o7 272,

where H(z) denotes the Heaviside function and

" {w“ for >0,
i =
0 for z<0
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for a € C. By (2.25) and (2.26), the right-hand side of (2.24) is equal to

—ig -3 .
MLJ1¢73}%%M2®uﬂa)®ﬂ%Jﬂ for £§ >0,
€ Csq 0

IdetA|:1 Jie |2\/‘(20)+ ®‘H(2’1)®5(22,23) for 50 <0
22 0

_ie—z sgnfo I
" 2y/7| det Ales,/16)]

where z = ‘A~ 1z. Thus we get

supp Gz = { € R* 2020, 21 20, 22 = 23 = 0}

(20)? ® H(z1) ® 8(22,23),

ky :
4 ol k2|,

=<{zeR*|z="A N ki, k2 >0

0

2 2
= {:1: ER* 2=k (1,—5&)— 0”) +ky ( : fﬁgﬁ °”',0),
ok, 79220}

= ch[supp G2},

thereby we prove the formula (1.9).
This completes the proof of Main Theorem I.

3. The Location of Singularities

By using Main Theorem I, we find an inner estimate of the location of singular-
ities of reflected and refracted Riemann functions F!(z,y) and F{(z,y).

In the expressions FI(z,y) and F(z,y), the parts put between U(¢" +1in"')C
and (U(€"+in"")C)~! are decomposed into 2x2 and 1 x 1 matrices valued Riemann
functions Fy,,(z,y) and Fl ,(z,y) for Fi(z,y), and F{l,(z,y) and F{L,(z,y) for
FII(z,y). The displacement vector of Fy,,(z,y) (¢ = {I,II}) lies in (21 —y; )(z3 —
ys)-plane and that of Fy, (z,y) (¢ = {I,1I}) lies in (zy — y2)-axis. Thus we can
treat Fy.,(x,y) and F};(z,y) (¢« = {I,I1}) independently.

For Ff,,(z,y), we have the following 4 sets of £° that are roots of detP](¢°) =

0 and are not zeros of TL(£°) (m € {p1,ps,s2}); roots of detPl (£%) = 0% _
2 1€9"|2 = 0 are :

1

(3.1) f%ﬂﬁﬁﬁwwmmwwmmmmW%;a

1

(32) € =(L6,8,75() for 7,,(6%) in (1.5) with €] < —,

P1

and roots of detP] (¢°) = 82 — 2 €912 = 0 are

P1|

(33) €= (LEL () for (€ in (15) with €] < —,

P1
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(3.4) sumﬁﬁqwmmmw%wmmka§<

P1

(3.1) and (3.2) (resp. (3.3) and (3.4)) correspond to P, and Sy reflected waves for
Sy (resp. Pi) incident wave, respectively.

We have the following 9 sets of £ that are roots of detP{(£°) = 0 and are not
zeros of 7 (£9) (m € {p1,2,P2}); (3.5)-(3.9) are roots of detP/ (£?) =0 and

(35) € = (LEh e rh(e) for mo(€") in (16) with €] = —

P1

are zeros of 7';’(60‘,),
(3.6) €0 = (1,€0,€3, 7 (€°)) for 77 (€°') in (1.6) with 1€ = =,

37 € =18,8,75(E") for 7, (¢") in (1.6) with €] = —
are zeros of 77 (£°'),

(3.8) €0 = (1,0, €0, 7 (€2)) for 717 (£”') in (1.6) with "] = —,
ch

(39) €0 = (LELE, (€M) for 75 (6%) in (1.6) with ('] = —
. P2

are zeros of T];’;(ﬁol), moreover (3.10)-(3.13) are roots of

detP! (¢°) =0 and

(3.10)

€0 = (1,60, 62,75+ (¢*")) for 77(£%') in (L.6) with [¢*"| = ci
(3.11)

¢ = (1,629,639, 7t (6°")) for 7 (€%) in (1.6) with |¢°"| = 61_2
are zeros of 77, (£%),
(3.12) |

| a%mﬁﬁﬁwmmm@mmmwwwwi,
(3.13)
1

0 = (1,€0,60, 7 (6%)) for 75 (€%) in (1.6) with [¢°"'] = -
_ ) ; e

are zeros of 7} (¢ 0"y, (3.5) corresponds to S; lateral or glancing wave for S; incident
wave with P influence. (3.6) and (3.7) (resp. (3.8) and (3.9)) correspond to P;



94

and S; lateral waves for S incident wave with S (resp. P;) influence, respectively.
(3.10) and (3.11) (resp. (3.12) and (3.13)) correspond to P; and S; lateral waves
for P, incident wave with S, (resp. P,) influence, respectively.

For F/1,(z,y), we have the following the 4 sets of £° that are roots of detP{ (£°) =

0 and are not zeros of 7}, (€°); roots of detP; (£°) = 0 are

(3.14)
0 =(1,8,6, 7 (€°")) for 7(€°") in (1.10) with |¢*"'| < —,

(3.15)

€0 = (1,62,€9, 7 (€°")) for 7 (€°') in (1.10) with [¢*"] < 21_

P2

and roots of detP/ (¢°) =0 are

(3.16) - |
€0 = (1,€0,€9, 7k (%)) for 7 (€°") in (1 10) with |¢°"] < =,

(3.17)
1

= (1,0,69, 71 (¢€*)) for 73%,(6”) in (1.10) with [€""] < —.
P2
(3.14) and (3.15) (resp. (3.16) and (3.17)) correspond to S, and P, reflected waves
for Sy (resp. P;) incident wave, respectively.
We have the following 2 sets of £° that are roots of det P (&%) = 0 and are not
zeros of 7} (50)

(3.18) — (1,60,60, 7 (E)) for (%) in (L11) with €] = —
P2

are roots of detP] (¢°) =0 and zeros of T +(£%),

(819) £ = (L€ & 7€) for 7€) in (111) with [€"] = —
P2

are roots of detP; (£°) = 0 and zeros of 7.} (£°). (3.18) (resp. (3.19)) corresponds
to Sy lateral wave for S1 (resp. Pp) 1nc1dent wave with P, influence.

Remark. It is sufficient to consider only the case £ = 1 since (T'je0)f = (Tj(ee0) )i
(Fje"m)i = (Fj(tf")m)£ (7 = {p1,s1}, k = {p1, 51}, m = {p1,p2,52}), and (Pjs")il
= (Tjen)i’s Tieom)i’ = (Tjaeoym)i’ (3 = {p1, 1}, k = {p1, 51}, m = {p2, }) for
te R\ {0}. : .

The figures of inner estimate of the location of singularities of the reflected and
refracted Riemann functions F{, ,(z,y) and Fii,(z,y) are given as in Figure 2
and Figure 3 in the previous paper. However they are wrong. Here we show the
correct figure of the inner estimate of the location of singularities of F2 ] o(z,y) and
FIL (z,y) with pass of time as in Figure 2.
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Ys Y3 Cp,\— Y3
Ty < — 2= I S zo < P2( )
Cc ) C 2 2
1 : —
P P Cp14/ Cp, p1
X3
P,
0o =
. (%, %) ) P (x1, x2)
. _Siincident
., "’ ,"- \‘/\/ : ‘.' ,', \~‘ ‘-\
P, mczdent——-’\ s : :_‘ ® ,} i
Cc —Ys3 (& —Ys3 C —Y3 (& —Y3
Pz( Y ) S To < 82( Y ) 82( Y ) S Zo < Pz( Y )
2 _ 2 2 __ 2 2 - 2 2 2
cPl sz Cp1 ] CPl Cs2 Cp1 Cpl Cs2 Cp1 Csq sz Cé,1

X3

A x1, x2) (x1, %2 )
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cp. (— Cs. (—vys3
Cs, ng — Cgl Cs14/Cs, — C§,
X3

(X, %)

(%1, %)

Figure 2 Inner estimate of the location of singularities of
F2Ix2(xa y) and F2I>€2(x’ y)
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4. The Stoneley Wave

In this section, we consider the elastic wave propagation if unit impulse Dirac’s
delta is put on the interface 3 = 0.

The Riemann functions of the elastic mixed problem (1.3) is given by

_ [ H{(z) for z3 <0,
(41) Hl(x) - {HIII(SL') for z3 > 0, 1=1,2,

that are obtained to solve the following interface problems:

(4.2)
( P/(D.;)H{(z) =0, ze€R%,

P (D,)H!(z)=0, zeRY,

HI(2)|sg=—0 — H{ (2)]sg=+0 = 6(',0)E, z' € R?,
\ BI(Dz)H{($)‘za=*0 = BU(Dz)HlII(x)lza=+0a
(4.3)
( PI(D,;)Hj(z) =0, z€R:,
PH(DYHH(2) =0, zeR4,
H2I(x)|1'a=—0 = H{I(x)|xg=+0a

| B (D) H(2)]s9=—0 — B (D2)H{ (2)|syms0 = 6(2',0)E, 2’ € RY,

where E is a 3 x 3 identity matrix.

As the same procedure to get the explicit expression of the reflected and refracted
Riemann finctions FY(z,y) and F!!(z,y), we obtain the expression of Riemann
functions Hf(z) and H{!(z). H{(z) and H!(z) are given by similar expression.

@) H@=n [ ey
R3

/ 1
0
o - - - o
0 - - - ( €" +in™| )e—ir;"l(&'+i77')13
Ri(&'+in") _7-;1(5' +in")
% 1
0
S0 - - ‘
L 0o - - (T;t(f'-i-in'))e—irj;(f’+in’)xs
R1(£I+lnl) iél!l+inlll|

\ 0
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0
1 -
o - - - \ : ,
o - - - ( €' +in"'| )e‘ir;"l(f'+in')x3
TREFT \ k(¢ +in')
0
1
0

-0 - A (THE ) ik (¢ in)es
+ R1(§'+i'l7') ‘glll_l__z'nllll

0
0
1 0 X (U(ﬁ"’ + in'”)C)'ld{’, z3 <0, | ;
0 —ir} (&' +in')zs '
IAGET N

(45) H{I(.’E) — (27_‘_)-—3 / . eix',(sl_}_inl)U(é.nl 4+ ’l:T]m)C
R

—
o O =

0 -1 [ 16"+ ) irt & +in)es
mEEm) \ 7, (¢ +in')

1
0
0
0

I —r (6 ')\ irk €' +in')ws
+W’ |£IH+Z‘,’,’HI|

0
1
0
- - 0 € + in"'| >eirjz(€'+in')xa
TRi(€+in) Tz‘)';(f' +1n')
0 ,
-1
.0 ‘
- - 0 (—T;';(E'Jri’?')) i (€ +in )z
+W |+ in™|

0
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0
0
1 x (U(E" +in")C)™'dE", x5 > 0.

Here the Lopatinski determinants R;(¢') (¢’ = £'+in') and Ry((’) are defined (2.3)-
(2.4) and (2.5)-(2.6), respectively. - means the same component of the Lopatinski
matrices R1((") and Ry(¢") defined by (2.4) and (2.6).

We obtained the following conclusion for the Lopatinski determinant R;(¢')
(cf.[Sh, Section 3]). Here cs; is the speed of the Stoneley wave corresponding
to the interface wave and is less than or equal to most minimum speed c¢,,. The
zero does not necessarily exist. For the discreminant '

Dis(c;,) = (#1 —2u2 + ———uz \/—*l - 1\/—— — (1 — 2p2)"
E
82

Dis(cgl) >0 = The zero £o = cse|t"'| of R1(¢') exists in
[0, cs, [€""]) with order 1.

we get

(1)

(if)
Dis(cil) =0 = c¢st = ¢s, and we shall consider this case
under some restricted conditions (cf. [Sh, Lemma 6.4]).
(iii) '

Dis(c? ) <0 = Ry(¢') has no zero.

If Dis(c? ) > 0, then we find an inner estimate of the location of singularities
of the Riemann functions H?(z) and H'!(z) by using Main Theorem II. And if
Dis(cZ,) < 0, then a singularity corresponding to the Stoneley wave does not appear.
For the Lopatinski determinant Ry(€'), it has no zeros.

" The Lopatinski determinant R;(¢') has the expression

(4.6) Rl(g')—;{ ! ﬂ%—+—i——ﬁ%—+“l“2( CHR )}

4 4 2 2
CPl Cs; csg cpzcsz Csl cslcsz cplc'92 cpzc-91

(€0 —cst|€"')) (53 + lower term of &) .

The first factor of the right-hand side of (4.6) is constant, and the third factor
of that does not have the factor of zeros of R;(£'). A point causes a singularity
corresponding to the Stoneley wave is

Ollll _ 1

CSt

(4.7) - e =(L,8,8), |
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We note that there are not any real ¢’ that are zeros of £ — cs:|¢'"'| and some
of TH(¢&"), 75 (&"), 7(€"), and 7, (') are real because of 0 < cst < cs, and the

assumption (1.2).
We consider that

v e Hl(2)

— (Qﬂ_)—B/ eiz;’-(—u§°'+§’+in’)U(£I(/ + in"’)C % p~1
R3

. ( |£_I: 4 Z'nu.l| ) e——ir:‘l(fi'_*_i.n))zs % (U(f’” + in/,,)'c)_ldé-l. .
_Tpl (6’ + “7,)

and so on

Making the change of variable —v¢% + ¢ = &', then we have

=(2ﬂ,)—3/ eiz’-(n’+in’)U(y£0"'+Km+inu/)c
R3 )

( 1
0
o - - -
n . .
—1 0 - - -} €+ K" ™|\ i we 4 Hin)zs
4 [ . + o/ f .y € P1
Ry(v€ + k' +1n') \ —75, (v€" + K" +17')

and so on) x (Uwe®" + &" +1n")C) " dx'.

By (2.8), we have for the point (4.7)

_ ' . v _
(4.8) vl e ' i) = () +0(vTY), k= {p1,s1},
where , .
2 —ck A/ €2 — ¢
(4.9) 7-];';(50') = i_;P_.___._i’ Tt ') = ;v St
Cp.CSt Cs, CSt

By (4.6), we have for the point (4.7)
(4.10)

. -, | , 0 0
V"SRI(Vfo + k' +in") = Const.({o ) (770 — cSt%#> +0(v™)
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= Const.({o') ((fio +1in9) — cSt_((fsl + i) + (52. + inz))) +0(v™1)
= Ryeor (' +1in') + O(v™1).

Moreover if we put

1 (€%
0 lwg
0 —prc2 (r(€) = 1€")?)
0 —2pc ()"
(3 —r (€%
(€ |€%
2Pﬂ%2pxﬁoﬂgww —pac, (T (6) = | |2)

P2 (THED = E"P) 200, (€]

is equal to V;(£°") (resp.

= V(e = V(¢ = Va(e")),

oo O
OO = O
oo o

then

(411) vV + K i) = Va(€) +0(rY), n=1,2,3,4
Thus we get from (2.9), (2.10), (4.8), (4.10), and (4.11),

lim v~ le™#=" € Hl(2) = (27)73 /R 3e”"<f’+""'>U(§°”’)cx

V—ro0
ol ‘ o3 _.2 m 2 _ .2
Vi (e®) ( €% ) @a Va(€%') ( 1€° |)>e bty

Ry cor(x'+in’) +(§0') Ry o (s'+in’) __.7-+ (60'
. cg —c2 cf —¢:2t
Vae™) 4@364;;; o e (ThHENY Yk,
R, 0:(x'+in’) |€0"'I R, o1 (k' +in') |§0"’i
0 0

0 i "

0 | x (U(*)C) " dr' = Hizor(x).

0

Therefore we can prove Main Theorem II in the same way as Main Theorem I.
Finally, we calculate the singularity of lim,, ,_o H{(z) caused by the point (4.7)
as the Stoneley wave.

Dsieor = {n € R®| 1o — c%, (€91 + €3m2) > 0} x R,
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and
supp'gcsli_rén_0 HIIEO(:I:) = (FStEo,)’ ={z'eR?*: 2’ -y 20, n' € Dgeor

= {c' e R*: o' = u(l, ~&8}, ~chikD), u>0}.

Thus an inner estimate of the location of singularities of lim,,—.—o H{(z), corre-
sponding to the Stoneley wave on the interface 3 = 0 is given by

(4.12) U (PStEo:)' ={z' e R®: 2% +2%=c%28, =0 >0}

oy —_1_
0" = 5L

Thus an inner estimate of the location of singularities of lim,, 4o H H(z) is also
given by (4.12) in a similar manner. '
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